
ON THE CONTOUR OF RANDOM TREES

BERNHARD GITTENBERGER

Abstract. Two stochastic processes describing the contour of simply generated random trees
are studied: the contour process as defined by Gutjahr and Pflug [9] and the traverse process

constructed of the node heights during pre-order traversal of the tree. Using multivariate gener-

ating functions and singularity analysis the weak convergence of the contour process to Brownian
excursion is shown and a new proof of the analogous result for the traverse process is obtained.

1. Introduction

Let A be a class of plane rooted trees and define for T ∈ A the size |T | by the number of nodes
of T . Furthermore there is assigned a weight ω(T ) to each T ∈ A. Let an denote the quantity

an =
∑
|T |=n

ω(T )

Besides, let us define the generating function (GF) corresponding to A by a(z) =
∑
n≥0 anz

n.
According to Meir and Moon [11] we call a family of trees simply generated if its GF satisfies a
functional equation of the form

a(z) = zϕ(a(z)), (1.1)

where ϕ(t) =
∑
i≥0 ϕit

i with ϕi ≥ 0, ϕ0 > 0.
Let nk(T ) denote the number of nodes v ∈ T with outdegree k (the outdegree of v is the number

of edges incident with v that lead away from the root). Then we have for each simply generated
tree T the relation

ω(T ) =
∏
k≥0

ϕ
nk(T )
k . (1.2)

Consider a simply generated tree T of size n. The height hT (x) of a node x ∈ T is defined to be
the number of edges of the uniquely determined path that connects x with the root. Let ĥT (m)
denote the height of the m-th leaf of T supposing that the leaves are enumerated from left to
right. In the following we will assume that for each n the set of all trees of size n is equipped with
a probability distribution according to the weights (1.2). Then ĥT (m) becomes a random variable
which we denote by Ĥn(m). If we define the continuation of Ĥn(m) by linear interpolation, i.e.

Ĥn(x) = (bxc+ 1− x) Ĥn (bxc) + (x− bxc) Ĥn (bxc+ 1) ,

then we get a continuous stochastic process. The scaled process

X̂n(t) =
1√
n
Ĥn(tn), 0 ≤ t ≤ 1,

is called the contour process.
We show that for simply generated trees this process converges weakly to Brownian excursion

(for the definition and basic properties see [10, pp.75]):
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Theorem 1.1. Let W+(t) denote Brownian excursion of duration 1. Furthermore assume that
ϕ(t) has a positive or infinite radius of convergence R and d = ggT{i|ϕi > 0} = 1. Moreover
suppose that the equation

tϕ′(t) = ϕ(t) (1.3)

has a minimal positive solution τ < R. Define

σ2 =
τ2ϕ′′(τ)
ϕ(τ)

.

Then the contour process X̂n(t) converges weakly to Brownian excursion, i.e.

X̂n

(
ϕ0

ϕ(τ)
t

)
w−→ 2

σ
W+(t) (1.4)

in C[0, 1].
For the class of binary trees (1.4) was established by Gutjahr and Pflug [9] but their method does

not seem to be transferable to the general case, because it relies on exact enumeration formulae
which are only available for binary trees.
Remark 1. The case d > 1 can be treated similarly, but is technically more involved. The only
difference concerning the results is that the limit theorems hold only for n ≡ 1 mod d and that the
limiting distribution in local limit theorems has to be multiplied by d. Thus we restrict ourselves
to d = 1.
Remark 2. Simply generated trees may be considered as trees associated to Galton-Watson branch-
ing processes. In this context (1.3) means that the branching process is critical and σ2 equals the
variance of the offspring distribution. Thus the above theorem yields also a limiting distribution
result for branching processes conditioned on the total progeny. For a more detailed discussion of
the connection between trees and branching processes see Aldous [2].

In order to define the traverse process we have to use the tree T ′ defined to be the tree we
obtain by attaching T to a single node which serves as the root of T ′. Now consider the following
traverse procedure:

(1) If the current node is v, choose the left-most successor of v that has not been traversed yet
(v′ is called successor of v if it is adjacent to v and hT (v′) > hT (v)). If no such successor
does exist, go back to the previous node.

(2) Start at the root and apply step (1) to its successor.
Since in (1) choosing the left-most successor v′ is equivalent to choosing the edge (v, v′), each edge
is traversed twice and thus the number of steps is 2n. Let vi denote the node we arrive at after
i steps and define hn(i) = hT (vi), i = 0, . . . , 2n. Assuming again the probability model induced
by the weights (1.2) hn(i) becomes a stochastic process Hn(i) and as above we continue Hn(i) by
linear interpolation. The traverse process is defined by the scaled process

Xn(t) =
1√
n
Hn(2nt), 0 ≤ t ≤ 1.

