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Abstract. We study Galton-Watson branching processes conditioned on the total progeny

to be n which are scaled by a sequence cn tending to infinity as o(
√

n). It is shown that

this process weakly converges to the totallocal time of a two-sided three-dimensional Bessel

process. This is done by means of characteristic functions and a generating function approach.

1. Introduction

Let (ϕk; k ≥ 0) be a sequence of non-negative numbers and set ϕ(t) =
∑

k≥0 ϕktk. Consider
a Galton-Watson branching process with offspring distribution ξ given by

P {ξ = k} =
τkϕk

ϕ(τ)
, (1.1)

where τ is an arbitrary nonnegative number within the circle of convergence of ϕ(t). Without
loss of generality we may restrict ourselves to critical branching processes, i.e. we may assume
Eξ = 1 which equivalently means that τ satisfies τϕ′(τ) = ϕ(τ). The variance of ξ can also be
expressed in terms of ϕ(t) and is given by

σ2 =
τ2ϕ′′(τ)

ϕ(τ)
. (1.2)

Now consider the family tree T of such a process conditioned on the total progeny to be n
and let nk be the number of nodes of this tree which have out-degree k. Then the offspring
distribution (1.1) corresponds to assigning the weight

ω(T ) =
∏

k≥0

ϕ
nk(T )
k

to T . Denote by |T | the number of nodes of such a tree and let an be the (weighted) number of
all trees with n nodes, i.e.

an =
∑

T :|T |=n

ω(T ).

Then the corresponding generating function (GF) a(z) =
∑

n≥0 anzn which will play a key role
throughout this paper satisfies the functional equation

a(z) = zϕ(a(z)).

Denote by (Ln(t), t ≥ 0) a Galton-Watson process the total progeny of which is n, i.e. for
integer t Ln(t) is the size of the t-th generation. For non-integer t we define Ln(t) by linear
interpolation:

Ln(t) = (btc + 1 − t)Ln(btc) + (t − btc)Ln(btc + 1), t ≥ 0.

Furthermore, let (cn, n ≥ 0) be a sequence of positive numbers satisfying the conditions

cn → ∞ and cn = o(
√

n).
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We will show that the scaled process

ln(t) =
1

cn
Ln(cnt), t ≥ 0, (1.3)

weakly converges to total local time of a three-dimensional Bessel process which proves a con-
jecture stated by Aldous [1, Conjecture 7].

Theorem 1.1. Let ϕ(t) be the GF of a sequence of non-negative numbers. Besides, let
(B(s),−∞ < s < ∞) denote a two sided Bessel 3 process, that means (B(s), s ≥ 0) and
(B(−s), s ≥ 0) are both three-dimensional Bessel processes. Denote by l(t) the total local time
at level t of B(s), i.e.

l(t) = lim
ε→0

1

ε

∞
∫

−∞

I[t,t+ε](B(s)) ds

where IA is the indicator function of the set A. Furthermore, assume that ϕ(t) has a positive
or infinite radius of convergence R and ζ = gcd{i|ϕi > 0} = 1. Suppose that the equation

tϕ′(t) = ϕ(t)

has a minimal positive solution τ < R and that σ2 defined by (1.2) is finite. Then the process
ln(t) defined by (1.3) converges weakly to local time of B(s), exactly that means

ln(t)
w−→ σ

2
l
(σ

2
t
)

d
=

σ2

4
l(t)

in C[0,∞), as n → ∞.

Remark 1. The case ζ > 1 can be treated analogously, but is technically more complicated.
However, the weak limit theorem remains unchanged except that we have to require n ≡ 1
mod ζ. Thus the restriction to ζ = 1 is justified.

Remark 2. Note that Aldous [1] formulated his conjecture for the step function process
1
cn

Ln(bcntc). But in this case the proof of tightness would be much more involved and thus we
decided to work with the interpolated process. However, there is a similar tightness condition
for the space D[0,∞) (see [2]) and our method can be directly extended to prove the “original”
conjecture which would require much more technical effort without gaining any further insight
into the structure of the problem.

Remark 3. The average extinction time of a branching process conditioned on the total progeny
to be n is proportional to

√
n. Thus the behavior changes if we choose cn =

√
n as scaling factor.

In this case Brownian excursion local time is obtained as limit process as was shown in [4].

