ON THE CONTOUR OF RANDOM TREES

BERNHARD GITTENBERGER

ABSTRACT. Two stochastic processes describing the contour of simply generated random trees
are studied: the contour process as defined by Gutjahr and Pflug [9] and the traverse process
constructed of the node heights during pre-order traversal of the tree. Using multivariate gener-
ating functions and singularity analysis the weak convergence of the contour process to Brownian
excursion is shown and a new proof of the analogous result for the traverse process is obtained.

1. INTRODUCTION

Let A be a class of plane rooted trees and define for T' € A the size |T| by the number of nodes
of T. Furthermore there is assigned a weight w(T") to each T' € A. Let a,, denote the quantity

an = Z w(T)

|T|=n

Besides, let us define the generating function (GF) corresponding to A by a(z) = >, <, an2™.
According to Meir and Moon [11] we call a family of trees simply generated if its GF satisfies a
functional equation of the form

a(z) = zp(a(z)), (1.1)

where p(t) = 3,50 @it® with ¢; > 0,9 > 0.

Let 14 (T) denote the number of nodes v € T' with outdegree k (the outdegree of v is the number
of edges incident with v that lead away from the root). Then we have for each simply generated
tree T' the relation

w(T) = [T o™, (1.2)

k>0

Consider a simply generated tree T of size n. The height hr(x) of a node € T is defined to be
the number of edges of the uniquely determined path that connects x with the root. Let hy(m)
denote the height of the m-th leaf of T supposing that the leaves are enumerated from left to
right. In the following we will assume that for each n the set of all trees of size n is equipped with
a probability distribution according to the weights (1.2). Then hr(m) becomes a random variable
which we denote by H,(m). If we define the continuation of H,(m) by linear interpolation, i.e.

Hy(x) = (lz] +1—2) Hy (|2]) + (2 = [z]) Hn ([2] +1),
then we get a continuous stochastic process. The scaled process

X, (t) = %ﬁn(m), 0<t<I,
is called the contour process.
We show that for simply generated trees this process converges weakly to Brownian excursion
(for the definition and basic properties see [10, pp.75]):
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Theorem 1.1. Let W (t) denote Brownian excursion of duration 1. Furthermore assume that
©(t) has a positive or infinite radius of convergence R and d = ggT{i|p; > 0} = 1. Moreover
suppose that the equation

te'(t) = (1) (1.3)
has a minimal positive solution T < R. Define
2 _ T(r)
o(7)

Then the contour process Xn(t) converges weakly to Brownian excursion, i.e.

O ©o w 2 +
0 ) v, 2 )
X, <<p(T) t> UW (t) (1.4)
in C[0,1].

For the class of binary trees (1.4) was established by Gutjahr and Pflug [9] but their method does
not seem to be transferable to the general case, because it relies on exact enumeration formulae
which are only available for binary trees.

Remark 1. The case d > 1 can be treated similarly, but is technically more involved. The only
difference concerning the results is that the limit theorems hold only for n =1 mod d and that the
limiting distribution in local limit theorems has to be multiplied by d. Thus we restrict ourselves
tod=1.

Remark 2. Simply generated trees may be considered as trees associated to Galton-Watson branch-
ing processes. In this context (1.3) means that the branching process is critical and o2 equals the
variance of the offspring distribution. Thus the above theorem yields also a limiting distribution
result for branching processes conditioned on the total progeny. For a more detailed discussion of
the connection between trees and branching processes see Aldous [2].

In order to define the traverse process we have to use the tree T defined to be the tree we
obtain by attaching T to a single node which serves as the root of T'. Now consider the following
traverse procedure:

(1) If the current node is v, choose the left-most successor of v that has not been traversed yet
(v is called successor of v if it is adjacent to v and hr(v') > hp(v)). If no such successor
does exist, go back to the previous node.
(2) Start at the root and apply step (1) to its successor.
Since in (1) choosing the left-most successor v’ is equivalent to choosing the edge (v, v’), each edge
is traversed twice and thus the number of steps is 2n. Let v; denote the node we arrive at after
i steps and define h,, (i) = hr(v;), i = 0,...,2n. Assuming again the probability model induced
by the weights (1.2) h,(¢) becomes a stochastic process H, (i) and as above we continue H, (i) by
linear interpolation. The traverse process is defined by the scaled process

1
X, ()= —H,(2nt), 0<t<1.
(1) = = Ha(2n)
The GFs involved in the investigation of X,,(t) and X, (t) are closely related and thus we rather
easily obtain from (1.4):
Theorem 1.2. Under the assumptions of Theorem 1.1 the traverse process X, (t) converges weakly

to Brownian excursion, i.e.

X, (t) % EW+(t)

o
in C0,1].

This limit theorem was established by Aldous [2] by means of probabilistic techniques (see
[1, 3]) and under the slightly weaker condition 02 < co. Our approach yields a new proof of this
result.

The paper is organized as follows: In section 2 we give a brief description of the basic methods
used in the following sections, especially the combinatorial background. Section 3 is devoted to the
proof of Theorem 1.1. Therefore we have to show the weak convergence of the finite dimensional
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distributions and the tightness of the process (see Billingsley [4]). In order to settle the first part
of the proof we first consider the three dimensional distributions where we prove an invariance
property which enables us to simplify the rest of the proof essentially. The last section provides a
brief discussion of the traverse process.

2. BAasic METHODS

In order to derive the above mentioned limit theorems we use the concept of combinatorial
constructions introduced by Vitter and Flajolet [12]: Let o denote a node and A a simply generated
family of trees. Then every element in A has the form

{o} x Ax - x A

Taking into account that we are considering weighted trees we have to assign the weight ¢; to the
above expression, if there are i factors A. Thus we get the following symbolic recursion:

A=g@o-{o} U pr-{o} x AU pg-{o} x AXAU -

Using the fact that the operations U and x can be translated into sum and product of the corre-
sponding GFs we obtain the functional equation (1.1).

