
Enumeration of generalized BCI lambda-terms

Olivier Bodini∗, Danièle Gardy†, Bernhard Gittenberger‡, Alice Jacquot∗

November 5, 2013

Abstract

We investigate the asymptotic number of elements of size n in a particular class of closed
lambda-terms (so-called BCI(p)-terms) which are generalizations of lambda-terms related
to axiom systems of combinatory logic. By deriving a differential equation for the generat-
ing function of the counting sequence we obtain a recurrence relation which can be solved
asymptotically. We derive differential equations for the generating functions of the counting
sequences of other more general classes of terms as well: the class of BCK(p)-terms and that
of closed lambda-terms. Using elementary arguments we obtain upper and lower estimates
for the number of closed lambda-terms of size n. Moreover, a recurrence relation is derived
which allows an efficient computation of the counting sequence. BCK(p)-terms are discussed
briefly.

1 Introduction

Lambda-terms play a prominent role in the theory of computer programming. In order to in-
vestigate properties of randomly generated lambda-terms we have to know how many terms of
a given size there are. This paper is devoted to the asymptotic counting of particular classes of
lambda-terms.

Lambda-terms were invented by Church and Kleene in the 30ies (see [5, 18, 19]) together with
a set of rules for manipulating them, the so-called lambda-calculus. This is a very powerful formal
language which can be used to describe computer programs, analyze programming languages or
investigate decision problems. Moreover, it is the basis of the programming language LISP.

A lambda-term is a formal expression built of variables and a quantifyer λ which in general
occurs more than once and acts on one of the free variables. It can be described by the context-
free grammar T ::= a | (T ∗ T) | λa.T where a is a variable. The concatenation of terms is
called application and adding the prefix λa to a term is called abstraction. Each abstraction binds
a variable in the whole term following it and each variable can only be bound by at most one
abstraction. A term where all the variables are bound is called a closed lambda-term, otherwise
an open lambda-term. For example, (λx.(x ∗ x) ∗ λy.y) is a closed lambda-term whereas (λx.(x ∗
z) ∗ λy.y) is an open one.

Our aim is to study the asymptotic number of closed lambda-terms of given size when the size
is tending to infinity. We define the size of a lambda-term recursively by

|x| = 1, |λx.T | = 1 + |T |, |(S ∗ T)| = 1 + |S| + |T |. (1)

Moreover, note that we will count lambda-terms up to isomorphism: Only the structure of the
bindings is important whereas variable names are unimportant. For closed lambda-terms this is

∗Institut Galilée, Univ. Paris 13, Villetaneuse (France). Supported by ANR Magnum project (France)
†PRiSM, Université de Versailles Saint-Quentin, 78035 Versailles, France. This author’s work was partially car-

ried out during her sabbatical leave at the Institute for Discrete Mathematics and Geometry, Technische Universität
Wien, Austria. Supported by ANR Boole project (France)

‡Institute for Discrete Mathematics and Geometry, Technische Universität Wien, Wiedner Hauptstrasse 8-
10/104, A-1040 Wien, Austria. Supported by FWF grant SFB F50-03 and ÖAD, grant F04/2012

1

precisely α-conversion (see [1, Ch. 2]). For instance, the terms λy.(λx.x ∗ λz.y), λy.(λx.x ∗ λx.y),
λx.(λy.y ∗λz.x) are considered to be identical. Observe that the second term is obtained from the
first one by replacing z by x, which is “by coincidence” the same variable as that in the subterm
λx.x just left to it. But as stated above the important issue is that the last quantifier does not
bind the variable following it; therefore the name must only be different from y.

Since the determination of the asymptotic number of lambda-terms seems to be a hard problem
(cf. the discussion of this issue in [3] and for a similar problem in [13, end of Sec. 3]) we confine
ourselves with the asymptotic analysis of a simpler subclass of lambda-terms and give an outlook
to the analysis of a larger and more complicated subclass. The classes considered are BCI(p)-
and BCK(p)-terms and unless explicitely stated we mean closed terms. The names stem from the
correspondence of BCI(1)- and BCK(1)-terms to the logical systems BCI and BCK, respectively,
which are studied in combinatory logic (see [16, 15, 17]). BCI(1)-terms are also known as linear
lambda-terms, BCK(1)-terms as affine lambda-terms. Due to the Curry-Howard isomorphism
[8, 20] BCI(1)-terms constitute proofs of intuitionistic tautologies in which every propositional
variable occurs exactly twice. One might be tempted to think that an analogous statement holds
for p > 1. However, this is false since such terms have to be typable and already for p = 2 we
easily find non-typable BCI(2)-terms, e.g. (λx.x ∗ x) ∗ (λx.x ∗ x).

The plan of the paper is as follows: In the next section we state our notations, definitions and
some immediate observations. In Section 3 we derive the functional equations for the generating
functions corresponding to BCI(p)-terms, BCK(p)-terms as well as general closed lambda-terms.
Then we will derive the asymptotic order of the number of BCI(p)-terms (Section 4). Section 5
is devoted to an upper and a lower estimate for the number λn of closed lambda-terms of size n.
This is done using rather elementary arguments, but it is still sufficient to obtain the asymptotic
main term of log λn. Moreover, we will derive a recurrence relation which allows an efficient
computation of the numbers λn. In the final section, we briefly discuss BCK(p)-terms.

The enumeration of BCI(1)-terms was carried out by Bodini et al. [2] by constructing a
nice bijection to certain diagrams. They showed that the number of BCI(1)-terms of size n is
asymptotically

C

n1/6

(

2n

e

)n/3

(2)

if n ≡ 2 mod 3 and zero otherwise. They obtained also the asymptotic number of BCK(1)-terms

which differs from (2) by a multiplicative factor e
1
2
(2n)2/3− 1

6
(2n)1/3

. A quantitative comparison of
provable formulas between BCI(1) and BCK(1) was done in [12].

Models with a different notion of size (leaves do not contribute to the size, i.e. they have
weight zero) were studied in [7, 13]. In [7] upper and lower bounds for the counting sequence
were derived and questions like typability were discussed. The paper [13] approaches the counting
problem by representations of terms using de Bruijn indices. They derive recurrence relations for
the number of terms with or without constraints on the number of free variables and discuss the
issue of random generation of terms as well. This allows an efficient computation and experimental
analysis of term properties like typability or some shape characteristics.