The proof of Theorem 1.1 is divided into two parts: First, we have to show that the finite
dimensional distributions (fdd’s) of ln(t) converge weakly to those of l(t), which is done in
the next section. The one-dimensional limit theorem has been established by Kennedy [13,
Theorem 1] and Kolchin [14, Theorem 2.5.4]. The second quality we have to prove is that the
sequence ln(t) is tight. This proof is based on [2, Theorem 12.3] and is deferred to the last
section.

Remark. We would like to mention that there are other approaches to related problems in the
literature: Lamperti and Ney [15] proved finite-dimensional convergence results of a similar
type for branching processes conditioned to have infinite total progeny. Perhaps it is possible to
use their ideas to obtain a different way of attacking this problem. Finally, note that recently
Pitman [17] reproved the results in [4, 5] by means of an approach via stochastic differential
equations.
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2. Finite Dimensional Convergence

2.1. The limiting distributions of ln. We will prove the convergence of the fdd’s to those
of local time by computing the (weighted) number ak1m1k2m2···kdmdn of trees of size n with mi

nodes in layer ki, i = 1, . . . , d. Then the desired distribution is given by

P {Ln(k1) = m1, . . . , Ln(kd) = md} =
ak1m1k2m2···kdmdn

an
.

In order to determine this distribution we use a generating function approach:We have (for
details see [4], for general background we refer to [6])

∑

m1,...,md,n≥0

ak1m1k2m2···kdmdnum1

1 · · ·umd

d zn = yk1

(

z, u1yk2−k1

(

z, . . . ykd−kd−1
(z, uda(z)) . . .

)

where

y0(z, u) = u

yi+1(z, u) = zϕ(yi(z, u)), i ≥ 0.

Consequently the characteristic function of the joint distribution of 1
cn

Ln(k1), . . . ,
1
cn

Ln(kd) is
given by

φk1···kdn(t1, . . . , td) =
1

an
[zn]yk1

(

z, eit1/cnyk2−k1

(

z, . . . ykd−kd−1

(

z, eitd/cna(z)
)

. . .
)

(2.1)

where [zn]f(z) denotes the coefficient of zn in the power series of f(z).
In order to extract the desired coefficient we will use the following

Lemma 2.1. Let z0 be the point on the circle of convergence of a(z) which lies on the positive

real axis. Set w = u−a(z), α = zϕ′(a(z)) and β = zϕ′′(a(z))/2. If |w| = O
(

1
cn

)

and z−z0 → 0

in such a way that arg(z − z0) 6= 0 and |1 −√
z − z0| ≤ 1 + C√

n
, then yk(z, u) admits the local

representation

yk(z, u) = a(z) +
αkw

1 − β
α

1−αk

1−α w + O
(∣

∣

∣

1−α2k

1−α2

∣

∣

∣
|w|2

) (2.2)

uniformly for k = O (cn).

Proof. The lemma looks very similar to [4, Lemma 2.1] except that there the assumption |w| =

O
(

1√
n

)

is required. But investigating the proof of this lemma shows that the crucial part is [4,

Lemma 3.1] which states that under the assumptions w = O (1) and 1/2 ≤ |α| ≤ 1 + O (|w|)
we have for k = O

(

|w|−1
)

yk(z, u) − a(z) = O
(

|wαk|
)

. (2.3)

Note that it is well known (see e.g. [16]) that a(z) has a local expansion of the form

a(z) = τ − τ
√

2

σ

√

1 − z

z0
+ O

(∣

∣

∣

∣

1 − z

z0

∣

∣

∣

∣

)

(2.4)

around its singulariy z0 = 1/ϕ′(τ) (This can e.g. be easily derived by direct application of [7,
Theorem 7.1]).

The assumption ζ = 1 ensures that |zϕ′(a(z))| < 1 for |z| = z0, z 6= z0. Hence, by the implicit
function theorem a(z) has an analytic continuation to the region |z| < z0 + δ, arg(z − z0) 6= 0
for some δ > 0. Furthermore, it follows that α = zϕ′(a(z)) has similar analytic properties,
especially it has the local expansion

α = 1 − σ
√

2

√

1 − z

z0
+ O

(∣

∣

∣

∣

1 − z

z0

∣

∣

∣

∣

)

. (2.5)
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Therefore the assumptions of Lemma 2.1 imply 1/2 ≤ α ≤ 1 + O (1/
√

n) which is even more
than necessary. Due to (2.3) equation (2.2) holds if kw = O (1) which is indeed the case.