Now let 6(T) be a characteristic of the tree T we are interested in. Then we mark the corre-
sponding substructures of T which is equivalent to introducing a new variable in the GF. Thus we
get a bivariate GF

The distribution of 8 is given by
P{O(T) =m: |T|=n} =2
a

n

where @, is the coefficient of z"u™ in a(z,u), denoted by [2"u™]a(z,u). We will calculate this
distribution by deriving multivariate asymptotic expansions for ag, with uniform error terms.
Thus we get a local limit theorem and due to uniformity this implies the corresponding weak limit
theorem.

Example . 6(T) equals the number of leaves of T'. If a marked node is represented by e and the
family of all trees with marked leaves is denoted by ), then we get the recursion

Y =o-{o} U {o} x (),
where
DY) =1 {0} xY U pp-{o} xYxY U -
Due to the correspondence

O «— Z

® — Uz
translating into GF's gives
y(z,u) = poz(u—1) + 20(y(z, u)). (2.1)
For further demonstrations of these marking techniques we refer to [7].

In order to get asymptotic expansions we use Cauchy’s integral formula combined with singular-
ity analysis following the ideas of Flajolet and Odlyzko [8]. They used the fact that the coefficients
of the power series of an analytic function are essentially determined by the behaviour of the
function near its dominant singularities, i.e. those on the circle of convergence, and proved the
following theorem:

Theorem 2.1 ([8]). Let f(z) be analytic in the domain
A ={z||z] < 20+, |arg(z — 20)| = U},
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where zg,mn > 0 and 0 < ¥ < T. Furthermore let a be a real number satisfying o ¢ {0,1,2,...}
Then
1

2inot I (—a)

F(2) ~ (1z)a forz—zin A = ["]f(2) ~

20
Analogous formulae hold for O and o instead of ~.

Remark. Let y(z,u) be the function defined by (2.1) and ymn = [u™2"]y(z,u). Then it can be
shown that %=z satisfy a central limit theorem with mean

ai Z MYn, = %n +0(1) (2.2)
n m>0
and variance
vo @b @e(n) )
(3~ o~ s ) OO 23

where 7 is the solution of (1.3) (see [5, 6]). If L,(T) denotes the number of leaves of a random
tree T of size n, then (2.2) and (2.3) imply

L, (T
lim ( ) _ 40
n—os o(7)

Thus the restriction of X,,(¢) to the interval [O, w‘?g)] is justified.

3. THE CONTOUR PROCESS

3.1. Basic functions and their local expansions. Let A be a family of simply generated trees
with GF defined by (1.1) and m; < mg < --- < m,,. Consider the set Fi,m,koms...kymyn S A of

all trees T with n nodes satisfying BT(mi) =k;fori=1,...,p. Set

aklml...kpmpn = Z w(T)7

TE€Fkymy...kpmpn
where w(T') denote the weight defined by (1.2). Then the finite dimensional distributions of H,,(z)
are given by
aklml...kpmpn
P{Hn(ml) = kh .. .7Hn(mp) = kp} -

2%
Thus we need asymptotic expansions for Akymy ... kpym,n a0d a,. When setting up the GF's it turns
out that they are composed of three basic functions: Obviously the function y(z,u) defined by
(2.1) plays the most important role. The other two functions are composed of y(z, u):

d1(z,u,v) = ZZ% Z y(z,u) 1y (2, v)72
i>1  jitje=i—1
L olem) — ely(zv)
y(z,u) - y(z,v)

and
¢2(z,u,v,w) = ZZ‘)Oi Z y(zﬁu)jly(zav)hy(sz)js
122 jitjatjz=i—2

Remark. These functions originate from the following setup: Consider a node to which we attach
i — 1 trees and a marked leaf b. Then leaves of the trees left from b contribute to the number
of b while the others do not. Thus the trees left from b correspond to the GF y(z,u) and the
remaining trees to y(z,1). Summing up over all node degrees and keeping in mind that nodes
of degree i are weighted by ¢; we get the GF zudi(z,u,1). If we replace the marked node by
more complicated structures we will get powers of ¢; or ¢o. Of course there may occur functions
@3, 4, ... (it is obvious how to define them), if we mark more than two leaves, but they prove to
be of no importance for the asymptotics in the following.

In order to proceed we need local expansions of these functions near their singularities. We have
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Lemma 3.1 ([6]). Let ¢(t) have a positive or infinite radius of convergence R. Furthermore
assume that d = ggT{i|l@; > 0} = 1 and that the equation t¢'(t) = (t) has a minimal positive
solution T < R. Then for an & > 0 there exists a uniquely determined analytic function z = f(u)
on lu—1| < & such that f(1) = and y(f(u),u) satisfies

y = poz(u—1) + zp(y),
1=2z¢'(y).

@'(7)

z = f(u) is the only singularity of y(z,u) in the domain |z| < zo + &, arg (1 — fzu)> # m, where

zo = f(1). Moreover, inside the domain {(z,u) tz—f(u)] <e, arg (1 — f(zu)) # 7r} y(z,u) ad-
mits the local representation

z
z,u) = g(z,u) — h(z,u), /1 — ——,
) = ge) = W)y 1= 5
where g(z,u) and h(z,u) are analytic functions satisfying
2¢(7)
1) = 1) = .
9(207 ) T and h(Z(), ) SDH(T)

For d > 1 analogous representations in the vicinity of f(u)exp (] 27”) 0 <j<d hold.