2 Notation and basic facts

A lambda-term can be regarded as a so-called enriched tree which is a particular directed acyclic
graph. In fact, consider a Motzkin tree (i.e., a rooted unary-binary tree) and add directed edges
connecting a unary node and a leaf such that each leaf is “bound” by a directed edge from exactly
one of the unary nodes that are its ancestors in the tree. The correspondence is obvious (see
Figure 1): leaves correspond to variables, unary nodes to abstractions, binary nodes to applications
and the additional directed edges to the binding relations between abstractions and variables.
Clearly, since all leaves are bound, the lambda-term is closed. Of course, open lambda-terms
can be represented in an analogous manner by a directed acyclic graph where some leaves have
in-degree zero (that means that they have no ingoing directed edge).

2

(λx.(x ∗ x) ∗ λy.y) λy.(λx.x ∗ λz.y)

x x

y

x y

Figure 1: Two enriched trees and the closed lambda-terms corresponding to them. Note that the node
labels can be omitted, since (λx.(x ∗ x) ∗ λy.y) and (λa.(a ∗ a) ∗ λb.b) are the same term.

Figure 2: Left: a closed λ-term of size 17. Center: a term in BCI(2) of size 14. Right: a term in BCK(1)
of size 15.

We will not distinguish between a lambda-term and its enriched tree representation. In addi-
tion, when speaking of lambda-terms, we will utilize the following abuse of the wording: A unary
node of a lambda-term is a unary node (i.e. node of out-degree one) of the underlying Motzkin
tree (i.e. a node becoming unary if all directed edges are removed). These are precisely the nodes
corresponding to abstractions. Analogously, we call the nodes corresponding to applications bi-
nary nodes and nodes corresponding to variables leaves of the lambda-term. In a strict sense,
leaves have always degree one and in-degree one as well (i.e. each leaf x is incident with exactly
one undirected and exactly one directed edge pointing towards x).

Moreover, we distinguish between edges, i.e. edges of the underlying Motzkin tree, and pointers,
i.e. directed edges from a unary node to a leaf.

Definition 1. • BCI(p) is the set of (non-empty) closed lambda-terms where each unary
node has exactly p pointers, i.e. binds exactly p occurrences of its variable.

• BCK(p) is the set of closed lambda-terms where each unary node binds at most p leaves.

A lambda-term from BCI(p) has three types of nodes: unary nodes (which are actually of arity
p + 1, as there are p pointers going from this node to leaves), binary nodes, and leaves. The size
of such a lambda-term is the total number of its nodes. We start with some obvious observations:

Fact 1. The smallest terms of BCI(p) have one unary node at the root and p leaves. There are p
pointers from the root to all the leaves. Obviously, if we remove the root and all its pointers, we
are left with a binary tree. Thus the number of such terms is equal to the number of binary trees
with p−1 binary nodes and p leaves. This is precisely the Catalan number Cp−1 =

(

2p−2
p−1

)

/p. And
cleary, the size of all these terms is 2p.

Fact 2. A term of BCI(p) with j unary nodes has pj leaves and pj − 1 binary nodes; its size is
therefore equal to (2p + 1)j − 1.

3

3 The generating functions for various classes of closed

lambda-terms

We will enumerate lambda-terms by means of generating functions. Let gn = g
(p)
n be the number

of BCI(p)-terms of size n and Gp(z) be the generating function of this sequence. By Fact 2 we
have actually

Gp(z) =
∑

j≥1

gj(2p+1)−1z
j(2p+1)−1.

Analogously, define Fp(z) =
∑

n≥1 fnzn and Λ(z) =
∑

n≥1 λnzn where fn = f
(p)
n is the number of

BCK(p)-terms of size n and λn the number of closed lambda-terms of size n.
The next step is the setting up of functional equations for the generating functions. This will

be done by giving a formal specification of the combinatorial objects and then using the symbolic
method (see [9]). From [2] we already know that G1(z) satisfies the equation

G1(z) = z2 + zG1(z)2 + ∆1G1(z),

where the differential operator ∆1 is 2z4D and D denotes the ordinary differential operator.

Proposition 1. The generating function of BCI(p)-terms satisfies the differential equation

Gp(z) = Cp−1z
2p + zGp(z)2 + ∆pGp(z) (3)

where

∆p =

p
∑

l=1

αl,p

l!
zl+2p+1Dl (4)

with constants αl,p defined by

αl,p =
∑

P

i si=l;
P

i isi=p

(

l

s1, . . . , sp

) p
∏

m=1

(

2m

m

)sm

. (5)

Proof. A BCI(p)-term can be specified by the formal equation

T = S ∪ ({◦} × T × T) ∪ ({◦} × T̃), (6)

where the set S is the set of all smallest BCI(p)-terms (cf. Fact 1) and T̃ a certain set of open
BCI(p)-terms.1 This can be explained as follows: A BCI(p)-term falls into exactly one of three
categories: It is either

• a smallest term,

• or its root is a binary node and the two subterms attached to the root are themselves
BCI(p)-terms,

• or its root is a unary node and the subterm attached to the root is an open BCI(p)-term
with exactly p free leaves.

In order to specify all BCI(p)-terms and avoid ambiguities, we have to take some care in the
choice of T̃ . Indeed, each BCI(p)-term will be generated exactly once by the specification (6)
if we generate T̃ by starting with a BCI(p)-term and then generating p leaves and connecting
them to the unary root node by a pointer in the following way. To construct a term t̃ ∈ {◦} × T̃ ,
choose a BCI-term t and p nodes of t, where multiple choices of a node are allowed. Each node v
corresponds to an edge, namely the edge leading to v if v is not the root and the edge connecting

1Note the slight abuse of notation in (6): The last cartesian product on the right-hand side is not a cartesian
product in a strict sense, but only on the level of the underlying Motzkin trees, since we will add pointers going
from the new root to some leaves of T̃ .

4

v with the new root (of the term t̃ ∈ {◦} × T̃) otherwise. Thus the choice of the p nodes “hits”
edges of the term t̃. Assume that l edges are hit and si of them exactly i times.

If an edge is hit i times, then replace it by a path where at each node of the path a binary
tree is attached, either to the left or to the right of the path, and the number of leaves of all these
binary trees altogether is equal to i (see Figure 3 for an illustration of this process). Thus the
replacement creates i new leaves and i new internal nodes. The whole replacement process creates
exactly

∑p
i=1 isi = p new leaves and p new internal nodes in t. Therefore t̃ has exactly 2p+1 more

nodes than t and obviously t̃ is an open BCI(p)-term. Conversely, if we have a BCI(p)-term with
a unary root node, then removing it together with its pointers yields a term with p free leaves.
These leaves must be children of a binary node since otherwise the parent node must have pointers
to p descendants which is impossible. Thus the free leaves induce a set of subtrees of t which are
binary trees with free leaves only.

