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Abstract. An associative Boolean tree is a plane rooted tree whose internal nodes are labelled
by and or or and whose leaves are labelled by literals taken from a fixed set of variables and
their negations. We study the distribution induced on the set of Boolean functions by the
uniform distribution on the set of associative trees of a large fixed size, where the size of a tree
is defined as the number of its nodes. Using analytic combinatorics, we prove a relation between
the probability of a given function and its tree size complexity.

1. INTRODUCTION

A Boolean function of n variables is a mapping from {True, False}n onto {True, False}. The
interest in these objects dates back to the 1940s when Riordan and Shannon [26, 29] discovered the
so-called Shannon effect: the uniformly random n variables Boolean function has asymptotically
almost surely exponential complexity when n goes to infinity. Since then numerous papers have
been devoted to developing a better understanding of various aspects of Boolean functions. Con-
cerning random Boolean functions and the Shannon effect, further investigations were carried out
by Lupanov [23, 24] and a proof based on simple combinatorial counting arguments is presented in
Flajolet and Sedgewick’s book [9]. All these results concern the uniform probability distribution
on the set of Boolean functions in n variables.

In the last two decades people became interested in non-uniform distributions. A natural
way to pick a Boolean function at random is to pick a Boolean formula at random and look
at the function it represents. It is convenient to see Boolean formulas as rooted plane trees
whose internal nodes are labelled by logical connectives like ∧, ∨ or =⇒ (being respectively
the conjunction, disjunction and implication operators) and whose leaves are labelled by (possibly
negated) variables {x1, . . . , xn} (where n is a fixed integer).

The first efforts in generating a random Boolean function via a random Boolean formula/tree go
back to Paris et al. [25] and Lefmann and Savický [22] where the authors pick a tree uniformly at
random among all binary and/or (meaning that only the binary connectives ∧ and ∨ are allowed)
trees having m leaves. Lefmann and Savický [22] showed the existence of a limiting distribution
when the size m of the tree (i.e. its number of leaves) tends to infinity and also bounded the
probability of a Boolean function in terms of its complexity, the complexity of a Boolean function
being the size of the smallest trees representing it. The existence of a limit distribution when m
goes to infinity was shown independently for nonbinary trees by Woods [31]. Woods’ method is
basically a special case of a more general result, the Drmota-Lalley-Woods theorem originating
in the works [5, 21, 31]. See Flajolet and Sedgewick [9] for an easily accessible formulation,
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Drmota [6] for a detailed discussion, and Fournier et al. [12] for an application in the context of
Boolean formulas. The bounds of Lefmann and Savický were later refined in Chauvin et al. [4] by
methods from analytic combinatorics. A survey of this topic was written by Gardy [13].

Different but somehow related problems in the framework of balanced trees have been pursued
by Valiant [30] who wanted to generate a particular Boolean function with high probability. His
results were extended in Boppana [1] and Gupta and Mahajan [19]. The existence of a limit
distribution for balanced and/or trees can be found in Fournier, Gardy and Genitrini [10]. The
influence of different connectives was studied in Savický [27] and Brodsky and Pippenger [2], but
under different distributions.

The study of the relation between the probability of a given Boolean function and its complexity
under models similar to the Lefmann-Savický model was resumed recently by Kozik [20] (and by
Fournier et al. [11, 12] for the implicational model) and later refined and extended in [16]. It was
proved that if pn,m(f) is the probability that a uniform binary and/or tree of size m (and on n
variables) calculates f , then

(1) lim
m→∞

pn,m(f) =: pn(f) ∼ λf
n`(f)+1 , when n→∞,

where `(f) is the complexity of the Boolean function f .
The drawback of the models based on plane binary trees is that basic algebraic properties like

commutativity and associativity of the connectives are not incorporated into the model. The
papers [16, 15] extend the binary plane models to more general tree classes. For instance, due to
the associativity of the connectives ∧ and ∨, it is very natural to consider nonbinary trees, but in
that case there is no justification why the size of an and/or tree should be its number of leaves (as
considered in [16]) and not its number of internal nodes or its total number of nodes. And since
the complexity of a Boolean function is defined as the size of the smallest trees calculating this
function, changing the notion of size changes the notion of complexity.

In computer science, the formula size complexity (often called formula complexity or only com-
plexity) is an important quantity in the investigation of Boolean functions. When looking at the
tree representation of a Boolean formula, the formula size is the number of leaves of the tree. It
is the size notion and thus the complexity notion used in the and/or trees literature mentioned
above [25, 22, 4, 20]. This notion of size is natural in the binary connectives context (i.e. with
gates of fan-in 2) because, in that context, the number of connectives is the number of leaves
shifted by 1. However, when one turns to Boolean circuits, and consequently to (computational)
complexity theory questions (see e.g. Graham, Grötschel and Lovász [18, Chapter 40]), the natural
notion of size in this context is the number of connectives (or gates).

In this article, we consider nonbinary and/or trees. The leaves are not shared like in circuits,
and thus both their number and the number of connectives are important when defining the size
of a Boolean function. Moreover, from a computer science point of view, the size of the storage is
a function of the number of all vertices. We thus define the tree size of a Boolean formula as the
total number of nodes of its tree representation. The complexity of Boolean functions associated to
this new notion of size is called the tree size complexity, as opposed to the formula size complexity
used in the literature.

In this article, we show that the typical uniform and/or tree of size m changes drastically when
changing the size notion. This comes from the two successive limits taken in our set-up and in the
literature: in Equation (1), the size of the trees first goes to infinity and then, we let the number
n of variables labelling the trees go to infinity. The typical and/or tree of size m in the tree size
model depends on the number of variables n: the larger n is, the more likely it is for the typical
tree to have many leaves, whereas in the formula size model, the shape of the typical tree of size
m does not depend on n. This difference between the two models is the reason why we need to
develop a whole new approach in this article since this difference of typical shapes make the proofs
developed in the formula size literature collapse.

However, it eventually turns out that the two distributions induced on the set of Boolean
functions by the tree size model and the formula size model very well fall under the same paradigms.
As in the formula size model (see Equation (1)), we can prove that there is a strong relation between
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the (tree size) complexity and the probability of a function. More precisely, if we pick uniformly
at random an and/or tree of tree size m (labelled on n variables) and denote by Pm,n(f) the
probability that this tree represents the Boolean function f , then we prove in this article that

(2) lim
m→∞

Pm,n(f) =: Pn(f) ∼ λf
nL(f) ,

where L(f) is the tree size complexity. This result is very close to Equation (1), but the difference
in the exponent of n actually makes a clear difference, namely that in our model, the asymptotic
probability of the two constant functions True and False (which have complexity 0) is of constant
order while it was tending to zero with n in the formula size model. This immediately implies
that the tree size model does not exhibit the Shannon effect, whereas proving that the formula
size model does not exhibit the Shannon effect is proved but far from trivial (see [14, 15, 17]).

The present paper is organized as follows: In the next section we introduce the model and
present our main result. In Section 3, we introduce the combinatorial setting (generating functions
for the basic tree classes) and briefly discusses the existence of the limit distribution Pn (see
Equation (2)). Section 4 is devoted to proving key properties of our model: In particular, we
investigate in this part the typical shape of the random uniform and/or tree of size m, when
m and then n tend to infinity. This section shows how the typical tree in our model and the
typical tree in the formula size model are different. In Section 5 we study a particular subfamily
of trees which will be used as an auxiliary structure in Sections 6 and 9. In Section 6, we prove
that the probability of the two constant functions is of constant order when n tends to infinity,
meaning that we prove Equation (2) in the special cases f = True and f = False (note that
L(True) = L(False) = 0). A fixed Boolean function divides the Boolean lattice into larger and
smaller functions (as well as non-comparable functions). This subdivision is quantified in Section 7
and the result will help us to estimate the limiting probability of literal functions, the simplest
non-constant functions, in Section 8. We finally have all ingredients needed to prove our main
result (i.e. Equation (2)), which we do in Section 9.

Notations: Throughout the article, we define many different classes of trees and thus many
different notations. To help the reader, most notations are summarised in Table 1 at the end of
the article.

2. MODEL AND RESULTS

Definition 2.1. An associative tree is a rooted plane tree whose nodes have arity in N \ {1},
and such that each internal node is labelled by a connector AND (denoted by ∧ in the following)
or by a connector OR (denoted by ∨ in the following) such that two identical connectives can-
not be neighbours (trees are stratified), and where each leaf is labelled by a literal taken from
{x1, x̄1, . . . , xn, x̄n} (see Figure 1 for an example).

Remark: In our context, we take the connectives with an unbounded arity. That corresponds
to the property of associativity of the connectives ∧ and ∨. Furthermore, the fact that the trees
are stratified corresponds to a canonical way of representing a formula as an associative tree. E.g.
the formula A1 ∨ A2 ∨ · · · ∨ Ak is represented as a tree consisting of an ∨-root and k subtrees
representing the formulas A1, . . . , Ak.

By interpreting x̄i as the negation of xi, every such tree represents a Boolean formula (or
expression) and therefore calculates a Boolean function of n variables. We denote by Fn the set
of such Boolean functions.

Definition 2.2. The tree size of a tree is the number of its nodes (internal nodes and leaves).
The formula size of a tree is the number of its leaves. In both cases, we denote by |t| the size of
a tree t.
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Figure 1. An associative tree which represents the constant function True.

The aim of this article is to focus on the tree size notion; therefore, in the following, size used
without specification needs to be understood as the tree size. We denote by Am,n the set of
associative trees of tree size m (labelled on n variables), and by Am,n the cardinality of this set.

Given a notion of size, one can define the complexity as follows: the complexity of a Boolean
function f is the size of the smallest trees representing it. The following definitions include the
special cases of the constant and literal functions for which we need ad hoc definitions.

Definition 2.3. Let f ∈ Fn be a Boolean function, its tree size complexity, denoted by L(f),
is

• 0 if f is the function True : (x1, . . . , xn) 7→ True or False : (x1, . . . , xn) 7→ False;
• 2 if f is a literal function, i.e. there exists xi ∈ {x1, . . . , xn} such that f : (x1, . . . , xn) 7→ xi
or f : (x1, . . . , xn) 7→ x̄i;

• the tree size of the smallest trees computing f if f is neither a literal function nor a
constant function. These trees of size L(f) computing f are called minimal trees of f
and their set is denoted byMf .

Remark: The literal functions will be treated separately in the whole paper. But they could in
fact be treated as any other non-constant function by considering that its two minimal trees are
the tree rooted by an ∧ with a single child labelled by xi and the tree rooted by an ∨ with a single
child labelled by xi, even if those two trees are not associative trees according to Definition 2.1!

Although we do not use the formula size complexity notion in this article, our aim is to compare
our results to those obtained under the formula size notion; we therefore provide its definition
below.