Corollary 1. Assume d = 1. Then a(z) has one and only one singularity z = zo on the circle of
convergence. Furthermore the local representation

a(z) =7 -T2 1%0(‘1

2
z
Z0 )

20

holds near z = zg

Corollary 2. For a,, = [z"]a(z) we have

an = W (1 +0 (i)) (3.1)

Remark. Tt is possible to exchange the roles of z and u in the theorem, that means we have also
a local representation of the form
- = u
y(zvu) = g(z,u) - h(z,u) ==, (32)
f(2)
where §(z,u), h(z,u), and f(z) are analytic functions.
Using this lemma local expansions for the above mentioned basic functions can easily be derived:

Lemma 3.2 ([6]). Set z = 20(1+ %) and u; = 1+ 25, i = 1,2,3, where ¢ < & “‘;ET) <1-

ms

for arbitrary € > 0. Furthermore let |t| < nn and |s;| < nm; for sufficiently small 17 > 0. Then for
n — oo the following local expansions hold

oo f2e) [t o s Isil [l
y(Z,ul) \/90//(7_)\/ n <,0(7’)m1+o<m1 + n>

A O L b %0 s2
Oz we) =1 ﬁ(\/ n @(T)m1+\/ n w(T)m2>
+o(ﬂ+@+'s—2>, (33

n ma mao

zo" (T t S S S
¢2(Z,U1,U27U3):L()+O \/%+|_1|+M+|_3 ,

2 miq mo ms
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F1GURE 1. The possible shapes of Ty for p = 3

Since expressions like those in the previous lemma will frequently occur in the following sections
we will from now on use the abbreviation

n

3.2. An invariance property. Drmota [6] used the above setup to determine the one and two
dimensional distributions of the contour process. The method works in principle for higher di-
mensional distributions, too, but the expressions obtained in these cases get too complicated to
cope with. If we combine this method with an idea of Gutjahr and Pflug [9] that works for binary
trees, we will achieve an essential simplification. The idea is to introduce an additional quantity
l; which is defined as follows: Consider a simply generated tree T" where the leaves with numbers
mp < mg < --- < my are marked. Then the paths connecting the root with the m;-th and the
m;y1-st leaf, resp., have at least the root in common. Let V; denote that of the common nodes
which has maximal height and define I; := hp(V;).
Let us now consider the case p = 3. Define the GF

n_.m m m
Bioy 1 kaloks (2, U1, U2, ug) = E bkymalykamalakgman? Uy Uy “Usg °,

n,mi,ma,ms>0
where bi,m, 1, kymaloksmsn denotes the sum of weights of all trees with n nodes and satisfying
iLT(mi) = k;,t = 1,2,3, and hp(V;) = [;. For setting up this GF we have to distinguish three
cases: l; < s, I3 > lg, and [} = l3. The third one is asymptotically negligible since it corresponds
to a hyperplane in R® in the limit case and thus it has no influence on the density of the limiting
distribution (for a detailed argumentation see [9]).

For convenience introduce a tree Ty consisting of mi,ms, m3, V1, V2, and the root of T. The
edges of Ty are the paths that connect its nodes in T (see Figure 1). Now consider a node x of
T which lies on the edge of Ty which connects the root with V;. As mentioned in the previous
section, the leaves of all trees which are rooted in z and lying left from the path containing x
contribute to the number of mq, meo, and ms while leaves of those trees lying on the right-hand
side yield no contribution. Thus the subgraph of T induced by x and all its descending trees not
lying in T corresponds to the GF ¢1(z, ujugug, 1). If x lies on a different path, we have to observe
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which of the leaves my, msy, and mg are left or right from the trees rooted in z. For instance, if
x € (V1, Va), then the corresponding GF is ¢ (z, ugug, 1) (where we assumed Tp to be the left-most
tree in Figure 1). Thus each edge of Tj corresponds to a power of ¢, according to its length and
with suitably chosen arguments. The branching points V7 and V5 yield factors ¢o due to the fact
that we have to distinguish three classes of trees rooted at V7 or Vo: The ones left from all edges of
Ty, the ones right from those edges and the ones lying in between. This yields e.g. for V5 the GF
¢2(z, ugus, us, 1). And finally, we have to take into account the leaves mq, mo, and mg, yielding
the GFs @gzujusus, pozusus, wozus, respectively. Therefore we obtain for I3 < [y

Bl kalaks (2, U1, Us, uz) = 22 urusuiee (2, urusus, usus, 1)¢a(z, usus, us, 1)

x 1 (z, uruguz, 1) ¢1 (2, urugug, ugugz) ~ =1

X (151 (27 UgUs, 1)12—11—1¢1 (Z, usus, u3)k2—l2_1
x ¢1(z,ug, 1)kt
Analogously we get the GF in the case I; > [5:

2
Biy 11 kaloks (2, U1, U2, uz) = @z uiuzuide (2, uuous, uz, 1) o2 (2, uiusus, usus, uz)

x ¢1(z, uruguz, 1) ¢y (2, urugus, uguz ) 1171

X 61 (2, urugus, us)1 2y (2, ugug, ug)F2 11

X ¢1 (Z7 us, 1)’6371271

If we consider random trees, then the heights of the leaves mi,ms, m3 as well as the path
lengths [y,l; become random variables. Let us denote this multivariate random variable by
(Ky, Ly, Ko, Lo, K3). Its distribution is determined by

[zﬂugnlugwugn ]Bklllkzlzk?, (Z’ uy, u2, U3)-

This coefficient can be calculated asymptotically by means of Cauchy’s integral formula. The
integration path is chosen in that way that one part lies close to the singularity (this part yields
the main term) and the remaining part is asymptotically negligible (for details see next section).
Thus the limiting distribution is completely determined by the local behaviour of the GF.

Let k;, ¢ = 1,2,3, and [;, j = 1,2, be proportional to \/n and m;, i = 1,2,3, satisfy the
condition € < %% < 1 — ¢ for arbitrary ¢ > 0. Using Lemma 3.2 and the fact that k; — 1 ~ k;
and l; — 1 ~ [; it can be shown that By, koisks (2, U1, U2, uz) admits the local representation

%+() exp <\;§(11(0123 +c¢) 4+ (k1 — 1) (cr23 4+ c23) + (I2 — 1) (c23 + ¢)

+ (ko — l2)(ca3 + ¢3) + (ks — l2)(cs + C)))

t t
" 1+O<M (_IJr@Jr |s2| |53| Lo | LI |81| \82I |83|
noom (3.4)

for I; < ls and

3.5 11
% exp (—%(b(cms +¢) + (k1 — ) (123 + ca3) + (I3 — I2)(c123 + ¢3)

+ (k‘z — ll)(023 + Cg) + (kg — lg)(Cg + C)))

t
(rvo(ur (el el o)) o (it el Lo

mi ma ms mi ma ms

for I3 > Iy, respectively, where M = max(k1, ko, k3). The difference of the exponents is