−→

Figure 3: To the left, a BCI(4) term with a node pointed once and another pointed 3 times where pointing
at a node is represented by encircling the dot representing it in the figure. So the root on top is pointed
at once, the right-most leaf three times. The corresponding hit edges are the thick ones.

At the right, a possible BCI(4) obtained from the left term. Each thick edge has been replaced by a
thick path where binary trees have been attached; their leaves are linked to the newly created unary node
at the root. The root edge (on top of the left term) has been replaced by a path of length two (having
thus three nodes) and a size one tree has been attached to the left at the middle node; the second thick
edge of the left term has been replaced by a path of length 3 with two attachments: a size one tree left
from the second node and a size 3 tree to the right of the third node of the path.

Now let us count in how many ways this can be done. Each edge which is hit i times is actually
replaced by a sequence of left or right binary trees. The generating function associated to binary
trees is T (u) =

∑

n≥1 Cn−1u
n = (1 −

√
1 − 4u)/2. Thus the number of such sequences with

exactly i leaves is

[ui]
1

1 − 2T (u)
= [ui]

1√
1 − 4u

=

(

2i

i

)

.

Note that si of the l edges are hit i times, i = 1, . . . , p. The number of ways to partition the l
edges w.r.t. the multiplicity of the hits is

(

l
s1,...,sp

)

. Then each of the si edges which is hit i times

is replaced by one of the
(

2i
i

)

possible sequences of binary trees. Therefore there are
∏p

i=1

(

2i
i

)si

ways of doing the whole replacement. Finally, note that choosing l distinct edges corresponds to
applying the operator zlDl/l! on the level of generating functions and the 2p+1 new nodes created
during the replacement process yield a factor z2p+1.

5

Proposition 2. Let F (z) denote a formal power series (with real coefficients), Du = ∂/∂u, the
formal derivative, and U the operator G(u) 7→ G(0), G(u) being a formal power series. Then

∆pF (z) =
z2p+1

p!
UDp

uF

(

z√
1 − 4u

)

= z2p+1[up]F

(

z√
1 − 4u

)

.

Proof. The second equation is obvious since UDp
u/p! = [up] is exactly Taylor’s theorem. For

proving the first equation set Dz = ∂/∂z and f(u) := 1/
√

1 − 4u =
∑

i≥0

(

2i
i

)

ui. Therefore by Faà

di Bruno’s formula (see e.g. [6, p. 137])2 we obtain

z2p+1

p!
UDp

uF (zf(u)) =
z2p+1

p!

∑

Pp
i=1 isi=p

p!

s1! · · · sp!
(Ds1+···+spF)(zf(0))

p
∏

m=1

(

1

m!
UDm

u (zf(u))

)sm

= z2p+1
∑

Pp
i=1

isi=p

1

s1! · · · sp!
(Ds1+···+spF)(zf(0))

p
∏

m=1

(

z

(

2m

m

))sm

= z2p+1

p
∑

l=1

1

l!

(

l

s1, . . . , sp

) p
∏

m=1

(

2m

m

)sm

zlDlF (z)

=

p
∑

l=1

αl,p

l!
zl+2p+1DlF (z) = ∆pF (z)

where we substituted s1 + · · ·+ sp = l in the second line and split the sum according to the value
of l and used f(0) = 1 in the third line.

Remark 1. More heuristically, we could argue in the following way: Regard F (z) as a generating
function of a tree-like structure where z marks the number of nodes. Then F (z/

√
1 − 4u) is the

generating function where the nodes are substituted by a node and a sequence of “left-or-right”
binary trees where the number of leaves is marked by u. Thus [up]F (z/

√
1 − 4u) is the generating

function of those objects where the binary trees introduced by the substitution altogether contain
exactly p leaves. The term z2p+1 accounts for introducing the 2p + 1 new nodes. This comes from
counting the nodes of the binary trees coming from the substitution, adding an extra root for each
of these trees and adding a new root to the total structure. This is precisely what ∆p does.

The derivation of the differential equation of the generating function for BCK(p)-terms is a
little more involved. Note that the differential operator ∆p corresponds to p pointers from the
root to some leaves. One is tempted to replace ∆p in (3) by a sum of ∆l’s to take into account
less than p pointers. But this is not entirely correct.

2Faà di Bruno’s formula is also stated in [9, p. 188, (III.24)], but unfortunately in the wrong form

hn

n!
=

n
X

k=1

fk

k!

X

Pk
j=1

jℓj=n,
Pk

j=1
ℓj=k

“ k

ℓ1, . . . , ℓk

” “ g1

1!

”ℓ1
· · ·

“ gk

k!

”ℓk

where hi = d
i

dxi f(g(x)), fi =
“

d
i

dxi f
”

(g(x)) and gi = d
i

dxi g(x). The correct form is

hn

n!
=

n
X

k=1

fk

k!

X

Pn
j=1

jℓj=n,
Pn

j=1
ℓj=k

“ k

ℓ1, . . . , ℓn

” “ g1

1!

”ℓ1
· · ·

“ gn

n!

”ℓn
.

or (in ”non-exponential” form)

hn =
n

X

k=1

fk

X

Pn
j=1

jℓj=n,
Pn

j=1
ℓj=k

n!

ℓ1! . . . ℓn!

“ g1

1!

”ℓ1
· · ·

“ gn

n!

”ℓn
.

6

Proposition 3. Let Fp(z) be the generating function associated to BCK(p)-terms. Then Fp(z) =
Y (z/(1 − z)) where Y (z) is the unique power series Y (z) =

∑

n≥0 Ynzn with nonnegative coeffi-
cients which satisfies

Y (z) =

p
∑

l=1

Cl−1z
2l + zY (z)2 +

(

p
∑

l=1

∆l

)

Y (z). (7)

Proof. The (in some sense) minimal BCK(p)-terms are binary trees with at most p leaves and a
unary root node pointing at all the leaves. This gives the first term on the right-hand side of (7).

Note that a unary node may also have zero pointers. A unary node with zero pointers which
is not on top of the tree cannot be generated directly by a specification similar to (6). Therefore
we first construct terms where each unary node has at least one pointer. Similar arguments as
in the BCI case then lead directly to (7). Finally, we replace the edges by paths which exactly
corresponds to the substitution z → z/(1 − z).

An alternative approach is to start with Motzkin trees with an additional root having pointers
to all leaves as minimal structures. The terms with a unary root node can then be generated
in the following way: Fix the number l of pointers we want to have at the root and then do an
edge hitting process as in the BCI case. But instead of substituting the hit edges by sequences
of left-or-right binary trees, use sequences of left-or-right Motzkin trees with an additional unary
root node (corresponding to the nodes in the paths which substitute the hit edges) such that these
trees have altogether l leaves. Recalling that on the level of generating functions edge hitting
corresponds to applying a differential operator, we get in that way a differential equation for
Fp(z).