Theorem 2.1. Let ki = κicn, i = 1, . . . , d where 0 < κ1 < · · · < κd. Then the charac-
teristic function φκ1...κd

(t1, . . . , td) = lim
n→∞

φk1···kdn(t1, . . . , td) of the limiting distribution of
(

1
cn

Ln(k1), . . . ,
1
cn

Ln(kd)
)

satisfies

φκ1...κd
(t1, . . . , td) =

1
(

1 − iσ2

2

(

t1 + t2
A2

)

κ1

)2

A2
2 · · ·A2

d

(2.6)

where for d = 1 we set A2
2 · · ·A2

d := 1 and

Aj =







1 − iσ2

2

(

tj +
tj+1

Aj+1

)

(κj − κj−1), j = 2, . . . , d − 1,

1 − iσ2

2 td(κd − κd−1), j = d.

Remark 1. Note that by means of the generating function approach we get only a proof of
this theorem for integer ki and thus a limit theorem for the step function process Ln(btcnc)/cn.
However, a direct application of the tightness inequality (Theorem 3.1) shows that the difference
Ln(btcnc)/cn − ln(t) converges to zero in probability and thus the theorem is correct as stated.

Remark 2. It should be mentioned that, following [3], this approach in conjunction with multi-
variate saddle point asymptotics would allow to establish a corresponding local limit theorem,
too.

Proof. Let us apply Cauchy’s integral formula on (2.1) with the integration contour Γ = Γ1 ∪
Γ2 ∪ Γ3 ∪ Γ4 where

Γ1 =
{

z = z0

(

1 +
x

n

)∣

∣

∣<x ≤ 0 and |x| = 1
}

Γ2 =
{

z = z0

(

1 +
x

n

)∣

∣

∣=x = 1 and 0 ≤ <x ≤ log2 n
}

Γ3 = Γ2

Γ4 =

{

z

∣

∣

∣

∣

|z| = z0

∣

∣

∣

∣

1 +
log2 n + i

n

∣

∣

∣

∣

and arg

(

1 +
log2 n + i

n

)

≤ | arg(z)| ≤ π

}

.

(2.7)

The case d = 1. Set γ = Γ1∪Γ2∪Γ3. It will turn out that the main contribution of the integral
comes from γ. Expanding (2.2) into a series yields

φkn(s) = 1 +
1

2πian

∫

Γ

∑

m≥1

(wβ)m αk

β

(

1 − αk

α(1 − α)

)m−1
dz

zn+1

(

1 + O
(∣

∣

∣

∣

1 − α2k

1 − α2

∣

∣

∣

∣

|w|2
))

with w = (eis/cn − 1)a(z). We will investigate the contribution of each term in the above sum
when integrating over γ. If we fix m, then substituting z = z0

(

1 + x
n

)

on γ and applying (2.4),
(2.5) and

β =
σ2

2τ
+ O

(
√

∣

∣

∣

∣

1 − z

z0

∣

∣

∣

∣

)

.

leads to

(wβ)m αk

βαm−1

(

1 − αk

1 − α

)m−1

=

(

isσ2

2cn

)m
(
√

n)m−1τ

σm+1(
√

2)m−3
·
e−λ

√
−x
(

1 − e−λ
√
−x
)m−1

(
√
−x)m−1

×
(

1 + O
(
√

∣

∣

∣

x

n

∣

∣

∣

)

+ O
(

1

cn

))

(2.8)
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where k = κcn and λ = σ
√

2κ cn√
n
. Moreover, one easily derives

e−λ
√
−x(1 − e−λ

√
−x)m−1 =

[

dm−1

dym−1
e−y

√
−x

]

y=0

(−1)m−1λm−1

+

[

dm

dym
e−y

√
−x

]

y=0

(−1)m+1(m + 1)λm

2
+ O

(

λm+1
)

for λ → 0. Hence (2.8) becomes

(wβ)m αk

βαm−1

(

1 − αk

1 − α

)m−1

=

(

(

isκσ2

2

)m
2τ

κσ2cn
−
(

isκσ2

2

)m
τ
√

2(m + 1)

σ
√

n

√
−x

)

×
(

1 + O
(

cn√
n

)

+ O
(

log n√
n

))

. (2.9)

Let us extend Γ2 and Γ3 to infinity and denote the integration contour obtained in this way
γ′. Note that the right-hand side in (2.9) is O