(I1 —l2)(c123 +c—cag —c—c1a3 —c3 +ca3 +¢3) =0
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FIGURE 2. The chosen shape of Tj

and thus (3.4) also holds for the case I3 > Iz, that means that the local representation of
Bi 1y kaloks (2, U1, U2, ug) is invariant with respect to the shape of Tj. Generalizing the above con-
siderations we get

Lemma 3.3 (Invariance property). Let Bpi,. .k, 11, 1k, (2, u1...,u,) be the GF of (Ki,
Li,....,K,_1,Ly,_1,K,) and B, denote the set of all binary trees with p leaves where p is a fized
positive integer. Assume that Ty € B, and that the quantities k7, mi,i = 1,...,p, and I3,j =
1,...,p—1, are asymptotically proportional to n. Then for ||z —zo,u1 —1,...,up — 1||max = 0 (v/1)
there exists a local asymptotic representation of By, kprlp_1ky (z,u1...,up) that holds for all
Ty € Bp.

Proof. As the lemma is intended to simplify the proofs in the following section, we have to consider
the one special shape of Ty which is most convenient to work with and then show that the local
representation is invariant with respect to the shape of Ty. Thus we choose the one that satisfies
li <ly < --+ <, (according to Figure 2) in order to get rid of the usually unpleasant terms
min(l;, ;) and max(l;, ;) occurring in the GFs. This leads to the GF

p—1
B(z,u1, ... up) = phzPuguj - - - ub H [B1(2, 0 -+ Up, Uiy - uy) KT
i=1
X 1 (2, -, )T IO G (2w, w - 'up):|

X ¢1(27 upv ]-)kp_lpil_la

where we define ly = 0 and d;; the Kronecker delta defined by 6;; = 1—sgn|i—j|. Let z = 2 (1 + %)
and u; = 1 + 2= be chosen in such a way that the assumptions of Lemma 3.2 hold. Then we get

for k; = ki+/n and I; = A\;y/n the local representation

—1 —1
B(z,u o (22 @Y (S = 1) (e +
JULy - -, Up) = P20 5 €xp 2 ((ki = L) (Civop + Cit1,0 p)
1

1=

+ (li = lic1)(cip +¢)) + (kp = lp—1)(cp + C)))

[t <~ Il
x 1+O<Mp<n+;mi +0

where M), = max;<;<p k;.
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FIGURE 4. Zooming into A,

From this formula it is easy to see how the structure of Ty can be translated into the proper
terms of the exponent in the local expansion of the corresponding GF. We complete our proof by
induction on p. Note that the general shape of T has the form of Figure 3 where A, are trees
with A\, marked leaves such that 2321 A, = p. The GF corresponding to A, is a product of ¢;-
and ¢o-terms and by the induction hypothesis the local behavior is independent of the shape of
the underlying part of T which we denote by Tp,. Thus we may assume that Tj, is already “well
shaped”, i.e. as shown in Figure 4. By (3.5) the exponent in the expansion of the GF corresponding
to Ay U (Vay+da,s Vag+4a,_1+1) (where (4, 5) denotes the edge in Ty which connects 4 and j)
is given by

[(ki = 1) (Civop + Cit1,p) + (L = licr + 838011 (Lict — 1a,) (Ciop + CAL41,...0)]
i=A,_1+1

+ (ka, —la,—1) (CA,,p T CAL41,..p)
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where we defined for convenience A, = A1 + --- + A, and furthermore we have to set Ag := 0,
In, == la,_, and cp, 41 = c¢. Hence we have to show the following identity:

.....

q A,—1
Z [(kz —L)(ciwp iz, p)+ G —Lici + 00, +1(lici —1a,))(Cip + CA,,+1,...,p)]
v=1 |i=A,_1+1
—1

+ (ka, —lay—1) (cay,op +Cavttp) | + ) (I, —Iay—1) (CAv_i41,.p +©)
1

Q

v

p—1
= > (ki = lLi)(Cip + Cit1,...p) + (li = lic1)(Civp + )] + (kp = lp—1)(cp + ©).
1

Subtracting Zf;ll (ki = L) (Ciop + Cigr,...p) + (li = Liz1)cinp) gives

q A,—1
Z Z (i —lici 4 0ia,_+1(licr = Ia))eay 11, + (s = Iay) CAp_141,p
v=1 |i=A, 1+1
-1

+ (ka, —la, 1) (capp+ea,1p) |+ Ua, —la,—1) (ea,_i41,.p +©)
1

Q

174
q—1
[(ka, —1a,) (eay,p +en,+1,p) + (Ia, —la,—1) €A, )]
v=1

= kp(cp +¢) = lp-1¢p

and this can be easily checked. O

3.3. The finite dimensional distributions. Applying the substitution w; = k; + k;4+1 — 2l; on
(3.5) yields

200" (T p—1 o p—1
B(Z7u1’ . 7up) = (pgzg (%) exp <_ﬁ (Cl...pk’l + ZCiJ’,]V”’pwi + Ckp

i=1

reo(m(£5))) o

and by means of this formula we are able to prove

Theorem 3.1. Let ¢ > 0 and w; = k; + kiy1 — 2l;. Then we have uniformly for =+
w >e,j=1,....,p—1, ;Eg) - % <eand k; = O(yn), i =1,...,p, w; = O(y/n),
j=1....,p—1,

n, m m !
[2"ul™ ey *|B = Cokiwy -+ wp_1ky

X [m1(m2 —my)-- —Mp-1) ( ﬂ -
xexp<_a;;_( gt %:ﬁ_mp))
(o).
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%:w&gn&%yﬂ<%iﬁ0puaéwﬂ(ﬁ;ym

3p—1 3p/2
o T (N g (20 N
0 2rtl V2 (1)

Dividing (3.7) by a,, yields the following local limit theorem:

Corollary. Let k; = kj\/n+o(y/n) € N,j=1,...,p and wj = k; + kiy1 —2l; = wjy/n+o(y/n) €
N,j=1,...,p—1, satisfying |kj11 —kj| < w; < Kjp1+K;. Moreover assume %mj = pjn+o(n),
where 0 < g < --- < up < 1 and let W; denote the random variable K; + K;11 — 2L;. Then the

density

where

W W b,
1m1l1~~~k —_1m 711 71k mpn
P{Klzkla 1:w17"'aKp71:kp71a p*lzwpflaKp:kp}: = ap £ _—
n

of the random variable (K1, W1,...,Kp_1,W,_1, K;,) admits the following asymptotic expansion:

n<2p71)/2 bklmlll---k:p,lmpfllp,lkpmpn . 1 < g

3p
an CNGTE ﬁ) ey

xmmm—uﬂ~«w—uwou—mm*”
P 2
o2 K
Xexp | —— —|— L
8 ]Z —Hj-1 1 — Hp
+o(1) (3.8)
for n — oo. The error term is uniform in w;, i = 1,...,p — 1, and for k; € [a;,b;], bj > a; >0

and K11 —K; >e>0,7=1,...,p.

Now the finite dimensional distribution of the contour process, i.e. the distribution of
(Ka,...,K,), can be calculated. Due to uniformity of the error term it suffices to determine the
marginal density in (k1, ..., Kp) of (3.8). Doing this we obtain a multivariate Maxwell distribution
which actually coincides with that of Brownian excursion. Thus the following theorem holds:

Theorem 3.2. Let 7y, ... +, be the projection defined by
Tty ooty C[0,1] — RE
x(t) — (z(t1),...,z(tr))

Then the following limit theorem holds:

(5 (33)) = ()

Remark. Note that Theorem 3.1 and its corollary only provide the distributions at the vertices of
the polygon X,,(¢). Thus they imply a slightly different form of the above limit theorem: We have
to substitute X,,(¢) by the corresponding step function process X,, (|t]/n). However, by means of
the proof of tightness (see section 3.6) we are able to prove the theorem as we stated it (see end
of section 3).

3.4. Proof of Theorem 3.1: Determination of the main term. In order to prove Theorem
3.1 we use Cauchy’s integral formula

B(z,uq,. .., up)
Znum1'”ump B(z,ul,...,u / / ’ dzdu, ---du Uui.
[2"uf p"] P (27i) p'H 4 grtly it "U;n v " (3.9)
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with the following integration contour: Let z run through the contour I'g = I'g; UT'go U T g3 U g4
defined by

t
FOI:{Z:z0<1+—>’8‘Et<Oqu |t|:1}
n
t
FOQ—{z—z()(lJr>’St—1und0§%t§log2n}
n
Loz = To2
1 2 . 1 2 -
Fo4:{z o= 20|14+ 5 arg (HL"H) §|arg(z>|9},
n n

Note that while z is running through I'g the location of the singularity also changes. This fact has
to be taken care of when choosing the integration contour for the other variables. The location of
the singularity is determined asymptotically by the equations

t
g
n
o st
e(r)mp  n
¥o (Sp—l S_P)Jri:o
(1) \mp—1 ~ my n
] Sp— s t
ﬂ(_1+ cot p—1 + p)+_:0
o(1) \ma Mp—1 My n
as one can easily see by looking at (3.6). Thus as the integration contour of wi,...,u, we may

choose Fj = Fjl U Fjg U Fjg U Fj4 defined by

Lj = {Uj = (1 + S—JN%SJ < —Rj(sj41, -+, sp,t) and

m;

s+ Rj(sj1, - 8p,t) + Lj(sj41, - 585, )i] = 1}

Ss
Fjg = {Uj = <1+ —J>‘%Sj = —Ij(8j+1,-~' ,Sp,t)—‘rl,

m;

1 2 ) .
— Rj(5j11, -+, 5p,t) < Rs;j and |u;| < ’14_ log=m; +t }
mj
Py
PjS - {uj - (1+ _]>'%Sj = _Ij(sj+17"' 7Sp7t) _].7
mj
10g2mj+i
— Rj(sj41, -+ ,8p,t) < Rs; and |u;| < |1+ e
J
log® m; + i
Tjas =1 u|luj| =1+ ———"—| and argu, € [—7,arg z;3] U [arg z;o, 7] ¢,
J
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where
max <0, M%3‘&) ifj=p
n
Rj(sj41, 5 8p,t) = o .
ax (o,% (Mﬂ e L p_mn)> else,
(2ls} n mj41 myp
max <n2/3, o(7) @ot> if j=p
n
Ij(SjJrl"" 7sp7t): 70
max <n2/3, R (L'O(T) tm; + 1y +o 4+ Spmj>) else.
Yo n mj+1 myp

and zj;, denotes the point of I'j;, with maximal absolute value.
Remark. The functions R; and I; guarantee that the Hankel-like contours? F; =T Ul UTlYy3
follow the movement of the singularity while z,u;41,...,u, are varying. It can be shown that for
these variables moving away from the Hankel contour along I' 4 the singularity drifts out of the
circle determined by T'j4 and reaches a point # with |z| = 1+ Cn~'/% when one of the variables
Z,Uj41,.-.,Up arrives at distance n~1/3 from the Hankel contour. Thus the term n2/3 in the
definition of I; is justified.