Proposition 4. Let M(z, u) denote the generating function of Motzkin trees where z marks the
size (i.e. the total number of nodes) and u marks the number of leaves. This function is given by
the unique power series solution of M(z, u) = uz + zM(z, u) + zM(z, u)2, that is

M(z, u) =
1 − z −

√

(1 − z)2 − 4uz2

2z
. (8)

Then Fp(z) is given as the solution of

Fp(z) = z[up]
M(z, u)

1 − u
+ zFp(z)2 + z[up]

1

1 − u
Fp

(

z

1 − 2zM(z, u)

)

. (9)

Proof. This is a direct consequence of the remarks above and Proposition 2.

Let λn denote the number of closed lambda-terms and Λ(z) =
∑

n≥1 λnzn. Then we can use
the two approaches presented above to find functional equations for Λ(z).

Proposition 5. Let C(z) = (1−
√

1 − 4z2)/2 be the generating function associated to binary trees
with an extra unary root node and counted by the number of nodes. Furthermore, let Λ̃(z) be the
power series solution of

Λ̃(z) = C(z) + zΛ̃(z)2 + zΛ̃

(

z

1 − 2C(z)

)

− zΛ̃(z). (10)

Then Λ(z) = Λ̃(z/(1 − z)). Moreover, we have

Λ(z) = zM(z, 1) + zΛ(z)2 + zΛ

(

z

1 − 2zM(z, 1)

)

. (11)

7

Proof. To prove (10) we can proceed as in the proofs of Propositions 1 and 3 but allowing an
unbounded number of edge hits instead. Thus, if Λ̃(z) is the generating function associated to
closed lambda-terms where each unary node carries at least one pointer, then

Λ̃(z) =
∑

p≥1

Cp−1z
2p + zΛ̃(z)2 + DΛ̃(z)

where D =
∑

p≥1 ∆p. Now applying Proposition 2 yields (10). As in the BCK case, in order
to create unary nodes carrying no pointers we replace the edges by paths which yields Λ(z) =
Λ̃(z/(1 − z)) and completes the proof of (10).

−→

, ,

,

, ,

−→

Figure 4: A step of the grafting expansion of a lambda-term

Alternatively, the lambda-terms with a unary root node can be created by starting with
Motzkin trees with a unary node on top pointing to all leaves. These initial configurations are
then expanded iteratively by substituting the edges by paths and attaching nodes, either left or
right, which are (unary) roots of Motzkin trees, each binding all the leaves of its subtree. For an
illustration of the expansion process, Figure 4 shows one step in this expansion process (not the
initial one). Figure 5 presents one step of the reverse process.

4 The asymptotic number of BCI(p)-terms

Recall that Gp(z) =
∑

n≥1 gn(2p+1)−1z
n(2p+1)−1 is the generating function of the counting sequence

of BCI(p) terms. The function Gp(z) satisfies the functional equation (3) which involves the
differential operator ∆p given by (4). Our goal is now to get a recurrence relation for the coefficients
of Gp(z).

Proposition 6. The coefficients gn(2p+1)−1 satisfy the recurrence relation

gn(2p+1)−1 =

n−1
∑

l=1

gl(2p+1)−1g(n−1−l)(2p+1)−1 + Qp(n − 1)g(n−1)(2p+1)−1, for n ≥ 2, (12)

with initial condition g(2p+1)−1 = Cp−1 and where

Qp(n) =

p
∑

m=1

αm,p

(

n(2p + 1) − 1

m

)

(13)

8

−→ −→ −→ −→

−→ −→

Figure 5: Finding the original closed lambda-term: first, the unary root node and all the leaves bound
by the root are coloured white. Then delete the white nodes and colour all their neighbours white. Now
continue recursively, where deletion of white unary nodes is done by removal and gluing the incident edges
together.

with αm,p defined in (5).

Proof. Obvious, since the first term on the right-hand side of (3) only affects the case n = 1, the
quadratic term is a Cauchy product and ∆p is a linear combination of powers of the ordinary
differential operator which acts on the coefficients of the power series exactly as shifting and
multiplication by Qp(n − 1) do.

Lemma 1. The polynomials Qp(n) can be represented more explicitly as

Qp(n) = 4p

(
(

p + 1
2

)

n + p − 3
2

p

)

.

Proof. Set f(u) = 1/
√

1 − 4u. It is easy to see that αm,p = [up](f(u)−1)m and that the coefficient
on the right-hand side is zero if m > p. Thus we obtain

Qp(n) =

p
∑

m=1

(

(2p + 1)n − 1

m

)

αm,p

= [up]
∑

m≥1

(

(2p + 1)n − 1

m

)

(f(u) − 1)m = [up]f(u)(2p+1)n−1

= 4p

(
(

p + 1
2

)

n + p − 3
2

p

)

and we are done.

The key to the asymptotic analysis is a linearization of the differential equation which is possible
due to the fast growth of the coefficients of Gp(z). We start with an auxiliary result for fast growing
sequences saying that in the Cauchy product only the extremal terms are asymptotically relevant:

9

Lemma 2. Let n0 ∈ N and A(z) =
∑

n≥n0
anzn be a power series with positive coefficients

(from index n0 on). Assume that there exists σ ≥ 1 with an+1/an = Ω(nσ) as n → ∞. Then
[zn]A(z)2 = 2an0

an−n0
(1 + O(n−σ)) as n → ∞. If we want the second order term, we take the

next two terms, and so on.

Proof. Define qn = an+1/an; then 1/qn = O(n−σ). W.l.o.g. assume that n is odd. Then the
coefficient of zn in A(z)2 is

n−n0
∑

l=n0

alan−l = 2an0
an−n0

+ 2

⌊n/2⌋−n0
∑

l=1

an0+lan−n0−l

= 2an0
an−n0

1 +

⌊n/2⌋−n0
∑

l=1

qn0
qn0+1 · · · qn0+l−1

qn−n0−1qn−n0−2 · · · qn−n0−l

 .

In the case where n is even we have to subtract 1{n/2∈N}a
2
n/2 on the r.-h. side.

The first term of the sum in the last line is qn0
/qn−n0−1 = O((n−n0 −1)−σ) = O(n−σ) (recall

that n0 is a constant). The further terms are of order O(n−2σ) and there are not more than ⌊n/2⌋
of them. Thus the sum is of order O(n1−2σ) = O(n−σ). Hence

[zn]A2(z) = 2an0
an−n0

(1 + O(n−σ)) ∼ [zn]2an0
zn0A(z).