Definition 2.4. Let f ∈ Fn be a Boolean function, its formula size complexity is
• 0 if f is the function True : (x1, . . . , xn) 7→ True or False : (x1, . . . , xn) 7→ False;
• the formula size of the smallest trees computing f if f is not a constant function.

Example: The tree pictured in Figure 1 has tree size 11 (and formula size 8). The function
(x1, . . . , xn) 7→ x1 xor x2 = (x̄1 ∧ x2) ∨ (x1 ∧ x̄2) has tree size complexity 7 (and formula size
complexity 4).

The main contribution of this article is to understand how the change of size notion impacts
the distribution induced on the set of Boolean functions by the uniform distribution on the set of
and/or trees of size m and labelled on n variables.

Definition 2.5. For any Boolean function f , we denote by Pm,n(f) the proportion of trees calcu-
lating f among all trees in Am,n (being the set of all associative trees of size m over {x1, x̄1, . . . ,
xn, x̄n}).

The aim of the present paper is to prove the following result, which sums up the asymptotic
behaviour of this distribution Pm,n when the size m of the considered tree tends to infinity.
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Theorem 2.6. For any Boolean function f , the following limit exists and is positive

Pn(f) = lim
m→∞

Pm,n(f),

and the measure Pn(f) is a probability distribution on the set Fn of all Boolean functions on n
variables. Moreover,
(i) Asymptotically when n goes to infinity, Pn(True) = Pn(False) = α+ o(1), where

α =
√

2
∫ ∞

0
e−v

2−
√

2v dv − 1
2

(ii) If f is a literal function, then Pn(f) = (α+ o(1))
n2 .

(iii) For all Boolean functions f such that L(f) ≥ 3,

Pn(f) ∼ λf
nL(f) when n→∞,

where λf is a well defined constant satisfying

(3) αL(f)|Mf |
2L(f) ≤ λf ≤

3αL(f)|Mf |
2L(f)+1 .

Remark: Thanks to the ad hoc definition of the complexity (cf. Definition 2.3), the above
theorem can be expressed as: For all Boolean functions f ,

Pn(f) ∼ λf
nL(f) , as n tends to infinity.

As already mentioned in the introduction, our main result shows that changing the notion of
size/complexity does not affect the behaviour of the induced distribution on Boolean functions:
the main result above is very similar to Equation (1), valid in the formula size complexity context.

We believe that more important than the main result itself are the proofs developed in this
article. While the theorem above is a copycat of Kozik’s result in the formula size context, the
proofs leading to both results are completely different; Kozik’s approach collapses in our context.
The main reason for this discrepancy lies in the fact that in our model, a typical tree under the
uniform distribution on Am,n has about

√
n leaves attached to the root (see Section 4), while this

number does not depend on n in Kozik’s model.
Our main contribution is thus the development of a whole new approach to prove our main

result. Having to develop new methods for this slightly different model shows that the proofs
developed for the formula size are not robust to this change of metric while the results are. Defining
and studying this new model as we do in this article raises the question of the universality of this
result, and opens the door to a more general approach to these questions.

3. EXISTENCE OF THE LIMITING DISTRIBUTION Pn
In this section, we prove the existence of the limiting distribution Pn on the set Fn, which

corresponds to the first assertion of Theorem 2.6. In the whole paper, we deeply use generat-
ing functions, singularity analysis and the symbolic method. We refer the reader to [9] for a
comprehensive introduction to this domain.

An associative tree can be formally described by a grammar. Let us denote by L the set of
literals, Ĉ = {∧} and Č = {∨}. Let Â be the set of all associative trees of size 1 or rooted by an
∧-connective, Ǎ the set of all associative trees of size 1 or rooted by a ∨-connective, and denote
by Â(z) and Ǎ(z) their respective generating functions. Then, we have

Â = L+ Ĉ × seq≥2(Ǎ) and Ǎ = L+ Č × seq≥2(Â);
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and, by using the symbolic method,

Â(z) = 2nz + z · Ǎ(z)2

1− Ǎ(z)
and Â(z) = 2nz + z · Â(z)2

1− Ǎ(z)
.

Since, by symmetry, Ǎ(z) = Â(z), we get

(4) Â(z) = 2nz + 1−
√

(4n2 − 8n)z2 − 4nz + 1
2(z + 1) .

If we denote by A(z) =
∑
m≥0Am,nz

m the generating function of all associative trees, then

A(z) = Â(z) + Ǎ(z)− 2nz = 2Â(z)− 2nz.

Moreover, let Âf (z) (resp. Ǎf (z)) denote the generating function of associative trees rooted by
an ∧ (resp. an ∨) connective and computing the Boolean function f . Using the symbolic method,
we get

Âf (z) = z · l1f lit + z ·
∑
`≥2

∑
g1∧···∧g`=f

Ǎg1(z) . . . Ǎg`(z)

Ǎf (z) = z · l1f lit + z ·
∑
`≥2

∑
g1∨···∨g`=f

Âg1(z) . . . Âg`(z),

where l1f lit is one when f is a literal function and zero otherwise.
We thus have a system of functional equations to which we will apply the Drmota-Lalley-Woods

theorem. Let us check the hypothesis of this theorem: We refer the reader to [8, page 489] for a
precise statement of the Drmota-Lalley-Woods theorem for polynomial systems. A more general
form can be found in the original work [5] and in [6, Section 2.2.5]. The above system is nonlinear,
it has nonnegative coefficients and it satisfies a Lipschitz condition. It is irreducible, because for
every function f we have f ∧ True ≡ f and f ∨ True ≡ True. Finally, note that a tree having
an ∨-root and two subtrees, one being only one leaf labelled by x1 and the other one a tree of
arbitrary size but with all leaves labelled by x̄1, is a tautology. Thus, for all m ≥ 3, there exists
a tree of size m calculating the constant function True and hence ǍTrue(z) is aperiodic. This is
enough to imply that all the functions Âf (z) and Ǎf (z) are also aperiodic. Thus we have shown
that all hypotheses of the Drmota-Lalley-Woods are true.

We can therefore infer that all the generating functions Âf (z), Ǎf (z) and A(z) have the same
unique singularity ρ > 0 on their (common) circle of convergence, it is a square-root singularity
and Âf (z), Ǎf (z) as well as A(z) admit a singular expansion of the same type (Puiseux expansion
in terms of powers of √ρ− z at ρ). Applying a transfer lemma (see [8]) to A(z), Âf (z), and
Ǎf (z) we conclude that the limit Pn(f) = limm→∞

[zm](Âf (z)+Ǎf (z))
[zm]A(z) exists and is positive for all

f . Finally, the fact that Pm,n is a probability distribution on the finite set Fn (of Boolean functions
on n variables) for all m ≥ 1 implies that Pn is also a probability distribution, proving the first
statement of Theorem 2.6.

Knowing the generating function of ∧–rooted associative trees (given in Equation (4)), we can
state the following proposition that will be widely used later on.

Proposition 3.1. The singularity ρ of Â(z) satisfies

(5) ρ = 1
2 ·

1
n+
√

2n
= 1

2n −
1

n
√

2n
+O

(
1
n2

)
, as n→∞.

In particular, for all large enough n, we have 1
2n − 1

2n
√
n
≤ ρ < 1

2n . Moreover,

A(ρ) = 1− 1
n

+O
(

1
n
√
n

)
and Â(ρ) = 1− 1√

2n
+O

(
1
n

)
.
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Finally, if B̂(z) denotes the generating function of ∧–rooted associative trees, then B̂(z) = Â(z)−
2nz. For all integer n,

B̂(ρ) < 1√
2n

and B̂(ρ) = 1√
2n

+O
(

1
n

)
, when n→∞.

4. MISCELLANEOUS PROPERTIES OF THE MODEL

In this section, we prove several propositions that lead to a better understanding of the model
and that will be useful throughout the paper. We prove among other results that the expected
number of leaves on the first level of a large associative tree behaves like

√
n, and that there are

few trees with no leaves on the first level. All these results are really surprising in view of the
formula size models of the literature where the number of leaves attached to the root of a typical
tree of large size does not depend on the number n of variables. Therefore, in the present model,
it is quite likely to have a literal and its negation appearing as labels of two leaves attached to the
root, making the whole tree calculate one of the two constant functions, whereas this configuration
is very unlikely in the formula size model (see [16]).

First of all, let us define the limiting ratio of a family:

Definition 4.1. Let T be a family of associative trees and Tm be the number of trees of size m
in this family. The limiting ratio of T , if it exists, is defined (and denoted) by

µn(T ) = lim
m→∞

Tm
Am,n

.

The following standard result will be extensively used in the following:

Lemma 4.2. Let T (z) be the generating function of a family T of associative trees. Assume that
ρ ( cf. Proposition 3.1) is the unique singularity of T (z) on its circle of convergence and that this
singularity is of square-root type, i.e. T (z) admits a Puiseux expansion into powers of

√
ρ− z at

ρ. Then, one has

µn(T ) = lim
z→ρ

T ′(z)
A′(z)

where z must move towards ρ in such a way that arg(z−ρ) 6= 0 and inside the domain of analyticity
of T (z) and A(z).

Proof. This is an immediate consequence of the fact that the asymptotic expansion of the derivative
of an analytic function is the derivative of the asymptotic expansion of the original function. �

Proposition 4.3. The limiting ratio of trees with no leaf on the first level is given by

µn(A(0)) = 1
n
√

2n
+O

(
1
n2

)
, as n→∞.

Proof. The generating function of trees with no leaf on the first level is given by

A(0)(z) = 2z B̂(z)2

1− B̂(z)
.

The limiting ratio of such trees is thus given by

µn(A(0)) = lim
m→∞

[zm]A(0)(z)
[zm]A(z) = lim

z→ρ

A′(0)(z)
A′(z)

=2ρ 2B̂(ρ)
1− B̂(ρ)

lim
z→ρ

B̂′(z)
A′(z) + 2ρ B̂(ρ)2

(1− B̂(ρ))2
lim
z→ρ

B̂′(z)
A′(z)

+ 2 B̂(ρ)2

1− B̂(ρ)
lim
z→ρ

1
A′(z) .
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Observe that the third term of the sum is equal to zero since A′(z) tends to infinity when z
tends to ρ. This observation will be used in the whole paper and in the following, such terms
will be omitted without mentioning. Note also that limz→ρ B̂

′(z)/A′(z) = 1/2. Finally, we use the
asymptotics given in Proposition 3.1 and get

µn(A(0)) = 1
n
√

2n
+O

(
1
n2

)
as n→∞. �

Proposition 4.4. Let Γ be a subset of γ literals of {x1, x̄1, . . . , xn, x̄n}. The limiting ratio of the
set of all associative trees with at least one leaf on the first level labelled by a literal from Γ is given
by

µn(AΓ) = γ

√
2
n

+O
(

1
n

)
,when n tends to infinity.