(√
−x
)

and besides, we have on γ′

dz

zn+1
=

dx

zn
0 n

(

1 +
x

n

)−n

=
dx

zn
0 n

e−x

(

1 + O
(

log4 n

n

))

(2.10)

Thus the integrand remains bounded and we may substitute γ by γ ′ due to the dominated
convergence theorem. Observing that

1

2πi

∫

γ′

(−s)−αe−s ds =
1

Γ(α)

implies that the first term in (2.9) vanishes and we get

(wβ)m αk

βαm−1

(

1 − αk

1 − α

)m−1

=

(

isκσ2

2

)m
(m + 1)τ

σ
√

2πn

(

1 + O
(

cn√
n

)

+ O
(

log n√
n

))

.
(2.11)

Summing up over m, (2.11) in conjunction with (2.10) and

an =
τ

σzn
0

√
2πn3

(

1 + O
(

1

n

))

would give (2.6) for d = 1 provided that we can keep the errors small.

Error estimates. Let us first have a look at the errors occurring when summing up: Note
that (2.11) only holds for m = o(min(cn,

√
n/cn)). Thus we have to split the sum at M =

o(min(cn,
√

n/cn)). Now observe that
∣

∣

∣

∣

wβ

(

1 − αk

(1 − α)α

)∣

∣

∣

∣

∼
∣

∣

∣

∣

isκσ2

2

∣

∣

∣

∣

< 1

for sufficiently small s and therefore we obtain

∑

m>M

(wβ)m

(

1 − αk

(1 − α)α

)m−1

= o

(

max

(

1

cn
,

cn√
n

))

and so summing up does not cause any problems.
What remains to be done is to estimate the contribution of Γ4. In order to do this we turn

back to (2.1). Obviously, we have
[

∂

∂x2
yk(x1, x2)

]

x1=z,x2=a(z)

= αk

and Taylor’s theorem yields

yk(z, eis/cn) = a(z) + αka(z)w + O
(∣

∣w2a(z)2
∣

∣

)

.
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The first term satisfies

1

2πian

∫

γ′∪Γ4

a(z)
dz

zn+1
= 1

and hence does not produce any errors. In order to estimate the remainder observe that due to
ζ = 1 and (2.5) the maximum of |α| on Γ4 is attained for z ∈ γ ∩ Γ4. Then

αk ∼ exp

(

−κσ
√

2
cn√
n

√
−x

)

and thus αk = O (1) for z ∈ Γ4. Finally, the fact that |z−n−1| ∼ e− log2 n for z ∈ Γ4 shows the
contribution of Γ4 to be negligibly small and completes the proof for d = 1.

The case d > 1. Let us first consider the case d = 2. So we have to deal with the generating
function yk(z, uyh(z, va(z))) with k = κcn, h = ηcn, and u = eis/cn , v = eit/cn . If z ∈ γ, then
(2.2) and (2.9) imply

yh(z, va(z)) = a(z) + Rh(v, z)

where

Rh =







itτ/cn

1 − itησ2

2

− τ
√

2

σ
√

n







1
(

1 − itησ2

2

)2 − 1







√
−x







(

1 + O
(

cn√
n

)

+ O
(

log n√
n

))

and yk(z, uyh(z, va(z))) = a(z) + Rk(u, v, z) where Rk is obtained from (2.9) by substituting w
by w+Rh. Due to the fact that Rh = A+Bλ

√
−x+O

(

λ2
)

and that the left-hand side of (2.9)

has a similar form, say wm
(

P + Qλ
√
−x + O

(

λ2
))

, where λ = σ
√

2κ cn√
n
, we have to compute

φkhn(s, t) =1 +
1

2πinanzn
0

∫

Γ

∑

m≥1

(

w + A + Bλ
√
−x + O

(

λ2
))m (

P + Qλ
√
−x + O

(

λ2
))

e−x dx

=1 +
1

2πinanzn
0

∫

Γ

∑

m≥1

(

(w + A)mP + ((w + A)mQ + m(w + A)m−1BP )λ
√
−x

+ O
(

λ2
))

e−x dx

=1 − σ2κcn

τ

∑

m≥1

(

(w + A)mP + ((w + A)mQ + m(w + A)m−1BP )
)

(

1 + O
(

cn√
n

))

.

Then we insert

A =
itτ/cn

1 − itησ2

2

, B = − τ

κcnσ2







1
(

1 − itησ2

2

)2 − 1







and

P =
2τβmcm−1

n κm−1

σ2
, Q = − (m + 1)τβmcm−1

n κm−1

σ2

and use

w =
isτ

cn
+ O

(

1

c2
n

)

.