Let us now consider the contribution of the Hankel integrals which yields the main term as we
will show in the next section. If we apply the substitutions z = z (1 + %)7 u; =1+ ;@_J] to (3.9)
and use the asymptotic expansion (3.6), then we get

—1
G [ oo (75 (4}
AT e exp | ———= Clu.pkl + Zci+17,,,7pwi + Ckp
(2mi)P+ V2 im1

r,r, I,
d dsy dt 1 &1
—t—81—~-~—8p>&---i— 1+(’) Mp __;’_Z_ ,
mp mi n n — My
j=1
where
1z p—1
Cp=ht™ (M) .
2
The shape of this integral suggests the substitution
¥o ¥o .. ¥o 1
__¥o 0 . 0 v @(T)m1 p(T)me e(r)mp n 51
o(T)my 1 0 %o . %o 1
0 @(T)m2 e(r)mp  n §2
wmy O op : g 1 sp
1 t ‘p(‘r)"n:l’ 'rlL
0 0 3 0 o 1L t

which finally leads to

P
Gy H/e*am/*vrﬁﬂj dv; /e*ap-%—l\/*_t*ﬁp-%—lt dt (1 ) <L)>
my - - mpn j:l’y_ \/ﬁ (310)

Yo

1According to Hankel’s representation of the Gamma function we will refer to the integration contour starting
at e2™ 00, passing the origin clockwise and returning to +oco as Hankel contour. Similarly we will use the attribute
Hankel for all related concepts like Hankel integral,. . .
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where

_ ok (44
V2my \ (1)’
oWwj—1 Y0 . .

o = —_, =2,...,p, i=1—-— =2,...,p,

J \/m SD(T) J p ﬁ] m; J P

oky my o(T)
ap1 = —==, =122
p+1 o Bp-i-l n @o

aq

and v; are Hankel contours meeting the constraint
Rt <log?n, and Rv; < log? mj, j=1,...,p.

Lemma 3.4. Let v be a Hankel contour truncated at K. Then we have for a, 8 >0

1 ap~? o? 1
- —ay/—t—pt dt = 2 o Ol = -Kp . 3.11
5 76 —2ﬁ exp( 45)—1- (,6’6 ) ( )

Proof. Substitute t = u? and /Bu — —%= = v. Then we get

27

3 co+ia /203
af”2 a? / 2 d
o XP I e v
—oo+ia /203
and this immediately implies (3.11). O

Applying this lemma to (3.10) yields the main term of (3.7).

3.5. The remainder integrals. In this section we have to show that those parts of the Cauchy
integral (3.9) where z or at least one of the u; lie in T'gs or I';4, respectively, are asymptotically
negligible. Therefore let I, denote the integral (3.10) and R, the remaining integral. Obviously we
have

I, =0 (z"n" "), n— . (3.12)
In order to estimate R, observe that for z € I'pq and u; € I';j4, respectively, the relations
|Z—n—1| —0 (Zan71€_10g2 n) and |uj—m,7‘—1| -0 (e—log2 mj) ’

hold. B(z,u1,...,up) is composed of ¢1(z,u,v) and ¢2(z,u,v, w). As both functions are analytic
inside the integration domain (and thus bounded there) and moreover the latter one only appears
to the first power, it suffices to study the behaviour of ¢1(z,u,v). Inside the domain max(|z —
20|, [lu—1[,|lv—1]) < e, € > 0 sufficiently small, we may use the local representation (3.3) provided
that € is sufficiently small. Let z =1 + % and consider the expression

o t
A=1— —/——
V2 n

for t € 'y and Zo|%| <e. IfteTly, then

e pe] T
v v 272

and immediately we get |A| < 1. Let ¢t € Tg2 U g3, that means t = r + 4, where 0 < r < log? n.

Then
t (1+r2)1/4e YE R T
—— =X — — —arctan —
n Vn P2 72 r
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and that implies

o r 1
1- — — — fi 11
|A|2 _ N + O (\/ﬁ) + O (n) or small r

1 2
7 %8 n) for large r

1
1- +0 +0
2rn <\/r5n) (

It remains to investigate the case z € I'g4. In this case we have % = qe™¥/ " where

log?n +i
L Jog’n+i

a’l
n

and ¢ < en. An easy calculation shows

t logn . ¥
==~ — I Ph
n n n

and using this we immediately obtain |A| < 1.
Obviously the above considerations are also valid, if we use

i t
_EL(EUP“+ED__
o(T) \m; My n

or sums of terms of this form instead of \/—%. Thus we have for max(|z — 2|, [u —1[,Jv —1]) < e
the inequality
|¢1(Z,U,U)‘ < 1
which implies
R, =0 (25" Clox") (3.13)

for a suitable constant C.

Now let (z,u,v) be outside the region where the local expansion of ¢1(z,u,v) is valid. Set
z =2z (1 + %), u=1+2>andv=1+ %, [, m proportional to n and, for example, {H > ¢. Then
¢1(z,u,v) is analytic for |u| < [1+em™'/3| and |2| < 20 [1+ n~1/3
the exponents k; and [; are bounded by /n we have

. Thus it is bounded and as

|B(z,u1,...,up)| = O (eﬁ> .

On the other hand we may choose the circles |u| = [1+cm™'/3| and |2| = 2o |1+ /n~/3] as
integration contours for u and z. Thus we get finally

R,=0 (z(;” exp (\/ﬁ — n2/3>) (3.14)

Finally, equations (3.12)—(3.14) imply that the remainder integrals are exponentially small and
therefore negligible which completes the proof of Theorem 3.1.

3.6. Tightness. In order to complete the proof of Theorem 1.1 we have to prove that the process
X, (t) is tight. This can be done by employing Theorem 12.3 of [4]: The first condition is trivial,
as P{X,(0) = 0} = 1. Furthermore it can be shown that for polygonal functions like X, (¢) it
suffices to establish the second condition of this theorem only for the vertices of the polygon (use
the ideas of [9, p.86]), i.e. we have to prove that

(e Q)- 5 (B} <5

=
n
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where K > 0, 8> a > 1, holds for all n > 1,0 < 4,5 < n,e > 0. Therefore we have to set up the
GF corresponding to the bivariate distributions of X,,(¢):

min(kq,k2)—1
Bieyky (2, U1, u2) = Z Beyik, (2, u1, u2)
=0
min(ky,k2)—1
= 90822“1“%(252(27“1%,&2) Z é1(2, ugug, 1)t
1=0
X d1(z, uruz, uz) TG0 (2, ug, 1)

= ‘szzulugqs?(zvU1U27U2)¢1(2,U1U27U2)k171

in(ky K
ka1 1 — q(z, ugug, ug)minthrk2)

1
X ¢1<Z,u27 ) 1— q(Z,ulu2?u2) ,
where
¢1(Z,Ua 1)
Z,u,v) = '
W) = G w0z, D)
Then

X, (M> — X (Lan )’ > 6} = i[znui’“u’gnﬂ kgl Bya(z,uz, us).