Proof. Let AΓ(z) be the generating function of associative trees with at least one leaf one the first
level labelled by a literal from Γ:

AΓ(z) = 2γz2

(1− (Â(z)− γz))(1− Â(z))
− 2γz2

because a tree in AΓ has a root labelled by ∧ or ∨ (which gives a factor 2z), a first sequence of
subtrees which are not a leaf labelled by a literal from Γ (which gives the factor (1−(Â(z)−γz))−1),
then a leaf labelled by a literal from Γ (factor γz) and a sequence of arbitrary trees. Since sequences
may be empty, this construction also generates trees consisting of only two nodes. These have to
be subtracted due to the vertex degree constraints in associative trees. In view of Lemma 4.2, we
know that

µn(AΓ) = lim
m→∞

[zm]AΓ(z)
[zm]A(z) = lim

z→ρ

A′Γ(z)
A′(z) = γ

√
2
n

+O
(

1
n

)
. �

Proposition 4.5. Let Xm,n be the random number of leaves in the first level of the uniformly-
distributed n variable associative tree of size m.
We have limm→∞ E(Xm,n) ∼ 2

√
2n, as n→∞.

Proof. Let us consider the bivariate generating function where z marks the nodes and u the leaves
on the first level. We have the following equation:

A(z, u) = 2z (B̂(z) + 2nzu)2

1− (B̂(z) + 2nzu)
.

Therefore,
∂

∂u
A(z, u)|u=1 = 8nz2 Â(z)

1− Â(z)
+ 4nz2 Â(z)2

(1− Â(z))2
.

In view of Lemma 4.2, the expected number of nodes in the first level is given by

lim
m→∞

[zm] ∂∂uA(z, u)|u=1

[zm]A(z) = lim
z→ρ

d
dz

(
∂
∂uA(z, u) |u=1

)
d
dzA(z)

= 2
√

2n+O(1), as n→∞ �

Remark: Using a similar calculation but plugging u = eit/2
√

2n instead of u = 1, we can obtain
even the limiting distribution. Indeed, one easily shows that the distribution of the random variable
Xn/2

√
2n converges to Γ(2, 1/2), as n→∞, i.e., the distribution having density 4xe−2x l1x≥0.
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5. A USEFUL FAMILY OF TREES

In the following, we will need some information about a specific class of trees which will serve as
an auxiliary construction for our further investigations. We will prove that some families of trees
are included contained in some of the families defined in this section. This will enable us to give
upper bounds for their limiting ratio. The family we define here depends on three parameters, two
of them being the number of different labels appearing on the first level leaves and the number of
non-leaf subtrees of the root. We prove in particular in this section that

• The limiting ratio of trees with fewer than n1/4 different labels appearing on the first-level
leaves is O(1/

√
n) (see Lemma 5.5);

• The limiting ratio of trees whose root has more than n1/8 non-leaf subtrees is Θ(n1/82−n
1/8)

(see Lemma 5.6).
The results from this section help us to better understand what is the typical shape of an associative
tree under the tree-size notion: The two results mentioned above tell us, in a very precise way,
that a typical tree has many different labels appearing on its first level and its root has few non-leaf
subtrees.
Definition 5.1. Let k, r, ` ≥ 0 be three integers, let Γ = {γ1, . . . , γp} be a subset of literals (with
no occurrence of both a variable and its negation). Let MΓ

k,`,r be the family of all ∨-rooted trees
such that there exists k+ r pairwise different literals α1, . . . , αk, β1, . . . , βr 6∈ Γ with no occurrence
of both a variable and its negation such that

• the leaves attached to the root are labelled by literals chosen from {α1, . . . , αk},
• the root has exactly ` non-leaf subtrees,
• at least one non-leaf subtree attached to the root is in the set J Γ

α,β comprising all ∧-rooted
trees such that
– the root has r leaf-children labelled by β1, . . . , βr in that order;
– all the other leaves on the first level have labels from the set
{α1, . . . , αk, β1 . . . , βr, γ1, . . . , γp} or their negations, but the first appearance of each
βi is in non-negated form.

Lemma 5.2. Let J(z) andM(z) denote the generating functions associated with J Γ
α,β andMΓ

k,`,r,
respectively. Then

(6) J(z) = zr+1

(1− (B̂(z) + 2(k + p)z)) . . . (1− (B̂(z) + 2(k + p+ r)z))
and

[zm]M(z) ≤
(
n− p
k + r

)(
k + r

k

)
2k+rk!r!
(`− 1)!

·[zm−1]
(
zk+`

k∏
ν=1

1
1− νz

)(`)
zr+1∏r

ν=0(1− (B̂(z) + 2(k + p+ ν)z))
B̂(z)`−1,(7)

for all m ≥ 0, where f (`) denotes the `th derivative of f .

Proof. The first equation is obvious from the definition of J Γ
k,r. Since Equation (7) is an inequality

and not an equality we can do the following reasoning without worrying about double-counting
some trees. Let us follow the definition of MΓ

k,`,r: First note that there are
(
n−p
k+r
)(
k+r
k

)
2k+rr!k!

ways to choose α1, . . . , αk and β1, . . . , βr (and their respective order) such that a variable and its
negation cannot both be chosen. The leaves of the first level form a sequence of α1 followed by
the first occurrence of α2, then a sequence of leaves with labels in {α1, α2} followed by the first
occurrence of α3, and so on. This corresponds to the generating functions zk

∏k
ν=1

1
1−νz and if we

choose the places of the ` non-leaf subtrees of the root between the leaves of the first level, then we
have to apply the operator 1

`!
∂`

∂z`
, because [zm] (z`f(z))(`)

`! =
(
m+`
`

)
fm. The generating function of

the non-leaf subtree taken from J Γ
α,β and its place among the non-leaf subtrees is `J(z) and that

of the other non-leaf subtrees is B̂(z)`−1. When we collect all these terms and take into account
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that multiple counting occurs in the cases where several non-leaf subtrees of the root are in J Γ
α,β,

we get

(8) [zm]M(z) ≤ [zm]z
(
n− p
k + r

)(
k + r

k

)
2k+rk! 1

`!

(
zk+`

k∏
ν=1

1
1− νz

)(`)

`J(z)B̂(z)`−1,

where the factor z at the very beginning stands for the root. Finally, using Equation (6) to replace
J(z) in Equation (8) gives Equation (7) as desired. �

By means of the previous lemma we can express the limiting ratio of the familyMΓ
k,`,r in the

form

lim
z→ρ

M ′(z)
A′(z) ≤

(
n− p
k + r

)(
k + r

k

)
2k+rk!r!
(`− 1)!

·
(
ρk+`

k∏
ν=1

1
1− νρ

)(`)

ρr+2 lim
z→ρ

K ′(z)
A′(z)(9)

where K(z) = B̂(z)`−1
/
∏r

ν=0
(1−(B̂(z)+(k+p+ν)z)). The only term depending on z is K′(z)/A′(z). The

next lemma gives the order of this term.

Lemma 5.3. Let K(z) be as above. Moreover, assume that k + p+ r < n and r = O(
√
n). Then

lim
z→ρ

K ′(z)
A′(z) = O

(
r2r`

(
1

2n

) `−1
2
)
, as n→∞.

Proof. We have, as z → ρ,

K ′(z)
A′(z) ∼

B̂′(z)
A′(z)

1∏r
m=0(1− B̂(ρ)− 2(k + p+m)ρ)

(10)

·
[

(`− 1)B̂(ρ)`−2 +
r∑

m=0

B̂(ρ)`−1

1− B̂(ρ)− 2(k + p+m)ρ

]
.

Moreover, we know that limz→ρ
B̂′(z)
A′(z) = 1

2 and that B̂(ρ) ≤ 1√
2n (cf. Proposition 3.1). Hence

1∏r
m=0(1− B̂(ρ)− 2(k + p+m)ρ)

≤
(

1
2

(
1−
√

2√
n

))−r
= O(2r).

We get

K ′(z)
A′(z) = O

(
r2r`

(
1

2n

) `−1
2
)
.

The term in brackets in Equation (10) consists of O(r) terms, each bounded by `B̂(ρ)`−1 which
immediately yields the assertion. �

Lemma 5.4. If k = Ω(n1/4), ` = O(n1/8) and r ≤ `, then the limiting ratio of the family MΓ
k,`,r

satisfies µn(MΓ
k,`,r) = O

(
1

n3/2

)
, as n tends to infinity.

Proof. Turning back to (9) we see that the last factor is covered by Lemma 5.3. In order to
estimate the penultimate factore, let f(z) = zk+`∏k

ν=1
1/(1−νz) and consider a circle of radius

n−3/2 centered at ρ. Since f(z) is a power series with nonnegative coefficients, Cauchy’s estimate
gives ∣∣∣∣f (`)(ρ)

`!

∣∣∣∣ ≤ f (ρ+ 1
n3/2

)
n

3 /̀2.
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Now, performing the substitution z = ρ+ 1
n3/2 into f(z) on the right-hand side, using the mono-

tonicity of f and the inequality ρ < 1/2n (cf. Proposition 3.1), we obtain∣∣∣∣f (`)(ρ)
`!

∣∣∣∣ =
(
ρ+ 1

n3/2

)k+`
n

3 /̀2
k∏
ν=1

1
1− ν

(
ρ+ 1

n3/2

)
≤
(

1
2n

)k+`(
1 + 2√

n

)k+`
n

3 /̀2
k∏
ν=1

1
1− ν

2n

(
1 + 2√

n

) .
Thanks to Equation (7), we get

lim
z→ρ

M ′(z)
A′(z) ≤ ρ

r+2
(
n− p
k + r

)(
k + r

k

)
2k+rk!r! f

(`)(ρ)
(`− 1)! lim

z→ρ

K ′(z)
A′(z)

≤ `
(

1
2n

)k+`+r+2
2k+r(n)knr

(
1 + 2√

n

)k+`
n

3 /̀2

·
k∏
ν=1

1
1− ν

2n

(
1 + 2√

n

) lim
z→ρ

K ′(z)
A′(z)

≤ `e22−`−2 · n /̀2−2
(

1 + 2√
n

)k k∏
ν=1

1− ν
n

1− ν
2n

(
1 + 2√

n

) lim
z→ρ

K ′(z)
A′(z) .

The last product is bounded by 1 and if k = O(
√
n), then

(
1 + 2√

n

)k
is bounded as well. In this

case we get

(11) lim
z→ρ

M ′(z)
A′(z) = O

(
`2−`n /̀2−2 lim

z→ρ

K ′(z)
A′(z)

)
.