We are now ready to derive bounds for the coefficients of Gp(z).

Lemma 3. Define φn = gn(2p+1)−1, (n ≥ 1). Then we have φn+1/φn = Ω(np) as n → ∞.

Proof. By (12) we have φ0 = 0, φ1 = Cp−1 and, for n ≥ 2,

φn =
n−2
∑

l=1

φlφn−1−l + Qp(n − 1)φn−1. (14)

Thus φn ≥ Qp(n−1) φn−1. By Lemma 1 it is obvious that Qp(n) is a polynomial in n with leading

term 2p(2p+1)p

p! np which implies the result.

Corollary 1. For fixed p ≥ 1 and n → ∞, the sum
∑n−2

l=1 φlφn−l is asymptotically equal to
2φ1φn−2(1 + O(1/np)).

Remark 2. The intuition behind the considerations above is as follows. From our study of BCI(1)
and from bounds already obtained (although for a different model) [7], we already know that the
asymptotic behaviour of the number of lambda-terms widely differs from that of the number of
trees: the significant increase in the number of lambda-terms of given size when compared to
Motzkin trees, i.e. the trees forming the underlying structure of lambda-terms, comes from the
large number of ways of binding a leaf to unary nodes; indeed we are dealing here with directed
acyclic graphs. Hence the rôle of the term G2

p, which corresponds to the “purely binary tree-
like” structure, is asymptotically negligible when compared to that of the differential term which
captures the binding of leaves.

Remark 3. The exact differential equation for Gp(z) is (3) whereas the arguments in Remark 2
show that we may work with the linearized3 equation

Lp(z) = Cp−1z
2p + ∆pLp(z). (15)

The linearized equation has a combinatorial interpretation as well; indeed, it counts the number
of structures S defined as follows: The smallest possible structures of S are precisely the smallest

3This is not a linearization in a strict sense; we did not replace the quadratic term by a linear one, but only
omitted it.

10

BCI(p)-terms, i.e., a unary root followed by a binary tree with 2p − 1 nodes (and pointing to
all leaves of this binary tree). All terms in S have a unary node as their root. To construct
larger terms, we add a new root and expand the subterm below using the same edge hitting and
expansion process as for BCI(p)-terms. Thus these terms may have binary nodes, but never as
root.

Lemma 4. For p ≥ 1, the sequence (φn)n≥1 satisfies

2φ1φn−2 ≤
n−2
∑

l=1

φlφn−1−l ≤ 2φ1φn−2 + (n − 3)φ2φn−3.

Proof. The lower bound is obvious: we just keep the first and the last term. Set qn = φn+1/φn.
To prove the upper bound, note that (φn)n≥1 is monotonically increasing and that for any 1 ≤
i ≤ ⌊(n − 3)/2⌋ we have

φ2+iφn−3−i = φ2φn−3
q2q3 · · · q1+i

qn−2qn−3 · · · qn−1−i
≥ φ2φn−3.

Next we turn to the linearized equation (15).

Theorem 1. Set ℓp,n = [zn]Lp(z) where Lp is given by (15). Then, for fixed p and n → ∞,

ℓp,n ∼ Bpβ
n−1
p nγp(n − 1)!p

where

Bp = Cp−1

p
∏

k=1

1

Γ
(

1 + 2(p−k)−1
2p+1

) (16)

= Cp−1 exp

(

−2p + 1

2

∫ 2

1

log(Γ(x)) dx

)(

1 + O

(

1

p

))

, as p → ∞, (17)

≈ Cp−1(1.0844375142 . . .)(2p+1)/2

(

1 + O

(

1

p

))

and

βp =
(4p + 2)p

p!
, γp =

p(p − 2)

2p + 1
. (18)

Proof. Equation (15) implies ℓp,2p = Cp−1 and ℓp,n = Qp(n − 1)ℓp,n−2p−1 for n > 2p. Thus

ℓp,(2p+1)n−1 = Cp−1

n−1
∏

j=1

Qp(j)

= Cp−1

(

(4p + 2)p

p!

)n−1 p
∏

k=1

Γ
(

n + 2(p−k)−1
2p+1

)

Γ
(

1 + 2(p−k)−1
2p+1

)

= Cp−1β
n−1
p (n − 1)!p

n−1
∏

j=1

p
∏

k=1

(

1 +
2(p − k) − 1

2p + 1
· 1

j

)

. (19)

Finally, note that, as n → ∞,

Cp−1

n−1
∏

j=1

p
∏

k=1

(

1 +
2(p − k) − 1

2p + 1
· 1

j

)

∼ Bpn
γp

which completes the proof. The asymptotic form (17) can be obtained by Euler-McLaurin’s
formula.

11

p ap Ap

2 1.048668. . . 0.981017. . .
3 1.0046726194.. . 2.19232485. . .
4 1.0006911656.. . 6.17349476. . .
5 1.0001221936.. . 19.2515312. . .

Table 1: The first few values of ap.

Theorem 2. For p ≥ 2, the number of BCI(p)-terms of size (2p + 1)n − 1 is asymptotically

Ap βn−1
p nγp(n − 1)!p

where βp and γp are as in (18) and Ap = apBp with Bp as in (16) and ap = 1 + O(1/(pep)), as
p → ∞.

Remark 4. The first few values of the constants ap and Ap appear in Table 1.

Remark 5. Applying Stirling’s formula we get the alternative form

Āpβ̄
n−1
p nγ̄pnnp

where

β̄p =
βp

ep
, γ̄p =

−5p

4p + 2

and Āp = (2π/e2)p/2Ap.

Proof. From the recurrence relation for φn, Eq. (14), we have

φn = φn−1Qp(n − 1) +
n−2
∑

l=1

φlφn−1−l

= φn−1 (Qp(n − 1) + Γn−1),

with Γn−1 =
∑n−2

l=1 φlφn−1−l/φn−1 and Qp(n) defined in (13). Thus

φn = φ1

n−1
∏

j=1

(Qp(j) + Γj) = Kp(n)φ1

n−1
∏

j=1

Qp(j)

where Kp(n) =
∏n−1

j=1

(

1 +
Γj

Qp(j)

)

. For p ≥ 2 we have Qp(n) = Ω(np) and furthermore Corollary 1

gives Γn−1 = 2φ1 + O(1/np) = 2Cp−1 + O(1/np). Hence the sequence (Kp(n))n≥1 is convergent
and we get

φn = apCp−1

n−1
∏

j=1

Qp(j)

(

1 + O

(

1

n

))

where ap = limn→∞ Kp(n). The product Cp−1

∏n−1
j=1 Qp(j) is already evaluated in (19), yielding

the asymptotic behaviour of the solution of the linearized equation given in Theorem 1.
The difference between the linearization and the φn is hidden in the constant ap. Thus we

are left with the determination of ap. We will confine ourselves with an asymptotic evaluation for
p → ∞.