|k—1]>ev/)

Therefore we have to get estimates for the expression

1 ko1 1 k1 min(k,)+1
1—g¢ Z Y Tz q Z Ty
k,1>0 k,1>0
k—1]>[ev/7) |k—1]> = /7]

where we used the abbreviations

T = ¢1(z,uruz,u2), y=d1(z,u2,1), wYq= d1(2,uruz,1).
Splitting this sum yields
pltlevn]

D SR SRR
k>|evi] I<k—|ev/) (1 —2){d —xy)
eVl
S2=) >, o = i —e)
k20 1>kt (o] Y Y
o1Vl
S3=4q Z Z a*(qy)' = m
k> Levi] 1<k ev/A)
levn]
qy
Sy =q zq)ky! =
VD D ey

k20 I>k+|ev/n]
Summing up gives

Sl + SQ — Sg — S4 leFLE\/EJ yLs\/EJ

1—¢q I—2)1—2y)(1—ayq)  (1—y)(1—ay)(l—zyq) (3.15)

Now we are ready to estimate the coefficient [z"u]"u5"?] of (3.15). If we substitute ujus =
u,uz = v and calculate the coefficient [z"u™v!], m = pn,l = An, then v keeps track on the

difference I = (i — j) which is the most important quantity in proving tightness after all. As the
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terms S — S3 and Sy — Sy are of similar form, it suffices to consider one of those, say S; — S3. In
order to get an estimate we again use Cauchy’s integral formula:

L) _ _ 1 $1(2, u, U)k'f"*lu*mfllfl*l dvdudz
[z"uv'](S1 — S3) = (27ri)3F/F/F/ (1—¢1(2,u,v))(1 — d1(2,u,v)P1(2,v,1))(1 — d1(2,u,1))’

(3.16)

where k = |ey/n| and the integration contour I', = T',; UT o UT,3 UT,4 is chosen as follows:

it
F21{220<1+6)
n

t .

T = {z = 29 <1+ —em)‘ 1<t < log2n}
n

FZSZFZZ

| I'.,= {z

a§|t|§7r}

2
14 log n o

|Z| =20 )

log’n
arg <l—|— o8 new‘) < |arg 2| Sﬂ'}
n

FIGURE 5: Integration contour I',

If z is sufficiently close to zg, that means the local representation (3.2) holds, then the integration
in w and v is done along the analogous contours (i.e. zy has to be replaced by f(z), for I, we
replace % by =, and for I', we use 7 instead of %, where m = pun and I = An). Otherwise we
choose the unit circle as integration contour for v und v. To proceed we need the following result:

Lemma 3.5. Let f, > 0 and
F(z) = Z fn2™.
n>0

Assume that F(z) is analytic in the domain
A={z||z| <1+4e,arg(z—1)| > a},
e > 0, and satisfies for z € A the inequality

|[F(2)] < eV

7

where C > 0. Then there exists a constant C' > 0 such that
1 k
n F k — - _ /_ 1
[2"]F(2) (’)(nexp< C \/ﬁ)> (3.17)

uniformly for k > 0.

Proof. For convenience assume zg = 1. Furthermore C; will denote appropriate positive constants
throughout this proof. We have

1 F(2)*
n k
[Z ]F(Z) = % Z""l‘l dZ.
I,
First let z € I',;. Obviously the relations
Cy

RVI—z> —= (3.18)
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and z7"~! = O (1) hold. The length of the integration contour is O (%) and thus

)

z1

Now let z€T',o UT',3. Then z =1+ %eio‘ and thus
vl =0 (eXp (—tem))

holds. The estimate (3.18) is also valid. To get the desired result we extend the integration contour
to 0 <t < o0o. This leads to

Finally let z € T',4. Obviously (3.18) still holds and thus

P < exp (—06%) .

Additionally we have

‘Z|_n_1 ~ e—logzn < l
n
and this implies
F(z)F k
/ (Z) dz —(’)(—exp( C’6—>>
: 2m vn
z4
Finally set C’ < min(Cy, Cy, C) to get (3.17). O

Now we are able to estimate the integral (3.16). If (z,u,v) lies in the domain where the local
expansion (3.2) holds then we may estimate the denominator of the integrand as follows:

|(1 - ¢1(27u>v))<1 - (bl(zauav)qSl(Z’Ua 1))(1 - ¢1(Z7u’ 1))'
_ U v U 1
=3 - R - =
(\/1 7y f(Z)> <\/1 i ! f(Z)>
[ v 1
X(\/lfcz)”wf(z)+ 1f<z>>

5 o) () ()=

and A, u as defined above. It is an easy exercise to verify the validity of

T g _$0_
where C = NeR /ZOSD(?_)

the above inequality for the whole integration domain. In order to cope with the numerator we

have to distinguish two cases according as we consider Xn(t) near t = Jgi) or not.

3.6.1. The process X, (t) outside the vicinity of t = 9"0) Let us further consider the domain where

(3.2) holds and substitute @ = f?z) v = fZ)z n (3.16). From (3.2) we obviously get

$1(z,u,v) = O (Jexp (-C (VI—u+ V1-10))|) (3.19)

and application of Lemma 3.5 yields the upper bound

C I—m
Ell exp (—C’g (— + —)) / biG z”|+1| (3.20)

for the integral (3.16).
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In order to proceed we expand f in a Taylor series and get

1 _ 1 _f/(zo)z_z O (s o
o) " T Fugrc ) T O (==

_14 20 (i - 1) + 0 ((z = 20)?) (3.21)
$o  \%20
Using % =1+ 6—7: for z € I',1 and % =1+ %em for z € I',o UT',3 we obtain
L4 _
~ . exp((—A—l—u—l) >—O(1) for z € I',y
()~ ‘
0 .
exp (<<'0( A+ p) — 1> tew‘> for zeT',o U, 3. (3.22)
%o
Under the assumption @(/\ +u) <1—mn,n >0, this implies
£ —l-m 1 7
/ % |dz| = O Ezg 1+ /exp (—nmtcosa) dt
IS0 -10) ) 0
1
=0\ -z - 3.23
(2%) (3.23)