If k > 4
√
n then it suffices to show that

(
1 + 2√

n

)k
n3 /̀2

∏k
ν=1

1
1− ν

2n

(
1+ 2√

n

) is bounded. We

proceed as follows: First observe that
1− ν

n

1− ν
2n

(
1 + 2√

n

) < 1− ν

2n

(
1− 2√

n

)
and thus we can write(

1 + 2√
n

)k k∏
ν=1

1− ν
n

1− ν
2n

(
1 + 2√

n

)
=
(

1 + 2√
n

)4b
√
nc 4b

√
nc∏

ν=1

1− ν
n

1− ν
2n

(
1 + 2√

n

)
·
(

1 + 2√
n

)k−4b
√
nc k∏

ν=4b
√
nc+1

1− ν
n

1− ν
2n

(
1 + 2√

n

)

≤ e8
(

1 + 2√
n

)k−4b
√
nc

·
(

1− 2√
n

(
1− 2√

n

))k−4b
√
nc

= e8
(

1 + 8
n3/2

)k−4b
√
nc

= O(1).
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Finally, if we let n tend to infinity and apply Lemma 5.3, we get

µn(MΓ
k,`,r) = O

(
r`22r−

3`−1
2 n−

3/2
)

= O
(

1
n3/2

)
. �

Lemma 5.5. The limiting ratio of trees with fewer than n1/4 different labels appearing on the first
level leaves is O

(
1√
n

)
.

Proof. The generating function of trees with exactly k different labels appearing on the first level
(with no occurrence of a variable and its negation) is given by

Gk(z) =
(
n
k

)
2kk!z

k∏
m=0

z

1−mz − B̂(z)
,

and therefore, their limiting ratio is given by

lim
z→ρ

G′k(z)
A′(z) =

(
n
k

)
2kk!ρ

k∏
m=0

ρ

1−mρ− B̂(ρ)

k∑
m=0

1
1−mρ− B̂(ρ)

· lim
z→ρ

B̂′(z)
A′(z)

≤ 1
4n

k−1∏
m=0

(
1− m

n

) k∏
m=0

1
1− m

2n − 1√
2n

(
k∑

m=0

1
1− m

2n − 1√
2n

)

≤ 1
4n

(
1

1− k
2n − 1√

2n

)k+1

(k + 1) 1
1− k

2n − 1√
2n

= O
(
k

n

)
.

Summing up over all k from 1 to bn1/4c yields the result. �

Lemma 5.6. The limiting ratio of the family of all trees where the root has more than n1/8 non-leaf
subtrees is Θ

(
n

1/8

2n
1/8

)
.

Proof. The generating function of the trees with exactly ` non-leaf subtrees is

H`(z) = 2z B̂`(z)
(1− 2nz)`+1 .

Therefore, the limiting ratio of trees with exactly ` non-leaf subtrees is given by

lim
z→ρ

H ′`(z)
A′(z) = 1

n

`B̂`−1(ρ)
(1− 2nρ)`+1 · lim

z→ρ

B̂′(z)
A′(z)

∼ 1
2n

`
(

1√
2n

)`−1

(√
2
n

)`+1

∼ 1
2n

`
(

1√
2n

)`−1

(√
2
n

)`+1 ∼
`

2`+1 , as n→∞.

This implies that the limiting ratio of trees with more than n1/8 non-leaf subtrees is given by∑
`≥n1/8

`

2`+1 = Θ
(
n1/8

2n1/8

)
. �
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6. TAUTOLOGIES

In this section, we calculate the probability of the two constant functions True and False, and
prove Theorem 2.6(i), i.e. that, asymptotically when n tends to infinity,

Pn(True) = Pn(False) = (
√

2 + o(1))
∫ ∞

0
e−v

2−
√

2v dv − 1
2 ≈ 0.15567954.

Note that the proofs of Theorem 2.6(ii) and (iii) rely on this first result on the probability of
constant functions.

The proof of this result has two steps, corresponding to the two following lemmas: first calculate
the limiting ratio of a family of tautologies called simple tautologies, then prove that this limiting
ratio is asymptotically equal to the limiting ratio of all tautologies, said differently, asymptotically
almost all tautologies are simple.

Definition 6.1. A simple tautology (resp. a simple contradiction) realized by the variable x is
an ∨-rooted (resp. ∧-rooted) tree such that the labels x and x̄ both appear on the first level of the
tree. The set of simple tautologies will be denoted by Sn, its complement by Sn.
Lemma 6.2. The limiting ratio of simple tautologies satisfies

µn(Sn) =
√

2
∫ ∞

0
e−v

2−
√

2v dv − 1
2 + o(1), as n→∞.

Lemma 6.3. Asymptotically when n tends to infinity, almost every tautology is a simple tautology,
i.e.

Pn(True) = µn(Sn) + o(1), as n→∞.
The following two sections contain the proofs of those two lemmas.

6.1. Limiting ratio of simple tautologies (proof of Lemma 6.2). Let us consider the family
of trees rooted by ∨ that are not simple tautologies, meaning that their first-level leaves do not
contain both a variable and its negation. First note that, the number of ways to label ` leaves
with literals from the set {x1, x̄1, . . . , xn, x̄n} without both a variable and its negation appearing
among those labels is equal to the number of ways to choose ` variables and then which of them
are negated. Written as labelled combinatorial structure, this is

∏n
i=1 ((set{xi} ∪ set{x̄i}) \ {∅})

and, using the symbolic method, the number of structures of size ` is thus `![x`]
(
2ex − 1

)n. The
result was also shown in a more elementary way by Selivanov [28]. The class of ∨–rooted trees
that are not simple tautologies is either ∨–rooted trees without leaves on the first level, and thus
at least two non-leaf subtrees (on the first level) or ∨–rooted trees with a single leaf on the first
level, and thus at least one non-leaf subtree (on the first level) or ∨–rooted trees with ` ≥ 2 leaves
on the first level and ` + 1 (possibly empty) sequences of non-leaf subtrees. Thus its generating
function is given by

Ψ(z) = zB̂2(z)
1− B̂(z)

+ 2nz2

(1− B̂(z))2
− 2nz2 +

∑
`≥2

`![x`]
(
2ex − 1

)n z`+1

(1− B̂(z))`+1
,

=

∑
`≥0

`![x`]
(
2ex − 1

)n z`+1

(1− B̂(z))`+1

+ z(B̂2(z)− 1)
1− B̂(z)

− 2nz2.

By Lemma 4.2, we have

µn(Sn) = 1
2 − lim

z→ρ

Ψ′(z)
A′(z) = 1

2 −
1
2 lim
z→ρ

Ψ′(z)
Ǎ′(z)

.

First, recall that lim
z→ρ

Ǎ′(z) =∞, B̂(ρ) < 1√
2n and lim

z→ρ

B̂′(z)
Ǎ′(z)

= 1. Thus

lim
z→ρ

(
z(B̂2(z)− 1)

1− B̂(z)
− 2nz2

)′
1

Ǎ′(z)
= o(1), as n→∞.
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Second, let us denote

Ψ̄(z) =
∑
`≥0

`![x`]
(
2ex − 1

)n z`+1

(1− B̂(z))`+1
.

Thus,

lim
z→ρ

Ψ̄′(z)
Ǎ′(z)

=
∑
`≥0

(`+ 1)! [x`](2ex − 1)n ρ`+1

(1− B̂(ρ))`+2

= ρ

(1− B̂(ρ))2

∫ ∞
0

te−t
(

2 exp
( tρ

1− B̂(ρ)

))n
dt,

where we have used the identity (` + 1)! =
∫∞

0 t`+1e−t dt. By the change of variables x =
exp

(
tρ

1−B̂(ρ)

)
, we get

(12) lim
z→ρ

Ψ̄′(z)
Ǎ′(z)

= 1
ρ

∫ ∞
1

log x
x

(2x− 1)n
xf(n) dx,

where

f(n) := 1− B̂(ρ)
ρ

= 2n+
√

2n+O(1),

using the exact expressions of ρ and B̂(z) given in Proposition 3.1.
We now use Laplace’s method (see e.g. [3]) to estimate the above integral when n tends to

infinity. Note that, for all ε > 0, for n sufficiently large,∫ ∞
1+ε

log x
x

(2x− 1)n
xf(n) dx ≤ (2ε+ 1)n

(1 + ε)f(n)−1

∫ ∞
1+ε

log x
x2 dx

≤ (2ε+ 1)n
(1 + ε)2n

log(1 + ε)− 1
1 + ε

.

Since ε can be chosen arbitrarily small,∫ ∞
1+ε

log x
x

(2x− 1)n
xf(n) dx ≤ 3 exp

(
n log

(
1− ε2

(1 + ε)2

))
≤ 3 exp

( −n ε2

(1 + ε)2

)
= o(1), as n→∞.

Furthermore, for n sufficiently large and ε sufficiently small, one can apply a Taylor expansion
near x = 1 and get∫ 1+ε

1

log x
x

(2x− 1)n
xf(n) dx = (1 + o(1))

∫ 1+ε

1
(x− 1)e−n(x−1)2−(f(n)−2n)(x−1) dx

= (1 + o(1))
∫ 1+ε

1
(x− 1)e−n(x−1)2−

√
2n(x−1) dx.

One can check that the remainder terms in the Taylor expansions are indeed negligible when n
tends to infinity and also that replacing f(n)−2n by its first order approximation

√
2n introduces

only a negligible error term; it follows from standard arguments involved when applying the
Laplace method. Thus, setting v =

√
n(x− 1), we get∫ 1+ε

1

log x
x

(2x− 1)n
xf(n) dx = 1 + o(1)

2n

∫ ε
√
n

0
2ve−v

2−
√

2v dv

= 1 + o(1)
2n

(
1−
√

2
∫ ∞

0
e−v

2−
√

2v dv
)
.

Therefore, since ρ ∼ 1/2n, Equation (12) gives

lim
z→ρ

Ψ′(z)
Ǎ′(z)

= (1 + o(1))
(

1−
√

2
∫ ∞

0
e−v

2−
√

2v dv
)
,

which concludes the proof.
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6.2. Almost every tautology is simple (proof of Lemma 6.3). To prove Lemma 6.3, we
consider the family of non-simple tautologies, study the structure of its elements and show that
its limiting ratio tends to zero when n tends to infinity.

Note that a tautology rooted by the connective ∧ cannot have leaves on the first level. Thus
the family of tautologies rooted by ∧ is contained into the family A(0) of trees with no leaf on
the first level, which, in view of Proposition 4.3, has a limiting ratio of order n−3/2. The set of
∧-rooted tautologies is thus negligible compared to the set of all tautologies and we can focus on
∨-rooted tautologies.

Let us consider Nn the set of tautologies that are not simple. Let t ∈ Nn, with ` non-leaf
subtrees A1, . . . , A` and k different labels α1, . . . , αk appearing in the first level. Since t is not a
simple tautology, the set L = {α1, . . . , αk} cannot contain both a variable and its negation. For
each i ∈ {1, . . . , `}, the tree Ai has some of its leaves in its first level labelled by labels in L and
others carrying new labels. What will be called a “new variable” in the following is the label of a
leaf in the first level of one of the Ai if neither the label itself nor its negation belongs to L.