Taking the limit for n → ∞ we directly obtain (2.6) as desired.
The error estimates can be done in the same way as in the case d = 1 and the cases d > 2

follow immediately from the above considerations by induction.
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2.2. The fdd’s of Bessel 3 local time. In order to complete the weak limit theorem contained
in Theorem 1.1 we have to identify the distributions in Theorem 2.1 as those of the local time
of a two-sided three-dimensional Bessel process. This is done by the following

Proposition 2.1. The characteristic function of the joint distribution of l(κ1), . . . , l(κd) is
given by

E [exp(it1l(κ1) + · · · + itdl(κd))] =
1

(1 − 2i(t1 + t2/Ã2)κ1)2Ã2
2 · · · Ã2

d

(2.12)

with

Ãj =







1 − 2i
(

tj +
tj+1

Ãj+1

)

(κj − κj−1), j = 2, . . . , d − 1,

1 − 2itd(κd − κd−1), j = d.

As in (2.1) the empty product occurring for d = 1 on the right hand side has to be set equal to
1.

Proof. By the Ray-Knight theorem the considered local time process is the square of a Bessel
4 process (see [19, p. 38]). These processes are well studied: Let BESQ4

x(t) denote the square of
a Bessel 4 process started at x ≥ 0. Then [18, Chap. XI, Corollary 1.4] tells us that for t > 0
the Feller semi-group of BESQ4

x(t) has a density in y equal to

qt(x, y) =















1

2t

√

y

x
exp

(

−x + y

2t

)

I1

(√
xy

t

)

, x > 0,

1

(2t)2
y exp

(

− y

2t

)

, x = 0,

where I1 denotes the first Bessel function. Due to the Markov property we have

E
[

eit1l(κ1)+···+itdl(κd)
]

=

∫

· · ·
∫

eit1x1+···+itdxdqκ1
(0, x1)qκ2−κ1

(x1, x2) · · · qκd−κd−1
(xd−1, xd) dx1 · · · dxd

and as the Laplace transform of qt(x, y) satisfies Ls(qt(x, y)) = (1 + 2st)−2 exp(−sx/(1 + 2st)),
it is easy to derive (2.12) from the above formula.

3. Tightness

In this section we will show that the sequence of random variables ln(t) = c−1
n Ln(cnt), t ≥ 0,

is tight in C[0,∞). By [12, Theorem 4.10] it suffices to establish tightness in C[0, T ] for all
T > 0 and thus we may confine ourselves with considering Ln(t), 0 ≤ t ≤ Acn, where A > 0 is
an arbitrary real constant.

[2, Theorem 12.3] tells us that we only have to show that Ln(0) is tight (this is obvious) and
that we have to find α > 1, β ≥ 0, and C > 0 such that

P {|Ln(ρcn) − Ln((ρ + θ)cn)| ≥ εcn} ≤ C
θα

εβ
(3.1)

holds uniformly for 0 ≤ ρ ≤ ρ + θ ≤ A. In order to derive (3.1) we need a slightly sharpened
version of [4, Theorem 6.1]:

Theorem 3.1. There exist constants C > 0 and D > 0 such that

E (Ln(r) − Ln(r + h))
4 ≤ C h2r2 (3.2)

holds for all positive integers n, r, h with r, h ≤ D
√

n.

Obviously Theorem 3.1 proves (3.1) for α = 2 and β = 4 if ρcn and θcn are non-negative
integers and ρ and ρ + θ are bounded (which is satisfied). However, in the case of linear in-
terpolation it is an easy exercise (see [11] or [10]) to extend (3.1) to non-integer ρcn and θcn

(possibly with a different constant C).
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Remark. As in the case cn =
√

n which was treated in [4] it is also not sufficient to consider

the second moment E (Ln(r) − Ln(r + h))
2
.

The proof of Theorem 3.1 is essentially a slight modification of that of [4, Theorem 6.1]. The
two-dimensional distribution of the number of nodes in layer r and r + h is given by

P {Ln(r) = k, Ln(r + h) = l} =
1

an
[znukvl]yr(z, uyh(z, va(z)))

and thus

P {Ln(r) − Ln(r + h) = m} =
1

an
[znum]yr(z, uyh(z, u−1a(z))).