The GFs involved in the investigation of X̂n(t) and Xn(t) are closely related and thus we rather
easily obtain from (1.4):
Theorem 1.2. Under the assumptions of Theorem 1.1 the traverse process Xn(t) converges weakly
to Brownian excursion, i.e.

Xn(t) w−→ 2
σ
W+(t)

in C[0, 1].
This limit theorem was established by Aldous [2] by means of probabilistic techniques (see

[1, 3]) and under the slightly weaker condition σ2 < ∞. Our approach yields a new proof of this
result.

The paper is organized as follows: In section 2 we give a brief description of the basic methods
used in the following sections, especially the combinatorial background. Section 3 is devoted to the
proof of Theorem 1.1. Therefore we have to show the weak convergence of the finite dimensional
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distributions and the tightness of the process (see Billingsley [4]). In order to settle the first part
of the proof we first consider the three dimensional distributions where we prove an invariance
property which enables us to simplify the rest of the proof essentially. The last section provides a
brief discussion of the traverse process.

2. Basic Methods

In order to derive the above mentioned limit theorems we use the concept of combinatorial
constructions introduced by Vitter and Flajolet [12]: Let ◦ denote a node and A a simply generated
family of trees. Then every element in A has the form

{◦} × A× · · · × A.

Taking into account that we are considering weighted trees we have to assign the weight ϕi to the
above expression, if there are i factors A. Thus we get the following symbolic recursion:

A = ϕ0 · {◦} ∪ ϕ1 · {◦} × A ∪ ϕ2 · {◦} × A×A ∪ · · ·

Using the fact that the operations ∪ and × can be translated into sum and product of the corre-
sponding GFs we obtain the functional equation (1.1).

Now let θ(T ) be a characteristic of the tree T we are interested in. Then we mark the corre-
sponding substructures of T which is equivalent to introducing a new variable in the GF. Thus we
get a bivariate GF

a(z, u) =
∑
m,n≥0

amnz
num

The distribution of θ is given by

P{θ(T ) = m : |T | = n} =
amn
an

where amn is the coefficient of znum in a(z, u), denoted by [znum]a(z, u). We will calculate this
distribution by deriving multivariate asymptotic expansions for akn with uniform error terms.
Thus we get a local limit theorem and due to uniformity this implies the corresponding weak limit
theorem.
Example . θ(T ) equals the number of leaves of T . If a marked node is represented by • and the
family of all trees with marked leaves is denoted by Y, then we get the recursion

Y = ϕ0 · {•} ∪ {◦} × Φ(Y),

where
Φ(Y) = ϕ1 · {◦} × Y ∪ ϕ2 · {◦} × Y × Y ∪ · · ·

Due to the correspondence

◦ ↔ z

• ↔ uz

translating into GFs gives

y(z, u) = ϕ0z(u− 1) + zϕ(y(z, u)). (2.1)

For further demonstrations of these marking techniques we refer to [7].
In order to get asymptotic expansions we use Cauchy’s integral formula combined with singular-

ity analysis following the ideas of Flajolet and Odlyzko [8]. They used the fact that the coefficients
of the power series of an analytic function are essentially determined by the behaviour of the
function near its dominant singularities, i.e. those on the circle of convergence, and proved the
following theorem:
Theorem 2.1 ([8]). Let f(z) be analytic in the domain

∆ = {z| |z| ≤ z0 + η, |arg(z − z0)| ≥ ϑ},
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where z0, η > 0 and 0 < ϑ < π
2 . Furthermore let α be a real number satisfying α /∈ {0, 1, 2, . . . }

Then

f(z) ∼
(

1− z

z0

)α
for z → z0 in ∆ =⇒ [zn]f(z) ∼ 1

zn0 n
α+1Γ(−α)

.

Analogous formulae hold for O and o instead of ∼.
Remark. Let y(z, u) be the function defined by (2.1) and ymn = [umzn]y(z, u). Then it can be
shown that ymn

an
satisfy a central limit theorem with mean

1
an

∑
m≥0

mymn =
ϕ0

ϕ(τ)
n+O (1) (2.2)

and variance (
ϕ0

ϕ(τ)
− ϕ2

0

ϕ(τ)2
− ϕ2

0ϕ
′(τ)

ϕ(τ)3ϕ′′(τ)

)
n+O (1) , (2.3)

where τ is the solution of (1.3) (see [5, 6]). If Ln(T ) denotes the number of leaves of a random
tree T of size n, then (2.2) and (2.3) imply

lim
n→∞

Ln(T )
n

=
ϕ0

ϕ(τ)
, a.s.

Thus the restriction of X̂n(t) to the interval
[
0, ϕ0

ϕ(τ)

]
is justified.