Let us show that there exists at least one i ∈ {1, . . . , `} such that Ai has at most ` − 1 new
variables.

Let us assume that for all i ∈ {1, . . . , `}, Ai has at least ` new variables in the first level. We
assign one of those new variables, say ν1 and belonging to A1, to False. Then A1 computes
False. But, there must exist A(2) ∈ {A2, . . . , A`} which is not a contradiction for this assignment,
because if A1 = A2 = . . . = A` ≡ False for ν1 = False, then the whole tree t would compute
α1 ∨ . . . ∨ αk and would thus not be a tautology.

Let us iterate this algorithm: After step s − 1 ≤ `, we have assigned ν1 = ν2 = . . . = νs−1 =
False and at least s − 1 trees of {A1, . . . , A`} compute False. At step s note that at least one
of the remaining subtrees must still not be a contradiction: Let us call this tree A(s). It has at
least ` new variables and we have assigned s− 1 ≤ ` variables to False so far. Therefore we still
have free new variables among the new variables of A(s), and we can assign one, denoted by νs,
to False.

After the `th step, we have found an assignment of variables different from those in L such that
all trees of {A1, . . . , A`} compute False. Thus t computes α1 ∨ . . .∨αk, which is impossible since
t is a tautology.

Therefore, there exist at least one i ∈ {1, . . . , `} such that Ai has at most ` − 1 new variables
in the first level.

It means that Nn ⊆
⋃n
k=0

⋃∞
`=0
⋃`−1
r=0M∅k,`,r (cf. Section 5). Let us decompose this union into

three distinct unions:

n⋃
k=0

∞⋃
`=0

`−1⋃
r=0
M∅k,`,r =

bn1/4c⋃
k=0

∞⋃
`=0

`−1⋃
r=0
M∅k,`,r

 ∪
 n⋃
k=bn1/4c

∞⋃
`=bn1/8c

`−1⋃
r=0
M∅k,`,r


∪

 n⋃
k=bn1/4c

bn1/8c⋃
`=0

`−1⋃
r=0
M∅k,`,r

 .

Thanks to Lemma 5.5, the first term has a limiting ratio tending to zero as n tends to infinity;
Lemma 5.6 guarantees that the second term has also a limiting ratio tending to zero, and by
Lemma 5.4, the third term satisfies

µn

 n⋃
k=bn1/4c

bn1/8c⋃
`=0

`−1⋃
r=0
M∅k,`,r

 = O
(

(n− n1/4)(n1/8)2 1
n3/2

)
= O

(
1
n1/4

)

and is thus also tending to zero when n tends to infinity. Thus, µn(Nn \ Sn) = o(1), which
concludes the proof.
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7. PROBABILITY OF FUNCTIONS LARGER THAN A FIXED f0

In this section we investigate the probability of the set of all functions that are “larger” than a
given Boolean function. The result will enable us to prove the second statement of Theorem 2.6
about literal functions, proved in Section 8.

Definition 7.1. Let f and g be two Boolean functions of n variables, we say that g ≥ f if, and
only if, g(x1, . . . , xn) ≥ f(x1, . . . , xn) for all (x1, . . . , xn) ∈ {0, 1}n.

Proposition 7.2. Choose n0 and a non-constant function f0 ∈ Fn0 . Moreover, denote the natural
extension of f0 to Fn for n > n0, i.e. the function (x1, . . . , xn0 , xn0+1, . . . , xn) 7→ f0(x1, . . . , xn0),
by f0 as well. Denote by F a random Boolean function of law Pn, i.e. P(F = f) = Pn(f) for any
Boolean function f . Then

P(F ≥ f0) = Pn(True) (1 + o(1)), as n tends to infinity.

The remaining part of this section is devoted to the proof of Proposition 7.2. We prove this
proposition in two steps: First, assume that f0 is a conjunction of literals, and then we extend the
proof to obtain the general result.

7.1. Case I: f0 is a conjunction of literals. Let f0 = γ1 ∧ . . . ∧ γp, where the γi’s are literals.
First, let us remark that P(F ≥ f0) ≥ Pn(True) ≥ α > 0. Let us consider an associative tree t
computing a Boolean function which is larger than f0 and not a tautology.

The family of trees with no leaf on the first level has a limiting ratio which is asymptotically
equal to 1/n

√
2n when n tends to infinity (cf. Proposition 4.3). It is thus negligible compared to

P(True). Thus, we can assume that t has at least one leaf on the first level.
Consider first the case where t is rooted by an ∨:
• Let us first assume that there exists one leaf on the first level of t, labelled by one of the
γi. The family of trees with at least one leaf on the first level and with a label from the
set Γ = {γ1, . . . , γp} has a limiting ratio equivalent to p

√
2/n, in view of Proposition 4.4.

The limiting ratio of such trees is thus negligible compared to the limiting ratio of the set
of tautologies. We can thus neglect this family.

• Let us assume that t has no leaf on the first level labelled by a literal chosen in Γ =
{γ1, . . . , γp}. Let us denote by k the number of different labels, denoted by α1, . . . , αk,
appearing on the first level of t and by ` the number of its non-leaf subtrees, denoted by
A1, . . . , A`. Observe that since t is not a tautology, the labels appearing on the first level
of t cannot contain a variable and its negation. The subtrees A1, . . . , A` have themselves
leaves on their first level (i.e. on the second level of t), and those leaves are labelled either
by “old variables”, i.e. by literals chosen from O = {α1, . . . , αk, γ1, . . . , γp} and their
negations, or by “new variables”, i.e by other literals. Assume that for all i ∈ {1, . . . , `},
Ai has at least ` different new variables appearing on its first level. Thus, since each Ai is
rooted by an ∧, we can find an assignment of the variables {x1, . . . , xn} \ O such that all
Ai compute False for this assignment. Assign then all the leaves on the first level of t to
False and γ1, . . . , γp to True. Then t computes False while γ1 ∧ . . . ∧ γp takes the value
True for this assignment. But this is impossible!

Thus, there exists at least one Ai which has fewer than ` new variables on its first level.
This means that t belongs to the set

⋃`−1
r=0MΓ

k,`,r.
The limiting ratio of such trees is thus less than the limiting ratio of the union⋃
k,`≥0

⋃`−1
r=0MΓ

k,`,r, and thanks to the results proved in Section 5, we have

µn

 ⋃
k,`≥0

`−1⋃
r=0
MΓ

k,`,r

 = O
(

(n− n1/4)(n1/8)2 1
n3/2

)
= O

(
1
n1/4

)

and this family is also negligible compared to the set of tautologies.
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If t is rooted by an ∧, then its first level leaves have labels chosen from the set Γ = {γ1, . . . , γp}.
The family of trees with first level leaves labelled in {γ1, . . . , γp} has generating function

HΓ(z) = 2nz + 2z (B̂(z) + pz)2

1− B̂(z)− pz
and its limiting ratio is asymptotically equal to 1/n

√
2n. It is thus negligible compared to the set of

tautologies. We have proved that the limiting ratio of the set of n-variable associative trees that
are not tautologies and that represent a Boolean function larger than γ1 ∧ . . . ∧ γp is negligible
compared to the limiting ratio of the set of all n-variable tautologies when n goes to infinity. Thus

P(F ≥ γ1 ∧ . . . ∧ γp) ∼ Pn(True),
as n tends to infinity.

7.2. Case II: f0 is any non-constant Boolean function. All Boolean functions f0 can be
written as f0 = (γ1 ∧ . . . ∧ γp) ∨ g0 for some integer p ≥ 1, some literals {γ1, . . . , γp}, and some
Boolean function g0. Thus,

Pn(True) ≤ P(F ≥ f0) ≤ P(F ≥ γ1 ∧ . . . ∧ γp) ∼ Pn(True)
and Proposition 7.2 is proved. �

8. LITERALS

The aim of this section is to estimate the probability of a literal Boolean function i.e. a
function of the shape ((x1, . . . , xn) 7→ x) where x is a literal among {x1, x̄1, . . . , xn, x̄n}, therefore
proving the second statement of Theorem 2.6. As for tautologies, we will prove that a typical tree
computing this function has a very simple shape.

Definition 8.1. A tree t is a simple x tree if it is rooted by an ∧ (resp. ∨), with one single
leaf on the first level, labelled by x and with one non-leaf subtree which is a tautology (resp. a
contradiction). We denote by X the family of such trees and by Xm the number of simple x trees
of size m.

Lemma 8.2. For n tending to infinity, the limiting ratio of the set of simple x trees satisfies

µn(X ) ∼ Pn(True)
n2 .

Proof. The generating function associated with the set of simple x trees is given by the following
generating function:

X(z) = 4z2T (z),
where the 4 factor contains the choice of the label of the root and the order of its first and second
child. Therefore,

µn(X ) = lim
z→ρ

X ′(z)
A′(z) = 4ρ2 lim

z→ρ

T ′(z)
A′(z) .

Observing that T ′(z)
A′(z) tends to Pn(True) when z tends to ρ and that ρ ∼ 1/2n when n tends to

infinity (cf. Proposition 3.1) permits to complete the proof. �

Theorem 8.3. For n tending to infinity, we have Pn(x) ∼ µn(X ).

Proof. Thanks to Lemma 8.2 and Theorem 2.6(i), we know that Pn(x) ≥ Pn(True)
2n2 is of order

at least 1/n2 when n tends to infinity. Let t be a tree computing x. Let us assume that it is
rooted by an ∧ (the case of an ∨-rooted tree would be treated in the very same way). The
family of trees computing x with no leaf on the first level has the same limiting ratio for all
x ∈ {x1, x̄1, . . . , xn, x̄n}. Therefore, if we denote this family by A(0)

x , its limiting ratio satisfies
(cf. Proposition 4.3)

2nµn(A(0)
x ) ≤ µn(A(0)) ∼ 1

n
√

2n
.
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Thus, the limiting ratio of trees with no leaf on the first level, computing x has order O(n−5/2).
This family is negligible compared to the family of simple x trees. Thus we can focus on the family
Tx of trees having at least one leaf on the first level.

The leaves on the first level of t have to be labelled by x since t computes x. And the non-
leaf subtrees calculate functions that are larger than x (in the sense of Definition 7.1). Thus, a
tree computing x is almost surely an ∧-rooted (resp. ∨-rooted) tree with leaves on the first level
labelled by x and with non-leaf subtrees larger than x (resp. smaller than x).

Let us denote by Lx(z) the generating function of trees larger than x. In view of Proposition 7.2,
we have

lim
z→ρ

L′x(z)
A′(z) ∼ Pn(True), when n→∞.

Note also that, by symmetry, the family of trees smaller than x has the same generating function.
Thus, the above described family of trees has the same limiting ratio as that of all trees computing
x and its generating function is given by

Tx(z) = 2z2

(1− (Lx(z)− z))(1− Lx(z)) − 2z2.