Consequently

E (Ln(r) − Ln(r + h))
4

=
1

an
[zn]Hrh(z),

where

Hrh(z) =

[(

∂

∂u
+ 7

∂2

∂u2
+ 6

∂3

∂u3
+

∂4

∂u4

)

yr(z, uyh(z, u−1a(z)))

]

u=1

. (3.3)

Since an ∼ (τ/
√

2πσ2)z−n
0 n−3/2, (3.2) is valid if

[zn]Hrh(z) = O
(

z−n
0

h2r2

n3/2

)

(3.4)

holds uniformly for r, h = o (
√

n ).
The proof is based on two lemmata. The first one is the well-known transfer lemma of Flajolet

and Odlyzko [8]:

Lemma 3.1. Let F (z) be analytic in ∆ defined by

∆ = {z : |z| < z0 + η, | arg(z − z0)| > ϑ},

where z0 and η are positive real numbers and 0 < ϑ < π/2. Furthermore suppose that there
exists a real number β such that

F (z) = O
(

(1 − z/z0)
−β
)

(z ∈ ∆).

Then

[zn]F (z) = O
(

z−n
0 nβ−1

)

.

Lemma 3.2. Set α = zϕ′(a(z)). Then for n → ∞, r = ρcn and any fixed positive integers k, l
and ki, i = 1 . . . l, we have

[zn]αr = O
(

z−n
0

r

n3/2

)

(3.5)

[zn]
αr

1 + α + α2 + · · · + αk
= O

(

z−n
0

r

n3/2

)

(3.6)

[zn]
αr

∏l
i=1(1 + α + α2 + · · · + αki)

= O
(

z−n
0

r

n3/2

)

(3.7)

uniformly for ρ = O (1).

Proof. As usual we evaluate the coefficient by means of Cauchy’s integral formula using the
integration contour (2.7). By (2.5) we have on γ

αr = exp

(

−rσ
√

2

√

−x

n

)

(

1 + O
(

log2 n

n

))
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and thus

1

2πi

∫

γ

αr dz

zn+1
=

1

2πizn
0 n

∫

γ′

exp

(

−rσ
√

2

√

−x

n
− x

)

dx

(

1 + O
(

log2 n

n

))

+ O
(

e− log2 n
)

=
rσ√

2πn3zn
0

exp

(

−r2σ2

2n

)(

1 + O
(

log2 n

n

))

= O
(

z−n
0

r

n3/2

)

which proves (3.5) by keeping in mind that the contribution of Γ4 is O
(

e− log2 n
)

due to the

fact that the maximum on Γ4 is attained for z ∈ Γ4 ∩ γ.
In order to prove (3.6) we employ the same argument and immediately obtain that the

contribution of Γ4 is O
(

log n · e− log2 n
)

. Moreover, on γ we have

1

1 + α + α2 + · · · + αk
=

1

k + 1

(

1 +
σ
√

2
∑k

i=1 i

k + 1

√

−x

n

)

(

1 + O
(

log2 n

n

))

.
(3.8)

Now using

1

2πi

∫

γ′

√
−xe−λ

√
−x−x dx =

1

4
√

π
(2 − λ2) exp

(

−λ2

4

)

it is easily seen that the second term in (3.8) yields a coefficient of order o(r/n3/2) and the
contribution of the first term is corvered by (3.5). The proof of (3.7) is now immediate.

Proof. (Theorem 3.1) With α = zϕ′(a(z)), β = zϕ′′(a(z)), γ = zϕ′′′(a(z)), and δ = zϕ′′′′(a(z))
we have (for details see [4, Lemma 6.1])

∂yr

∂u
(z, 1) =αr,

∂2yr

∂u2
(z, 1) =

β

α
αr 1 − αr

1 − α
,

∂3yr

∂u3
(z, 1) =

γ

α
αr 1 − α2r

1 − α2
+ 3

β2

α
αr (1 − αr)(1 − αr−1)

(1 − α)(1 − α2)
,

∂4yr

∂u4
(z, 1) =

δ

α
αr 1 − α3r

1 − α3
+
(

2βγ(2 + 5α + 5αr + 3αr+1) + 3β3/α
)

αr (1 − αr)(1 − αr−1)

(1 − α2)(1 − α3)

+ 3β3(1 + 5α)αr (1 − αr)(1 − αr−1)(1 − αr−2)

(1 − α)(1 − α2)(1 − α3)
.