First note that Lemma 1 immediately implies the inequality

Qp(n) ≥ 2p(2p + 1)p

p!
np. (20)

12

Now observe that Γ1 = 0 and that by Lemma 4 we have Γj ≤ 2φ1+(j−2)φ2φj−1/φj . The quotient
in the last term was already estimated in the proof of Lemma 3 by φj−1/φj ≤ 1/Qp(j − 1). Using
this estimate as well as the inequality (20) we obtain (for j > 1)

Γj ≤ 2φ1 + j
φ2p!

2p(2p + 1)p(j − 1)p
= 2Cp−1 + j

φ2p!

2p(2p + 1)p(j − 1)p
.

Hence we get

ap =
∏

j≥2

(

1 +
Γj

Qp(j)

)

≤
∏

j≥2

(

1 +
2Cp−1p!

2p(2p + 1)pjp
+

φ2(p!)2

22p(2p + 1)2pj2p−1

)

≤
∏

j≥2

(

1 +
2Cp−1p!

2p(2p + 1)pjp

)

∏

j≥2

(

1 +
φ2(p!)2

22p(2p + 1)2p(j − 1)pjp−1

)

. (21)

The two products above turn out to be of the form
∏

j≥2

(

1 +
εp

jp

)

and
∏

j≥2

(

1 +
ε′

p

(j−1)pjp−1

)

,

resp., with εp, ε
′
p → 0 as p → ∞. Thus we can easily estimate the first one by

log
∏

j≥1

(

1 +
εp

jp

)

=
∑

j≥1

∑

k≥1

(−1)k−1

k

εk
p

jpk
=
∑

k≥1

(−1)k−1

k
εk

pζ(pk). (22)

Since ζ(x) = 1+O(2−x) as x → ∞, we obtain
∏

j≥1

(

1 +
εp

jp

)

= 1+O(εp). Moreover, observe that
∏

j≥2

(

1 +
ε′

p

(j−1)pjp−1

)

≤∏j≥1

(

1 +
ε′′

p

jp

)

with ε′′p = ε′p/2p−1 which allows us to use (22) again.

Now turning to (21) we have, using Cp−1 ∼ 4p−1/
√

πp3,

εp =
2Cp−1p!

2p(2p + 1)p
∼ 1

pep
√

2e
.

To estimate the second product in (21), observe that

φ2 = φ1Qp(1) = Cp−14p

(

2p− 1

p

)

= 4p(2p − 1)C2
p−1.

Thus we obtain

ε′′p =
φ2(p!)2

22p(2p + 1)2p2p−1
=

(2p − 1)2p−1

p

(

2Cp−1p!

2p(2p + 1)p

)2

∼ 2p

pe2p
= o

(

1

pep

)

.

This implies ap = 1 + O(1/(pep)) which completes the proof.

5 Closed lambda-terms

So far, we are unable to determine the asymptotic behaviour of λn. We will derive upper and
lower estimates and a recurrence relation which allows an efficient computation of λn.

5.1 Estimates for λn

The number of BCI(p)-terms is certainly a lower bound, but using rather crude and elementary
estimates a better bound can be obtained.

13

Theorem 3. The number λn of closed lambda-terms of size n satisfies for every ε > 0 and for
sufficiently large n the inequalities

c1

(

4n

e log n

)n/2 √
log n

n
≤ λn ≤ c2

(

9(1 + ε)n

e log n

)n/2
(log n)n/(2 log n)

n3/2

where c1, c2 are some positive constants.

Proof. We determine the lower bound by counting particular lambda-terms of size n. Take a
binary tree with nf leaves and attach to its root a string of nu unary nodes. Then connect the
leaves to the unary nodes by pointers. Each such object is a closed lambda-term and there are
Cnf

n
nf
u such terms. Note that nu = n + 1 − 2nf . Hence we obtain

λn ≥
n−1
∑

nu=1

Cnf
n(n+1−nu)/2

u ≥ Cñf
ñ(n+1−ñu)/2

u

where ñu and ñf are those values of nu and nf , respectively, where n
nf
u attains its maximum. The

maximum is attained at ñu = n/W (en) where W (n) is Lambert’s W -function defined implicitly
by W (n)eW (n) = n. It is easy to show that

W (en) = log n − log log n + 1 + O

(

log log n

log n

)

.

This implies
n

log n
≤ ñu ≤ n

log n − log log n
. (23)

Hence we obtain

ñ
ñf
u ≥

(

n

log n

)ñf

=

(

n

log n

)(n+1−ñu)/2

≥
(

n

log n

)(n/2)·(1−1/(log n−log log n))+1/2

=

(

n

log n

)n/2√
n

log n
exp

(

− n

2(log n − log log n)
(log n − log log n)

)

=

(

n

e log n

)n/2√
n

log n
.

The lower estimate now follows from Cr ∼ k14r/r3/2 (r → ∞) where k1 is some positive constant.
For the upper estimate we construct a set of objects such that a proper subset corresponds to

the set of all lambda-terms of size n. Take a Motzkin tree and add pointers such that each leaf is
connected to an arbitrary unary node. Clearly, each lambda-term is generated in that way. But
since leaf x might be bound to a unary node which is not on the path from x to the root, we
generate also enriched trees which do not represent a lambda-term. Therefore we get the upper
bound λn ≤ Mn max n

nf
u where Mn is the number of Motzkin trees with n vertices. As above we

have nu = n/W (en). Now (23) implies that for sufficiently large n we have

n
nf
u ≤

(

n

log n − log log n

)
n
2 (1− 1

log n)

≤
(

(1 + ε)n

log n

)
n
2
(

n

log n

)− n
2 log n

=

(

(1 + ε)n

e log n

)
n
2

exp

(

n log log n

2 log n

)

where we used log n/(1 + ε) ≤ log n− log log n for sufficiently large n. Finally, the well known fact
Mr ∼ k23r/r3/2 (as r → ∞ and with some constant k2 > 0) completes the proof.

14

Remark 6. If λ̄n is the number of closed lambda-terms where the sum of the number of unary
nodes and the number of binary nodes equals n (so leaves do not contribute to the size), then
David et al. [7] showed the following result for the growth rate of the counting sequence:

(

(4 − ǫ)n

log n

)n−n/ log n

≤ λ̄n ≤
(

(12 + ǫ)n

log n

)n−n/3 log n

.