The limiting ratio is then

µn(Tx) ∼ 2ρ2
(

1
(1− (Lx(ρ)− ρ))2(1− Lx(ρ)) + 1

(1− (Lx(ρ)− ρ))(1− Lx(ρ))2

)
· lim
z→ρ

L′x(z)
A′(z)

∼ 4ρ2 Pn(True), as n→∞.
Thus,

Pn(x) ∼ µn(X ) ∼ Pn(True)
n2 , as n→∞. �

9. GENERAL CASE: MINIMAL TREES AND EXPANSIONS

In this last section we prove the last statement of Theorem 2.6. We use different expansions
of trees, as it was done in other random Boolean tree models (cf. [12] for implication random
trees and [16] for and/or trees). The first subsection defines the expansions, the second subsection
states an asymptotic lower bound for Pn(f), and the third subsection states an asymptotic upper
bound and thus completes the proof of Theorem 2.6.

Convention: Throughout the whole section we denote by f a non-constant Boolean function.

9.1. Expansions.

Definition 9.1. Let t be an associative tree. The tree given by adding a new subtree τ to an
internal node ν of t is called an expansion of t. An expansion is valid if the expanded tree
computes the same function as t.

• The expansion is called a tautology expansion (resp. a contradiction expansion) if the
added tree τ is a tautology (resp. a contradiction) and if ν is labelled by a ∧ (resp. ∨).
Obviously, such an expansion is valid.

• It is called a B̂-expansion if the added tree τ is not a single leaf.

Given a family of trees T , we denote by E(T ) the set of trees obtained by a single tautology
expansion of a tree in T , by Ek(T ) the set of trees obtained by k successive tautology expansions
done at (not necessarily distinct) vertices of a tree in T , and by E≥k(T ) the set of all trees obtained
by at least k successive tautology expansions done at (not necessarily distinct) vertices of a tree
in T . Finally, we set E(T ) :=

⋃
k≥1E

k(T ).
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If the considered expansions are B̂−expansions, we change the above notation by replacing E
by EB̂ .

Remark: Whatever type of expansion (tautology or B̂) we consider, note that nesting expansions
(adding τ to t, then expanding τ , and so on) does not generate new structures, since this can always
be realized by a single expansion. Therefore, requiring that the expansions are done at the vertices
of the original tree is no restriction.

Remark: For every family T of trees the inclusion E(T ) ⊆ EB̂(T ) holds.

9.2. Tautology expansions. The following proposition states that the limiting ratio of the set
of all trees obtained by expanding minimal trees of a given Boolean function f is of order 1/nL(f).
Recall thatMf stands for the set of all minimal trees of f (see Definition 2.3).

Proposition 9.2. For n tending to infinity, the limiting ratio of E(Mf ) is asymptotically equal
to the limiting ratio of E(Mf ). Furthermore, if it denotes the number of internal nodes of a tree
t and |t| its size, then

(13) µn(E(Mf )) ∼ λf
nL(f) , as n→∞,

where
λf = α

2L(f)

∑
t∈Mf

(it + |t| − 1)

with α defined by Pn(True) = α+ o(1). Moreover, the constant λf can be estimated by (3). Since
every tree in E(Mf ) computes f , this implies

Pn(f) ≥ µn(E(Mf )) ∼ λf
nL(f) .

Proof. Let Φk(z) be the generating function of Ek(Mf ). Given a tautology τ , the number of
places where τ can be added to a given minimal tree t is

(14) Pt =
∑

i internal node of t
(d(i) + 1) = it + |t| − 1,

where d(i) is the number of children of the internal node i. Since t is minimal (i.e. |t| = L(f))
and since 1 ≤ it ≤ bL(f)

2 c, we have L(f) ≤ Pt ≤ 3L(f)
2 which yields

(15) mfz
L(f)L(f)T (z) ≺ Φ1(z) =

∑
t∈Mf

zL(f)PtT (z) ≺ mfz
L(f) 3L(f)

2 T (z),

where mf = |Mf |. Thus

(16) mfL(f)ρL(f) lim
z→ρ

T ′(z)
A′(z) ≤ µn(E(Mf )) ≤ mf

3L(f)
2 ρL(f) lim

z→ρ

T ′(z)
A′(z) .

In view of Theorem 2.6(i), we have limz→ρ
T ′(z)
A′(z) = Pn(True) = α+ o(1) and since ρ ∼ 1

2n when n
tends to infinity. When using the bounds given in (15) we get µn(E(Mf )) = Θ

(
n−L(f)), whereas

plugging these results into the exact expression for Φ1(z), given also in (15), yields (13).
If we do k successive expansions in a minimal tree, we have at most b3L(f)/2c different places

for the first one, b3L(f)/2c+1 for the second one, and so on. We thus have the following inequality:

Φk(z) ≺ mfz
L(f)

(
b3L(f)/2c+ k − 1

k

)
T (z)k



20 VERONIKA DAXNER, ANTOINE GENITRINI, BERNHARD GITTENBERGER, AND CÉCILE MAILLER

and thus

µn(Ek(Mf )) = lim
z→ρ

Φ′k(z)
A′(z) ≤ mfρ

L(f)
(
b3L(f)/2c+ k − 1

k

)
kT (ρ)k−1 lim

z→ρ

T ′(z)
A′(z)

≤ βmfρ
L(f)

(b3L(f)/2c+ k − 1
k

)
kT (ρ)k−1,

for all n ≥ 0. Hence

µn(Ek≥2(Mf )) ≤ βmfρ
L(f)b3L(f)/2c

(
1

(1− T (ρ))b3L(f)/2c+1 − 1
)

where we used
∑
k≥2

(
C+k−1

k

)
kzk−1 = C

(1−z)C+1 − C which is an immediate consequence of

(17)
∑
k≥0

(
C + k − 1

k

)
zk = 1

(1− z)C .

Since T (ρ) ≤ B̂(ρ) ≤ 1/
√

2n (a tautology cannot be a single leaf) and C
(1−z)C+1 − C = O(z), we

obtain
µn(E≥2(Mf )) = O

(
1

nL(f)+1/2

)
.

By (16) the same calculations yield the lower bound. �

9.3. Irreducible trees.
Definition 9.3. Let t be a tree computing f . If t cannot be obtained by a tautology expansion of
a smaller tree computing f , then t is called an irreducible tree of f . We denote by If the set of
irreducible trees of f which are not minimal trees of f .

Take a tree computing f and simplify it according to tautology expansions until it is irreducible.
The simplified tree is either inMf or in If . Thus
(18) Pn(f) ≤ µn(E(Mf )) + µn(E(If )).
Proposition 9.4. We have the following asymptotic result:

µn
(
E(If )

)
= o

(
1

nL(f)

)
.

To prove this proposition, we have to better understand the shape of an irreducible tree of
f . For that reason we define a procedure for how to “zip” a (not necessarily irreducible) tree as
follows:

• Assign all inessential variables of f1 to True, and substitute each occurrence of an inessen-
tial variable in t by its evaluation (either True, or False when it occurs as a negation of
the variable), and then

• simplify the tree as follows: As soon as a leaf is assigned to True (resp. False) and its
parent is ∧ (resp. ∨), we cut the leaf. If its parent is ∨ (resp. ∧), we cut the subtrees
attached to this ∨ (resp. ∧), i.e. at the parent.

Remark: The order in which the leaves are processed does not influence the final result of the
zipping. Only the number of cuttings and their type (leaf or larger subtree is cut) is affected, since
cutting a large tree first may result in many leaves not being processed any more, because they
disappeared with the large cut tree. However, we will need to impose a certain order (explained
where appropriate) in some arguments later on.

Since f is not constant, zipping cannot make the tree vanish. The obtained tree, denoted by t?
contains no inessential variable and still computes f . It possibly has internal nodes with a single
child (called unary nodes), and connectives labelling some leaves (where ∨-leaves compute False
and ∧-leaves compute True), the other leaves being labelled by essential variables of f . But, since

1A variable x is an inessential variable of f if the restriction of f on the subset {x = True} is equal to its
restriction on the subset {x = False}
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this tree computes f , it can be seen that its size cannot be smaller than L(f). Indeed, a tree with
unary nodes and leaves labelled by connectives can be simplified such that we obtain a proper
and/or tree that still computes f , i.e. with at least L(f) nodes, and this simplification process
reduces the number of nodes. The tree t? belongs to the family of zipped trees defined hereafter.

Definition 9.5. Let us denote by Z the set of trees with internal nodes labelled by ∧ and ∨ in a
stratified way and with leaves labelled by essential variables of f (or their negations) or ∧ and ∨
(again in compliance with the stratification), in which internal nodes can have one child or more.
We call these trees zipped trees and denote by Z` the number of such trees of size ` (the size being
the total number of nodes of the zipped tree).

Remark: By symmetry under relabelling of the variables, one can see that the number Z` only
depends on ` and γ (the number of essential variables of f), but not on the set Γf of essential
variables of f .

During the simplification process, we have cut leaves or non-leaf subtrees; if two or more
simplifications are nested, we only consider the largest one. We will prove in the following lemmas
that the family of trees such that the simplification process cuts no non-leaf tree and the family
of trees in which we have cut “many” single leaves are negligible compared to the family of trees
computing f (the limiting ratio of which is at least of order 1/nL(f)).

Lemma 9.6. Let Γ ⊂ {x1, . . . , xn} be of cardinality γ and set Y = {x1, . . . , xn}\Γ. Moreover, let
NΓ be the family of trees such that no node labelled by ∨ (resp. ∧) has a leaf labelled by a positive
(resp. negated) variable from Y as a child. Then µn(NΓ) = 0, for all large enough n.

Moreover, the following result for expansions of trees in NΓ holds: Let NΓ(f) denote the set of
all trees in NΓ which compute f , but are not elements ofMf . Then µn(Ē(NΓ)) = o (1/nL(f)+1) .

Remark: Note that µn(NΓ) is a limit for m tending to infinity. So, the assertion can be
rephrased as follows: If n is sufficiently large, then, among all trees of size m, the proportion of
trees which lie in NΓ tends to zero, as m tends to infinity.

Remark: The family NΓ contains the family of trees computing a function f having Γ as its
set of essential variables and such that the simplification process only cuts leaves and no non-leaf
tree.

Proof. The family NΓ has the same limiting ratio as associative trees in which leaves are labelled
by literals from a set of cardinality 2n − (n − γ) = n + γ. Therefore, the singularity νn of the
generating function of this family satisfies νn ∼ 1/n+γ and is thus strictly larger than ρ ∼ 1/2n for
all large enough n. This implies the assertion.