Setting Yrh(z, u) = yr(z, uyh(z, u−1a(z))) and evaluating the terms in (3.3) gives

∂

∂u
Yrh(z, 1) =a(z)αr(1 − αh), (3.9)

∂2

∂u2
Yrh(z, 1) =a(z)2

β

α
αr 1 − αr

1 − α
(1 − αh)2 + a(z)2αr+h β

α

1 − αr

1 − α
, (3.10)

∂3

∂u3
Yrh(z, 1) =a(z)3αr

(

γ

α

1 − α2r

1 − α2
+ 3

β2

α

(1 − αr)(1 − αr−1)

(1 − α)(1 − α2)
(1 − αh)3

)

+ 3a(z)3
β2

α2
αr+h (1 − αr)(1 − αh)2

(1 − α)2
− 3a(z)2αr+h β

α

1 − αh

1 − α

− a(z)3αr+h

(

γ

α

1 − α2h

1 − α2
+ 3

β2

α

(1 − αh)(1 − αh−1)

(1 − α)(1 − α2)

)

, (3.11)
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and

∂4

∂u4
Yrh(z, 1) = a(z)4αr

(

δ

α

1 − α3r

1 − α3
+
(

2βγ(2 + 5α + 5αr + 3αr+1)

+ 3β3/α
) (1 − αr)(1 − αr−1)

(1 − α2)(1 − α3)
+3β3(1 + 5α)

(1 − αr)(1 − αr−1)(1 − αr−2)

(1 − α)(1 − α2)(1 − α3)

)

(1 − αh)4

+ 7a(z)4αr+h

(

γ

α

1 − α2r

1 − α2
+ 3

β2

α

(1 − αr)(1 − αr−1)

(1 − α)(1 − α2)

)

β

α

1 − αh

1 − α
(1 − αh)2

− 12a(z)4αr+h β2

α2

(1 − αr)(1 − αh)

(1 − α)2
+ 3a(z)4αr+2h β3

α3

(1 − αr)(1 − αh)2

(1 − α)3

− 4a(z)4αr+h β

α

1 − αr

1 − α

(

γ

α

1 − α2h

1 − α2
+ 3

β2

α

(1 − αh)(1 − αh−1)

(1 − α)(1 − α2)

)

(1 − αh)

+ 12a(z)2αr+h β

α

1 − αh

1 − α
+ 8a(z)3αr+h

(

γ

α

1 − α2h

1 − α2
+ 3

β2

α

(1 − αh)(1 − αh−1)

(1 − α)(1 − α2)

)

+ a(z)4αr+h

(

δ

α

1 − α3h

1 − α3
+
(

2βγ(2 + 5α + 5αh + 3αh+1) + 3β3/α
) (1 − αh)(1 − αh−1)

(1 − α2)(1 − α3)

+3β3(1 + 5α)
(1 − αh)(1 − αh−1)(1 − αh−2)

(1 − α)(1 − α2)(1 − α3)

)

. (3.12)

Now observe that (by noting that in the dominating part of the integration contour the
functions a(z), β, γ, δ are asymptotically equal to constants) all terms occurring in the above
expressions have the form

f(z) = Cαm0(1 − α)l1

l2
∏

i=1

(1 + α + · · · + αmi)

l3
∏

i=1

1

1 + α + · · · + αki
.

where mi = o(
√

n ) and the other quantities are fixed constants. If l1 > 0 we will apply
Lemma 3.1. We have by (2.5) αr = O (1) in ∆ and also (1 + α + · · ·+ αki)−1 = O (1) and thus
Lemma 3.1 can be directly applied and yields

[zn]f(z) = O
(

z−n
0 n−1−l1/2

l2
∏

i=1

mi

)

. (3.13)

In the case l1 = 0 we use Lemma 3.2 and get

[zn]f(z) = O
(

z−n
0 n−3/2 ∂

∂α
αm0

l2
∏

i=1

(1 + α + · · · + αmi)

∣

∣

∣

∣

∣

α=1

)

. (3.14)

Applying (3.13) and (3.14) to (3.9)–(3.12) we obtain

[zn]Hrh(z) = O
(

z−n
0

(

r3 + r2h2 + rh3 + h4

n3/2
+

r2h3

n2
+

r2h3

n5/2
+

r3h4

n3

))

= O
(

z−n
0

r3 + r2h2 + rh3 + h4

n3/2

)

+ o

(

z−n
0

r2h2

n3/2

)

which implies (3.4) and completes the proof.
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