3. The contour process

3.1. Basic functions and their local expansions. Let A be a family of simply generated trees
with GF defined by (1.1) and m1 < m2 < · · · < mp. Consider the set Fk1m1k2m2...kpmpn ⊆ A of
all trees T with n nodes satisfying ĥT (mi) = ki for i = 1, . . . , p. Set

ak1m1...kpmpn =
∑

T∈Fk1m1...kpmpn

ω(T ),

where ω(T ) denote the weight defined by (1.2). Then the finite dimensional distributions of Hn(x)
are given by

P{Hn(m1) = k1, . . . ,Hn(mp) = kp} =
ak1m1...kpmpn

an
.

Thus we need asymptotic expansions for ak1m1...kpmpn and an. When setting up the GFs it turns
out that they are composed of three basic functions: Obviously the function y(z, u) defined by
(2.1) plays the most important role. The other two functions are composed of y(z, u):

φ1(z, u, v) = z
∑
i≥1

ϕi
∑

j1+j2=i−1

y(z, u)j1y(z, v)j2

= z
ϕ(y(z, u))− ϕ(y(z, v))

y(z, u)− y(z, v)

and
φ2(z, u, v, w) = z

∑
i≥2

ϕi
∑

j1+j2+j3=i−2

y(z, u)j1y(z, v)j2y(z, w)j3

Remark. These functions originate from the following setup: Consider a node to which we attach
i − 1 trees and a marked leaf b. Then leaves of the trees left from b contribute to the number
of b while the others do not. Thus the trees left from b correspond to the GF y(z, u) and the
remaining trees to y(z, 1). Summing up over all node degrees and keeping in mind that nodes
of degree i are weighted by ϕi we get the GF zuφ1(z, u, 1). If we replace the marked node by
more complicated structures we will get powers of φ1 or φ2. Of course there may occur functions
φ3, φ4, . . . (it is obvious how to define them), if we mark more than two leaves, but they prove to
be of no importance for the asymptotics in the following.

In order to proceed we need local expansions of these functions near their singularities. We have
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Lemma 3.1 ([6]). Let ϕ(t) have a positive or infinite radius of convergence R. Furthermore
assume that d = ggT{i|ϕi > 0} = 1 and that the equation tϕ′(t) = ϕ(t) has a minimal positive
solution τ < R. Then for an ε > 0 there exists a uniquely determined analytic function z = f(u)
on |u− 1| < ε such that f(1) = 1

ϕ′(τ) and y(f(u), u) satisfies

y = ϕ0z(u− 1) + zϕ(y),

1 = zϕ′(y).

z = f(u) is the only singularity of y(z, u) in the domain |z| ≤ z0 + ε, arg
(

1− z
f(u)

)
6= π, where

z0 = f(1). Moreover, inside the domain
{

(z, u) : |z − f(u)| < ε, arg
(

1− z
f(u)

)
6= π

}
y(z, u) ad-

mits the local representation

y(z, u) = g(z, u)− h(z, u)
√

1− z

f(u)
,

where g(z, u) and h(z, u) are analytic functions satisfying

g(z0, 1) = τ and h(z0, 1) =

√
2ϕ(τ)
ϕ′′(τ)

.

For d > 1 analogous representations in the vicinity of f(u) exp
(
j 2πi
d

)
, 0 ≤ j < d hold.

Corollary 1. Assume d = 1. Then a(z) has one and only one singularity z = z0 on the circle of
convergence. Furthermore the local representation

a(z) = τ − τ
√

2
σ

√
1− z

z0
+O

(∣∣∣∣1− z

z0

∣∣∣∣2
)
.

holds near z = z0

Corollary 2. For an = [zn]a(z) we have

an =
τ

σzn0
√

2πn3

(
1 +O

(
1
n

))
(3.1)

Remark. It is possible to exchange the roles of z and u in the theorem, that means we have also
a local representation of the form

y(z, u) = g̃(z, u)− h̃(z, u)
√

1− u

f̃(z)
, (3.2)

where g̃(z, u), h̃(z, u), and f̃(z) are analytic functions.
Using this lemma local expansions for the above mentioned basic functions can easily be derived:

Lemma 3.2 ([6]). Set z = z0(1 + t
n ) and ui = 1 + si

mi
, i = 1, 2, 3, where ε < mi

n
ϕ(τ)
ϕ0

< 1 − ε,
for arbitrary ε > 0. Furthermore let |t| ≤ ηn and |si| ≤ ηmi for sufficiently small η > 0. Then for
n→∞ the following local expansions hold

y(z, u1)− τ = −

√
2ϕ(τ)
ϕ′′(τ)

√
− t
n
− ϕ0

ϕ(τ)
s1

m1
+O

(
|s1|
m1

+
|t|
n

)