To prove the second assertion we use the idea of the proof of Proposition 9.2. Let Φk(z) and
N(z) denote the generating function of Ek(NΓ) and NΓ(f), respectively. Then,

Φ1(z) =
∑

t∈NΓ(f)

z|t|PtT (z)

where Pt, given by (14), is the number of places in the tree t where a tautology expansion is
possible. It satisfies Pt ≤ 3|t|/2. This implies

Φ1(z) ≺ 3
2

∑
n≥L(f)+1

nznT (z)[zn]N(z) = 3
2T (z)zN ′(z)

and consequently

µn(E(NΓ(f)) = lim
z→ρ

Φ′1(z)
A′(z)

= 3
2ρN

′(ρ) lim
z→ρ

T ′(z)
A′(z) + 3

2T (ρ) lim
z→ρ

(zN ′(z))′
A′(z)
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Since N(z) is a power series divisible by zL(f)+1 the order of magnitude of the first term is
O (1/(2n)L(f)+1). The dominant singularity of N(z) (and so the one of zN ′(z)) is νn, which is
strictly smaller than ρ. Hence the second term is equal to zero.

If we do k > 1 expansions, we get, as in the proof of Proposition 9.2,

Φk(z) = T (z)k
∑

n≥L(f)+1

( 3n
2 + k − 1

k

)
zn[zn]N(z).

This expression can be written as a sum of terms of the form T (z)
( d

dz
)j
N(z), where j ≤ k, and

the argument from above apply again and yield µn(E(NΓ(f)) = O (1/(2n)L(f)+1). �

The following lemma ensures that we have cut only a few “single” leaves:

Lemma 9.7. Let ` be an integer and Γ ⊂ {x1, . . . , xn} be of cardinality γ. Set Y = {x1, . . . , xn}\Γ
and let us denote byMΓ

` the family of trees with at least ` leaves labelled by variables from Y (or
their negations) such that none of these leaves has an ancestor labelled by ∨ (resp. ∧) which has a
child being a leaf labelled by a positive (resp. negated) variable from Y . Then µn(MΓ

` ) = o (1/n`+1).

Remark: Note that the familyMΓ
` contains the family of irreducible trees computing a function

f having Γ as its set of essential variables and in which the simplification process cuts at least `
single leaves. It contains all expansions of such irreducible trees as well since Ē(MΓ

` ) ⊆MΓ
` .

Proof. We will prove the assertion by constructing a superset of MΓ
` which will be shown to

satisfy the assertion as well. This will be done in two steps. First, we construct a set of trees
which contains all trees in MΓ

` where the ` distinguished leaves have pairwise distinct parent
nodes. The second case, where at least two of the distinguished leaves have the same parent node,
is then treated in a similar fashion.

Let us consider the family of trees obtained as follows (see Figure 2):
(1) Take a rooted unlabelled tree t0 having ` leaves and no nodes of arity 1. Then ` + 1 ≤
|t0| ≤ 2`− 1;

(2) add to each internal node some subtrees (with internal nodes unlabelled and leaves labelled
by literals) which are not single leaves labelled by a variable from Y or its negation;

(3) replace each edge by a sequence of internal (unlabelled) nodes with subtrees (with internal
nodes unlabelled and leaves labelled by literals) attached to them which are not single
leaves labelled by a positive (resp. negated) variable from Y if their parent is ∨ (resp. ∧);

(4) choose a label (∧ or ∨) for the root and deduce the labels of all internal nodes, knowing
that a node and its child cannot have the same label (stratification property);

(5) finally, replace each leaf of t0 by a tree rooted by ∧ (resp. ∨ according to the stratification)
with at least one literal from Y (resp. from the negations of Y ) and no literal from the
negations of Y (resp. from Y ) on the first level.

The obtained family contains all trees fromMΓ
` where the ` distinguished leaves have altogether

` parent nodes. Its generating function F1(z) is given by

F1(z) = 2C`
2`−2∑
r=`

zr+1−`(zX(z))`V (z)rW (z)2r+1−`,

where
• the index r in the summation represents the number of edges of the tree t0 chosen in the

construction;
• the factor C` is the number of choices for this t0 and the factor 2 for its root label;
• the factor zr+1−` marks the internal nodes of t0;
• the function

zX(z) = (n− γ)z2

(1− (Â(z)− 2(n− γ)z))(1− (Â(z)− (n− γ)z)))
− (n− γ)z2
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2.

5.

3.

Figure 2. Proof of Lemma 9.7.

is the generating function of the set of trees rooted by ∧ with at least one literal from Y
and no literal from the negations of Y on the first level;

• the function

V (z) = 1

1− z
((

1
1−(Â(z)−(n−γ)z)

)2
− 1
)

is the generating function of the sequences of internal nodes that replace the edges of t0: It
is the generating function of (possibly empty) sequences of one internal node marked by z
and two sequences (one on the left and one on the right of the existing edge - that cannot
be both empty) of subtrees being different from a leaf labelled by a positive variable of Y ;
and

• the function

W (z) = 1
1− (Â(z)− (n− γ)z)

is the generating function of the sequences of trees which are different from a single leaf
with a label from Y . Note that such sequences are attached in the 3rd step and they can
be placed left from every edge in t0 (r choices) or to the right of the rightmost child of
any internal node of t0 (r + 1− ` choices).

To estimate the limiting ratio of this family, observe that the singularity of F1 is ρ and that it is a
squareroot singularity. Therefore, the limiting ratio of this family can be computed by Lemma 4.2,
i.e. by limz→ρ

F ′1(z)
A′(z) . To compute this limiting ratio, let us note that limz→ρ

1
A′(z) = 0 such that

many terms in F ′1(z)/A′(z) can be neglected (cf. last paragraph in the proof of Proposition 4.3).
We obtain:

lim
z→ρ

F ′1(z)
A′(z) = 2C`

2`−2∑
r=`

ρr+1

(
`X(ρ)`−1V (ρ)rW (ρ)2r+1−` lim

z→ρ

X ′(z)
A′(z)

+ rX(ρ)`V (ρ)r−1W (ρ)2r+1−` lim
z→ρ

V ′(z)
A′(z)

+ (2r + 1− `)X(ρ)`V (ρ)rW (ρ)2r−` lim
z→ρ

W ′(z)
A′(z)

)
.
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Recall that ρ ∼ 1/2n and Â(ρ) ∼ 1 − 1/
√

2n, as n → ∞, and hence X(ρ) ∼ 1/3, V (ρ) ∼ 1 and
W (ρ) ∼ 2, as n→∞. Moreover,

lim
z→ρ

W ′(z)
A′(z) = lim

z→ρ

Â′(z)− (n− γ)
A′(z)

1
(1− (Â(ρ)− (n− γ)ρ))2

= 1
2(1− (Â(ρ)− (n− γ)ρ))2

,

because limz→ρ
Â′(z)
A′(z) = 1

2 and limz→ρ
n−γ
A′(z) = 0. Thus, limn→∞ limz→ρ

W ′(z)
A′(z) = 2. Using similar

arguments, we can prove that

lim
n→∞

lim
z→ρ

V ′(z)
A′(z) = 8 and lim

z→ρ

X ′(z)
A′(z) ∼

8
9n, as n→∞.

All these relations imply

lim
z→ρ

F ′1(z)
A′(z) ∼

κ1
n`+1 , as n→∞,

where κ1 is a positive constant.
Now let us turn to the second case. We construct a tree family containing all trees in MΓ

`

where the ` distinguished leaves have altogether `0 parent nodes, with 1 ≤ `0 < `. This can be
done by two obvious modifications: In the first step we start with a tree having `0 nodes and the
last step is replaced by

5’. Replace each leaf of t0 by a tree rooted by ∧ (resp. ∨ according to the stratification)
with at least one literal from Y (resp. from the negations of Y ) and no literal from the
negations of Y (resp. from Y ) on the first level, such that the total number of literals
from Y and from the negations of Y that are generated is at least `.

Then the generating function F2(z) of this family is given by

F2(z) =
{
f2(z) if `0 > 1,
z`X`(z) if `0 = 1,

where
zjXj(z) = (n− γ)zj+1

(1− (Â(z)− 2(n− γ)z))j(1− (Â(z)− (n− γ)z)))
− (n− γ)z2

is the generating function of the set of trees rooted by ∧ with at least j literals from Y and no
literal from the negations of Y on the first level and

f2(z) = 2C`0
2`0−2∑
r=`0

zr+1−`0
∑

m1,...,m`0≥1
m1+···+m`0=`

 m`0∏
j=m1

zjXj(z)

V (z)rW (z)2r+1−`.

Similar calculations as above show that

lim
z→ρ

F ′2(z)
A′(z) ∼

κ2
n`+1 , as n→∞,

with a suitable positive constant κ2, which completes the proof. �

We are now ready to prove Proposition 9.4. The two previous lemmas allow us to consider only
expansions of irreducible trees in which the zipping process cuts at least one non-leaf tree and
fewer than L(f) single leaves. Note that we have to be more precise here: It may happen that we
cut many single leaves which form a whole subtree, which has eventually been cut. But we could
have started with cutting the large subtree and then all its leaves to be cut are already gone. To
avoid ambiguity we require that, whenever cuttings form a set of nested simplifications, we cut
the largest first, i.e. cutting all of them is accomplished by one single cut. Let us denote by I1
the set of irreducible trees of f for which the simplified tree t? has size L(f), and by I2 the set of
irreducible trees t of f such that t? has size at least L(f) + 1.
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Lemma 9.8. We have the following asymptotic result: µn
(
E(I1)

)
= o (1/nL(f)).

Proof. Let t ∈ I1. To obtain t?, we have cut subtrees of t and we can assume that we have cut at
least one large subtree and at most L(f) single leaves. Otherwise t and all its expansions would
be in one of the classes treated in Lemmas 9.6 and 9.7 and these lemmas already tell us that those
classes are small.

Assume first that we have cut only one non-leaf subtree rooted at a node ν during the algo-
rithm. Then, either this tree contains an essential variable on its first-level leaves, or it belongs
to
⋃
k,`≥0

⋃`−1
r=0M

Γf
k,`,r, where Γf is the set of essential variables of f (see Definition 5.1 for the

definition ofMΓf
k,`,r). In this case the set inclusion Ē({t}) ⊆ ⋃k,`≥0

⋃`−1
r=0M

Γf
k,`,r holds. Otherwise,

we could find an assignment of inessential variables such that we can cut the parent of ν without
changing the function computed by the tree t. This new assignment of inessential variables leads
to a different simplification of the tree t that will cut at least the single leaves that were cut before,
plus the larger subtree and its parent: We thus obtain a tree of size less than L(f) that computes
f , which is impossible.