It remains to consider z € T',4. As long as (z, u, v) lies inside a sufficiently small é-ball Us around
the singularity we may still use (3.2). Set = = ae™/", where a = ‘1 + log¥nial ang [t| < dn. Then
0 n
we have
logn ¢
p(r)log'n ¢
0o N n

f(z) =1~

an for —(>\ + p) <1 — 1 this yields

|f(z)| 7™ (£>_” < | ()| Smon (i) —n

< exp (—nfg) log®n — (% - 77) t) (3.24)

[ B - o(e)

I.4anUs

If (z,u,v) ¢ Us, then the inequality

and therefore

|¢1(z,u,v)| <1 -

with ¥ > 0 holds. Thus the corresponding integral is exponentially small and therefore negligible.
Collecting (3.20), (3.23), (3.25) and recalling k = |£4/n] we obtain for A + pu < (T) -7

|[z”umvl](51 Ss)|
&1 (z,u,v) Pz Lyl dy du dz
(2m)3 ///‘ 1—¢1(z,u,v))(1 = ¢1(z,u,v)p1(z,v,1))(1 — ¢1(2,u, 1))
z(’}n3/2 k
<cfmr e (2 (74 )

2 () o (2 ()

Sl=
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where C' and D are suitably chosen positive constants. Applying (3.1) and z?e™* < -, for
arbitrary k > 0 and sufficiently large ¢ > 0, we obtain the tightness condition

2
N A 1 € €
P{IX,(s) = Ka(t) 26} < O <|_t> exp <Dm>

Cl
< Sls = P2, (3.27)

Yo
for0<s,t<w(T) 7.

3.6.2. The process X, (t) in the vicinity of t = %. For proving the tightness inequality in case
of \+pu > % —n it suffices to investigate the terms (3.22) and (3.24). Integrating the right-hand
sides of these formulae with respect to t gives as in the derivation of (3.26) the estimate

sz ()

which directly yields the tightness condition (3.27) if n — LZ)(m +1) > %l holds.

©
So let n — %(m +1) < Kz)l. If we prove

)
P {Xn (ﬂ - 5) > 5} < o (3.28)
o(7) &
with v > a > 1, then by means of

P{I %) = Xa(uo) 2 e} < P{Xa(w) = 5} + P{Xul2) = 5}

and

the tightness condition can immediately be established. To prove (3.28) set again k = |[ey/n].

Then we have
P {Xn (m) > 5} — @[Zn—lum—l] ¢1(Z7'Uz7 1)k
o

an 1—¢1(z,u,1)
Using the same integration contour as in the previous section and the substitution ﬁ = u we
obtain as before
C
1= o1(zu,1)| = Jn
for a suitable positive constant C. Furthermore we have
2\ " 1 npo/p(T)
(=)~ ()
and of course (3.19). Thus substituting z = ﬁ gives finally
k
[anlumfl] $1(z,u, 1) e // ‘efk\/ﬁﬂfm‘ ‘efkmx—%n—&-m‘ \da dz|
1—¢1(z,u,1)
Cok*n=3/2 k k
< 2 exp | Cs | ——m+ ——— ,
o4 ”On—m)m vm 20 1 _m
p(7) @(7)

where C4, Cs, C3 are appropriate constants. This implies tightness and thus the proof of Theorem
1.1 is complete.
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Now we are able to complete the proof of Theorem 3.2. We have only to show that the difference
of the contour process and the step process X,, (|t]/n) converges to zero in probability. Obviously

we have for t € [i/n, (i +1)/n]
o (9l () - )]

Combining this with the tightness inequality (3.27) we get

. /
P{ Xn(t) - X, (%)' > 6} < %nfg/z

which proves the theorem.

4. THE TRAVERSE PROCESS

In order to deal with the traverse process we first have to set up the basic GFs. The procedure
is analogous to that used in the previous section: We mark the nodes associated to the vertices of
the polygonal functions the process is constructed of. Then the nodes of all subtrees left of that
one which contains a marked node contribute the term 2 to the number of the considered node as
each edge is passed twice during pre-order traversal. Thus the GF is given by

7(z,u) = a(zu?) = y(zu?,1).

From Lemma 3.1 we immediately get the local expansion

2) o 2¢() /]t 2
a(zu) \/ ©"(1) nom

forz:zo(1+%),u:1+% and n, m — oo where m ~ cn,c > 0.
Remark. Note that we did not define the traverse process on the tree T but instead on 77 = {o} x T
in order to avoid zeros away from the boundary. This modification only causes a factor z in the
GFs and a layer shift.
Let ay,, denote the sum of weights over all trees where the m-th node of the traverse function
coincides with the root and let
A(z,u) = Z Amn 2" u"™

m,n>0

be the associated GF. Suppose that the root has degree i. Obviously the path of the traverse
function passes the root if and only if j (0 < j < i) trees have already been traversed, but no node
of the j + 1-st tree. This implies

fl(z, u) = uz Z o Z 9(z, u)jg(27 u)i*j
i>0 =0
el w) i
7u) - g(

De(y(2,1))
’1)

z
g(z z
Define
e(H(z,u) — o(§(z,v))
g](z7u) —gj(z,v) '
and ¢- analogously tu ¢s. It is also easy to see from the previous section that an analogon of Lemma
3.3 applies and thus we are able to set up the GF leading to the finite dimensional distributions

of the process:

b1(z,u,v) = uvz

p—1
B(Z,Ul, S ’up) = H A (z(ul e up)27up) [(Z)l(zvui e upaui+1 .. .up)kiflifl
=1

% ¢1(2,ui U, 1)li_li—1_1¢2(z7ui U Uiy -up)

X Az, up)p1(2, up, 1)]“”_%*1_1.
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Due to the similarity of the GFs to those associated with the contour process tightness can be
proved analogously after all which proves Theorem 1.2.
Acknowledgment. The author thanks Michael Drmota for several useful comments and suggestions.
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