The underlying model is rather different from ours and so is the growth of the sequences. However,
there is a relation: the exponential growth rate of of λn and λ̃2

n appear to be similar.

5.2 A recurrence relation

Eq. (11) immediately implies that λn satisfies the recurrence relation

λn = Mn−1 +
∑

ℓ+q=n−1

λℓλq +
∑

1≤ℓ≤n−1

δn,ℓλℓ (24)

where Mn = [zn]M(z, 1) is the number of Motzkin trees of size n and

δn,ℓ = [zn−1−ℓ]
1

(1 − 2zM(z))ℓ
=
∑

r≥0

(

ℓ − 1 + r

ℓ − 1

)

ζn−ℓ−1,r

with ζs,r := [zs](2zM(z))r. Note that ζs,r = 0 unless s ≥ 2r and thus

δn,ℓ =

⌊(n−ℓ−1)/2⌋
∑

r=0

(

ℓ − 1 + r

ℓ − 1

)

ζn−ℓ−1,r.

By Lagrange inversion we obtain

ζs,r = 2r[zs−r]M(z)r = 2r r

s − r

∑

a,b,c: b+2c=s−2r

(

s − r

a, b, c

)

which gives after a few computations

δn,ℓ =

⌊n−ℓ−1
2 ⌋
∑

t=0

t
∑

r=0

r2r
(

ℓ−1+r
r

)

(n − ℓ − 2 − r)!

t! (t − r)! (n − ℓ − 1 − 2 t)!
if 1 ≤ ℓ < n − 1,

1 if ℓ = n − 1.

(25)

Now, consider the inner sum and set bn,ℓ,t :=
∑t

r=0

r2r(ℓ−1+r
r)(n−ℓ−2−r)!

t! (t−r)! (n−ℓ−1−2 t)! . This sum is amenable

to creative telescoping (see [21]) which yields a system of two recurrences of order one for the
multi-index sequence (bn,ℓ,t)n,ℓ,t≥0:

(

−ℓ2 − 2nt − 2ℓt − ℓ − n + n2
)

bn,ℓ,t +
(

2ℓt− 2 nℓ + 2ℓ2 + 4ℓ
)

bn,ℓ+1,t

+
(

−4t2 − 2t + 4nt − 4ℓt− n2 + 2nℓ − ℓ + n − ℓ2
)

bn+1,ℓ,t = 0

and

(2n− t − 2) (n − ℓ − 2t − 2) (n − ℓ − 2t − 1) bℓ,n,t − t (t + 1) (n − ℓ − t − 2) bℓ,n,t+1

− (n − ℓ − 2t− 2)(n − ℓ − 2t − 1) (n − ℓ − 2t) bℓ,n+1,t = 0.

with the initial conditions given by the sum representation of bn,ℓ,t. This system can be solved
explicitly and we get

bn,ℓ,t =
2ℓ

t
· Γ (n − ℓ − 2) 2F1(−t + 1, ℓ + 1;−n + ℓ + 3; 2)

Γ (t)
2

Γ (n − ℓ − 2t)

15

where 2F1 denotes the Gauss hypergeometric function defined by

2F1(a, b; c; z) =
∑

k≥0

(a)k(b)kzk

(c)kk!
if |z| < 1 or |z| = 1 and ℜ(c − a − b) > 0,

where (a)k denotes the falling factorial (a)k = a(a−1) · · · (a−k+1). There are several continuation
formulas to other domains of the complex plane. In our case one could for instance use

2F1(a, b; c; z) =
Γ(b − a)Γ(c)(−z)−a

Γ(b)Γ(c − a)

∑

k≥0

(a)k(a − c + 1)kz−k

(a − b + 1)kk!

+
Γ(a − b)Γ(c)(−z)−b

Γ(a)Γ(c − b)

∑

k≥0

(b)k(b − c + 1)kz−k

(b − a + 1)kk!
if |z| > 1 and a − b /∈ Z,

but the important issue here is not the particular representation but rather the recurrence relations
satisfied by 2F1(a, b; c; z) (see e.g. [10] for further reading). Indeed these properties make it
useful in computer algebra systems. Now, using creative telescoping again, this time for δn,ℓ =
∑⌊n−ℓ−1

2 ⌋
t=0 bn,ℓ,t, we can also obtain a system of two D-finite recurrences for δn,ℓ (fully automatically

with computer algebra packages):

(n − ℓ) (n + 1 − ℓ) (n − 2ℓ − 2) δn+2,ℓ − (n − ℓ)
(

2n2 − 6nℓ − 5n + 2ℓ2 + 3ℓ + 1
)

δn+1,ℓ

− (n − 1)
(

3n2 − 2nℓ + n − ℓ2 − 9ℓ − 8
)

δn,ℓ + 20 (n − 1) ℓ (ℓ + 1) δn,ℓ+2

+ 2 (n − 1) (5n − 9ℓ − 12) ℓδn,ℓ+1 = 0

and

(n − ℓ) (ℓ − n − 1) δn+2,ℓ + (n − ℓ) (2n − ℓ) δn+1,ℓ − ℓ (n − 1) δn+1,ℓ+1

− 4ℓ (n − 1) δn,ℓ+1 (n − 1) + (3n − 2ℓ + 1) δn,ℓ = 0 (26)

with initial conditions δn,n = 0, δn,n−1 = 1, δn,n−2 = 0 for n ≥ 2. Unfortunately, this equation
seems not to admit an explicit solution in terms of classical special functions. Nevertheless,
there exist powerful computer algebra methods for D-finite recurrences which are implemented in
standard Maple packages, for instance. By means of these methods it is possible to use such (at
first sight complicated looking) expressions like (26) for a very efficient computation of the values
δn,ℓ (see e.g. [4]). Experiments on a 1.5 GHz notebook using Maple showed that the first 1000
terms of (λn)n≥1 can be computed in a few seconds. This was not possible with other approaches
like for instance using the functional equation of the generating function which was given in [3].