Any tree of I1 is obtained by expanding a zipped tree s of ZL(f) (see Definition 9.5) as follows:

• choose an integer q ≥ 1 (q represents the number of large trees that were cut during the
process described beforehand: q ≥ 1 holds because of the remark before Lemma 9.8),

• if q = 1, plug a tree from
(⋃

k,`≥0
⋃`−1
r=0M

Γf
k,`,r

)
∪ AΓf at a node of s and at most L(f)

inessential leaves at other nodes of s (where AΓf is the set of trees containing at least one
first-level leaf labelled by an essential variable of f , cf. Proposition 4.4),

• else plug q ≥ 2 non-leaf subtrees and at most L(f) inessential leaves at nodes of s.

We are interested in expansions of trees from I1. In fact, since we do not impose any restrictions
on the trees we plug at nodes of s, we can consider only expansions in the nodes of s, since
expansions in the plugged trees are then already counted.

The generating function of trees obtained by successive expansions of trees from I1, denoted
by I1(z) thus satisfies:

I1(z) ≺ ZL(f)z
L(f)

∑
k≥0

((
3L(f) + 1 + k

L(f) + 1, k, 2L(f)

)
M(z)(2(n− γ)z)L(f)B̂(z)k

+
∑
q≥2

(
3L(f) + q + k

L(f) + q, k, 2L(f)

)
B̂(z)q+k(2(n− γ)z)L(f)

)
,

where k counts the number of successive expansions done into the irreducible tree, and whereM(z)
is the generating function of

(⋃
k,`≥0

⋃`−1
r=0M

Γf
k,`,r

)
∪ Aγ . The multinomial coefficient represents

the number of choices for the places where we plug trees in s and where we then do the expansions
(the orders of the “pluggings” and of the expansions do not matter, but expansions are done after
the “pluggings”).

The coefficient
(

3L(f) + 1 + k
L(f) + 1, k, 2L(f)

)
counts the number of different ways to plug one tree from(⋃

k,`≥0
⋃`−1
r=0M

Γf
k,`,r

)
∪ Aγ , L(f) inessential leaves and k B̂-expansions into s ∈ ZL(f). Let us

start from s, the first plugging can be done at the left of each edge of s, or at the right of every
rightmost edge, or at every leaf. Note that s ∈ ZL(f) has at most L(f) leaves and L(f) edges.
The number of different places for the first plugging is thus at most 3L(f). The second plugging
can then be made in 3L(f) + 1 different places, and so on, and so forth. The fact that we first
do the L(f) + 1 plugging and then the k expansions gives the multinomial coefficient. The second
binomial coefficient is given by the same reasoning with L(f) + q pluggings and k expansions.

Thanks to Proposition 4.4 and Section 5, we know that the limiting ratio of the set(⋃
k,`≥0

⋃`−1
r=0M

Γf
k,`,r

)
∪ AΓf has order O

(
1√
n

)
and that M(ρ) ≤ B̂(ρ) ∼ 1√

2n . Thus, when
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n tends to infinity,

µn(E(I1)) ≤ZL(f)ρ
L(f)B̂(ρ)

∑
k≥0

((
3L(f) + 1 + k

L(f) + 1, k, 2L(f)

)(
B̂(ρ)k + k

2 B̂(ρ)k−1
)

+
∑
q≥2

(
3L(f) + q + k

L(f) + q, k, 2L(f)

)
q + k

2 B̂(ρ)q+k−2

)
.(19)

The first factor ZL(f)ρ
L(f)B̂(ρ) behaves as 1

nL(f)+1/2 when n tends to infinity. Let us prove that
the second term of the sum behaves as O(1) when n tends to infinity. Let us first focus on∑

k≥0

(
3L(f) + 1 + k

L(f) + 1, k, 2L(f)

)
B̂(ρ)k = (3L(f) + 1)!

(L(f) + 1)!(2L(f))!
∑
k≥0

(
3L(f) + 1 + k

k

)
B̂(ρ)k

= (2L(f) + 2)!
(L(f) + 1)!(2L(f))!

1
(1− B̂(ρ))3L(f)+2

in view of (17). Very similar calculations lead to∑
k≥0

(
3L(f) + 1 + k
L(f) + 1, k

)
k

2 B̂(ρ)k−1 = (3L(f) + 1)!
2(3L(f) + 1)!(2L(f)!)

3L(f) + 2
(1− B̂)3L(f)+3

.

Moreover, using (17) again,∑
k≥0

∑
q≥2

(
3L(f) + q + k

L(f) + q, k, 2L(f)

)
q

2 B̂(ρ)q+k−2

=
∑
q≥2

(3L(f) + q)!
(L(f) + q)!(2L(f))!

q

2 B̂(ρ)q−2
∑
k≥0

(
3L(f) + q + k

k

)
B̂(ρ)k

= 1
2(1− B̂(ρ))3L(f)+3

∑
q≥0

(
3L(f) + q + 2
L(f) + q + 2

)
(q + 2)

(
B̂(ρ)

(1− B̂(ρ))

)q
Simplifying the binomial coefficient gives∑

k≥0

∑
q≥2

(
3L(f) + q + k

L(f) + q, k, 2L(f)

)
q

2 B̂(ρ)q+k−2

= 1
2(1− B̂(ρ))3L(f)+3

∑
q≥0

L(f)+2∏
j=2

(
2L(f) + q + j

q + j

)
·
(

2L(f) + q + 1
q + 1

)
(q + 2)

(
B̂(ρ)

1− B̂(ρ)

)q

≤ (1 + 2L(f))L(f)+1

2(1− B̂(ρ))3L(f)+3

∑
q≥0

(
2L(f) + q + 1

q + 1

)
(q + 2)

(
B̂(ρ)

1− B̂(ρ)

)q

= (1 + 2L(f))L(f)+1

2(1− B̂(ρ))3L(f)+3

 2L(f) + 1(
1− B̂(ρ)

1−B̂(ρ)

)2L(f)+2 + 1(
1− B̂(ρ)

1−B̂(ρ)

)2L(f)+1

 ,

since B̂(ρ)
1−B̂(ρ) is smaller than 1 for all large enough n. Similar calculations can be done for the last

term of the sum (19), and we eventually get

µn
(
E(I1)

)
= O

(
1

nL(f)+1/2

)
. �

Lemma 9.9. We have the following asymptotic result: µn
(
E(I2)

)
= o (1/nL(f)) .
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Proof. The generating function I2(z) of trees obtained by successive expansions of a tree from I2
satisfies

I2(z) ≤
∑

`≥L(f)+1

Z`z
`
∑
k≥0

∑
q≥0

(
2`+ L(f) + q + k
L(f) + q, k, 2`

)
B̂(z)k+q(2(n− γ)z)L(f)

where Z` is the number of zipped trees of size `, where ` is the size of the seminal tree in I2, and
where the multinomial coefficient counts the numbers of different ways to plug first L(f) leaves
and q non-leaf trees and then k expansions in this seminal tree. Thus, calculations in the same
vein as those done in the proof of Lemma 9.8 yield

µn
(
E(I2)

)
≤

∑
`≥L(f)+1

Z`ρ
`
∑
k≥0

∑
q≥0

(
2`+ L(f) + q + k
L(f) + q, k, 2`

)
k + q

2
1

√
n
k+q−1 .

Thus, we conclude
µn
(
E(I2)

)
≤ O

(
1

nL(f)+1

)
. �

Lemmas 9.8 and 9.9 directly induce Proposition 9.4, and we are now able to complete the proof
of Theorem 2.6.

Proof of Theorem 2.6. The probabilities of the set of tautologies and that of literals are treated
in Sections 6 and 8, respectively. We now have to prove that for all Boolean functions f , Pn(f) ∼
λf/nL(f). In view of Proposition 9.2, we have a lower bound which is asymptotically equivalent to
λf/nL(f), and (18) together with Proposition 9.4 gives an upper bound which differs from the lower
bound by an additive term of magnitude O (1/nL(f)+1). This completes the proof of Theorem 2.6.

�

10. CONCLUSION AND FURTHER WORK

This article presents the first attempt to discuss the size definition in quantitative logics: while
the formula size is commonly used in the literature, we believe that in the case of nonbinary trees,
the tree size considered in this article is at least as natural.

We proved that this change of size/complexity notion does not affect the first order behaviour
of the distribution induced on the set of Boolean functions by the uniform distribution on and/or
trees of a given (large) size and labelled on n variables. However, we have also exhibited how
the large typical and/or tree gets a very different shape when changing the size notion. Trees
having more leaves are more and more likely as the number n of variables increases. This change
of typical shape has forced us to develop original, more intricate proofs for this new model.

Considering nonbinary trees is a way to take into account the associativity of the logical con-
nectives ∧ and ∨. Note that there is no reason - except technicality - justifying that we consider
plane trees instead of nonplane trees while the connectives ∧ and ∨ are commutative. Nonplane
associative trees have been studied in the formula size model (see [16]), and we believe that the
same could be done for the tree size model, although once again, the technical level of the com-
putations would considerably increase since in nonplane models the generating functions are not
known explicitly.
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imprecisions and for comments which improved the presentation. In particular, we express our
gratitude to one of these referees who outlined the proof of Lemma 6.2 which has led to an
improvement of our results. Last but not least, we thank Jakub Kozik for the careful reading of
the manuscript, many suggestions to improve the presentation and to remove minor errors, and
especially for pointing out a subtle mistake concerning the proofs of Lemmas 9.6 and 9.8.
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Table 1. Notations used in the article for different families of trees.

notation object cardinal generating
function

page of
definition

Am,n
set of all the n-variable associative trees of
size m

Am,n A(z) 4

Mf

set of all the n-variable associative trees
representing the Boolean function f (see
Definition 2.3)

mf mf zL(f) 4

Âm,n
set of all the n-variable ∧-rooted (if m ≥ 2)
associative trees of size m

Âm,n Â(z) 5

Ǎm,n
set of the n-variable ∨-rooted (if m ≥ 2)
associative trees of size m

Ǎm,n Ǎ(z) 5

B̂(z)
generating function of the n-variable ∧-
rooted associative trees of size at least 2
(see Proposition 3.1)

B̂(z) 7

A(0) set of the n-variable associative trees with
no leaf on the first level A(0)(z) 7

AΓ

set of all n-variable associative trees such
that at least one first-level leaf is labelled
by a literal from the set Γ

AΓ(z) 8

MΓ
k,`,r see Definition 5.1 M(z) 9

J Γ
α,β see Definition 5.1 J(z) 8
T set of all n-variable tautologies T (z) 13

S set of all n-variable simple tautologies (see
Definition 6.1) S(z) 13

N set of all n-variable tautologies that are not
simple tautologies (N = T \ S) 15

X set of all n-variable simple x (see Defini-
tion 8.1) X(z) 13

If

set of all n-variable irreducible but not
minimal trees of the Boolean function f
(see Definition 9.3)

20

Z`
set of zipped trees of size ` (see Defini-
tion 9.5) Z` 21

NΓ see Lemma 9.6 21
MΓ

` see Lemma 9.7 22
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