6 Conclusion and outlook

The motivation for our analysis was the enumeration of closed lambda-terms. Since the problem
seems hard, we treated the subclass of BCI(p)-terms which imposes quite a restriction on the
degrees of freedom in binding variables by quantifiers. Thus we expected the set of BCI(p)-terms
to be small in comparison to the set of closed lambda-terms. Our results verify and quantify
this. Moreover, they show that the restriction is weaker than bounding the unary height, i.e., the
maximal number of unary nodes on a root-to-leaf path. Indeed, if the unary height is bounded
by L, then the asymptotic number of terms of size n is in general Cn−3/2ρn; i.e. the asymptotic
behaviour is like that of the number of Motzkin trees. Only for particular values of L, the
asymptotic behaviour becomes Cn−5/4ρn (see [3]). This behaviour changes if the condition on
the unary height is replaced by a condition on the number of pointers per unary node (as in
the BCI(p) case) or dropped completely (closed lambda-terms). So these structures are indeed
different from tree-like structures; their counting sequences grow much faster than that of Motzkin
trees. So we can conclude that the enumeration of BCI(p)-terms is not only of interest in its own
right, but also more closely related to the original counting problem than to tree enumeration.

16

Since the union of all the sets of BCK(p)-terms, p = 1, 2, . . . , is precisely the set of closed
lambda-terms, one might be tempted to approach the problem of determining the asymptotic
behaviour of λn via the number of BCK(p)-terms and letting p → ∞. For performing such a limit
we needed precise and uniform asymptotics for the number of BCK(p)-terms. Unfortunately, the
asymptotic computation of the number of BCK(p)-terms turns out to be much more involved
than that of the number of BCI(p)-terms. A precise analysis of the BCK case is beyond the
scope of this paper and will be the topic of a forthcoming paper. Here we discuss only briefly how
to attack this problem.

The differential equation (9) implies a recurrence relation for the coefficients of Fp(z). This can
be linearized in a similar fashion as we did in the BCI case (essentially Lemmas 2-4). The next
step will be showing upper and lower estimates for fn := [zn]Fp(z). This enables us to identify the
asymptotically dominant term in the recursion which yields a rough information on the growth of
fn.

The task is now to find the asymptotic behaviour of the correct solution. The growth rate
of the coefficients tells us that the Borel transform F̂p(z) of the generating function Fp(z) must

grow exponentially in z. This indicates that F̂p(z) is Hayman-admissible (cf. [14]) and therefore
a saddle point analysis applies and eventually yields the asymptotic number of BCK(p)-terms.

When studying not only the size but further properties of BCK(p)-terms by means of multi-
variate generating functions, the above remarks suggest that these functions will be (multivariate)
Hayman-admissible such that a multivariate saddle point method applies (cf. [11]).

As in the case of closed lambda-terms, the functional equation (9) corresponds to a recurrence
relation of the form (24). The only difference is that δn,l in (25) has to be replaced by

δn,l =

min(p,⌊n−l−1
2 ⌋)

∑

t=0

t
∑

r=0

r2r
(

l−1+r
r

)

(n − l − 2 − r)!

t! (t − r)! (n − l − 1 − 2 t)!
if 1 ≤ l < n − 1,

1 if l = n − 1.

Similarly as before, this gives rise to a system of D-finite recursions.

Acknowledgement . We thank Marek Zaionc for triggering our interest in the subject and for
numerous fruitful discussions about it. Furthermore we thank an anonymous referee for the careful
reading of the manuscript and pointing out several imprecisions.

References

[1] Henk P. Barendregt. The lambda calculus. Its syntax and semantics, volume 103 of Studies
in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam,
revised edition, 1984.

[2] O. Bodini, D. Gardy, and A. Jacquot. Asymptotics and random sampling for BCI and BCK
lambda terms. Theor. Comput. Sci., 2013. DOI: http://dx.doi.org/10.1016/j.tcs.2013.01.008.

[3] Olivier Bodini, Danièle Gardy, and Bernhard Gittenberger. Lambda-terms of bounded unary
height. In ANALCO, workshop on ANALytic COmbinatorics, San Francisco (USA), January
2011.

[4] Alin Bostan, Frédéric Chyzak, Bruno Salvy, Grégoire Lecerf, and Éric Schost. Differential
equations for algebraic functions. In ISSAC 2007, pages 25–32. ACM, New York, 2007.

[5] Alonzo Church. An Unsolvable Problem of Elementary Number Theory. Amer. J. Math.,
58(2):345–363, 1936.

[6] Louis Comtet. Advanced combinatorics. D. Reidel Publishing Co., Dordrecht, enlarged edi-
tion, 1974.

17

[7] René David, Katarzyna Grygiel, Jakub Kozik, Christophe Raffalli, Guillaume Theyssier, and
Marek Zaionc. Asymptotically almost all λ-terms are strongly normalizing. Log. Methods
Comput. Sci., 9(1):1:02, 30, 2013.

[8] Ph. de Groote, editor. The Curry-Howard isomorphism, volume 8 of Cahiers du Centre de
Logique [Reports of the Center of Logic]. Academia-Erasme, Louvain, 1995.

[9] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University
Press, Cambridge, 2009.

[10] George Gasper and Mizan Rahman. Basic hypergeometric series, volume 96 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition,
2004. With a foreword by Richard Askey.

[11] Bernhard Gittenberger and Johannes Mandlburger. Hayman admissible functions in several
variables. Electron. J. Combin., 13(1):Research Paper 106, 29 pp. (electronic), 2006.

[12] Katarzyna Grygiel, Pawe lIdziak, and Marek Zaionc. How big is BCI fragment of BCK logic.
J. Logic Comput., 23(3):673–691, 2013.

[13] Katarzyna Grygiel and Pierre Lescanne. Counting and generating lambda terms. J. Func-
tional Programming, 2013. To appear.

[14] Walter K. Hayman. A generalisation of Stirling’s formula. J. Reine Angew. Math., 196:67–95,
1956.

[15] Yasuyuki Imai and Kiyoshi Iséki. Corrections to: “On axiom systems of propositional calculi.
I”. Proc. Japan Acad., 41:669, 1965.

[16] Yasuyuki Imai and Kiyoshi Iséki. On axiom systems of propositional calculi I. Proc. Japan
Acad., 41:436–439, 1965.

[17] Kiyoshi Iséki and Shôtarô Tanaka. An introduction to the theory of BCK-algebras. Math.
Japon., 23(1):1–26, 1978/79.

[18] Stephen C. Kleene. A Theory of Positive Integers in Formal Logic. Part I. Amer. J. Math.,
57(1):153–173, 1935.

[19] Stephen C. Kleene. A Theory of Positive Integers in Formal Logic. Part II. Amer. J. Math.,
57(2):219–244, 1935.

[20] Morten Heine Sørensen and Pawe l Urzyczyn. Lectures on the Curry-Howard isomorphism.
Amsterdam: Elsevier, 2006.

[21] Doron Zeilberger. The method of creative telescoping. J. Symbolic Comput., 11(3):195–204,
1991.

18