φ1(z, u1, u2) = 1− σ√
2

(√
− t
n
− ϕ0

ϕ(τ)
s1

m1
+

√
− t
n
− ϕ0

ϕ(τ)
s2

m2

)

+O
(
|t|
n

+
|s1|
m1

+
|s2|
m2

)
, (3.3)

φ2(z, u1, u2, u3) =
z0ϕ
′′(τ)
2

+O

√ |t|
n

+
|s1|
m1

+
|s2|
m2

+
|s3|
m3

 ,
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Figure 1. The possible shapes of T0 for p = 3

Since expressions like those in the previous lemma will frequently occur in the following sections
we will from now on use the abbreviation

ci1i2...ik =

√
− t
n
− ϕ0

ϕ(τ)

(
si1
mi1

+ · · ·+ sik
mik

)
c =

√
− t
n

3.2. An invariance property. Drmota [6] used the above setup to determine the one and two
dimensional distributions of the contour process. The method works in principle for higher di-
mensional distributions, too, but the expressions obtained in these cases get too complicated to
cope with. If we combine this method with an idea of Gutjahr and Pflug [9] that works for binary
trees, we will achieve an essential simplification. The idea is to introduce an additional quantity
li which is defined as follows: Consider a simply generated tree T where the leaves with numbers
m1 < m2 < · · · < mp are marked. Then the paths connecting the root with the mi-th and the
mi+1-st leaf, resp., have at least the root in common. Let Vi denote that of the common nodes
which has maximal height and define li := hT (Vi).

Let us now consider the case p = 3. Define the GF

Bk1l1k2l2k3(z, u1, u2, u3) =
∑

n,m1,m2,m3≥0

bk1m1l1k2m2l2k3m3nz
num1

1 um2
2 um3

3 ,

where bk1m1l1k2m2l2k3m3n denotes the sum of weights of all trees with n nodes and satisfying
ĥT (mi) = ki, i = 1, 2, 3, and hT (Vj) = lj . For setting up this GF we have to distinguish three
cases: l1 < l2, l1 > l2, and l1 = l2. The third one is asymptotically negligible since it corresponds
to a hyperplane in R5 in the limit case and thus it has no influence on the density of the limiting
distribution (for a detailed argumentation see [9]).

For convenience introduce a tree T0 consisting of m1,m2,m3, V1, V2, and the root of T . The
edges of T0 are the paths that connect its nodes in T (see Figure 1). Now consider a node x of
T which lies on the edge of T0 which connects the root with V1. As mentioned in the previous
section, the leaves of all trees which are rooted in x and lying left from the path containing x
contribute to the number of m1, m2, and m3 while leaves of those trees lying on the right-hand
side yield no contribution. Thus the subgraph of T induced by x and all its descending trees not
lying in T0 corresponds to the GF φ1(z, u1u2u3, 1). If x lies on a different path, we have to observe
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which of the leaves m1, m2, and m3 are left or right from the trees rooted in x. For instance, if
x ∈ (V1, V2), then the corresponding GF is φ1(z, u2u3, 1) (where we assumed T0 to be the left-most
tree in Figure 1). Thus each edge of T0 corresponds to a power of φ1 according to its length and
with suitably chosen arguments. The branching points V1 and V2 yield factors φ2 due to the fact
that we have to distinguish three classes of trees rooted at V1 or V2: The ones left from all edges of
T0, the ones right from those edges and the ones lying in between. This yields e.g. for V2 the GF
φ2(z, u2u3, u3, 1). And finally, we have to take into account the leaves m1, m2, and m3, yielding
the GFs ϕ0zu1u2u3, ϕ0zu2u3, ϕ0zu3, respectively. Therefore we obtain for l1 < l2

Bk1l1k2l2k3(z, u1, u2, u3) = ϕ3
0z

3u1u
2
2u

3
3φ2(z, u1u2u3, u2u3, 1)φ2(z, u2u3, u3, 1)

× φ1(z, u1u2u3, 1)l1φ1(z, u1u2u3, u2u3)k1−l1−1

× φ1(z, u2u3, 1)l2−l1−1φ1(z, u2u3, u3)k2−l2−1

× φ1(z, u3, 1)k3−l2−1

Analogously we get the GF in the case l1 > l2:

Bk1l1k2l2k3(z, u1, u2, u3) = ϕ3
0z

3u1u
2
2u

3
3φ2(z, u1u2u3, u3, 1)φ2(z, u1u2u3, u2u3, u3)

× φ1(z, u1u2u3, 1)l2φ1(z, u1u2u3, u2u3)k1−l1−1

× φ1(z, u1u2u3, u3)l1−l2−1φ1(z, u2u3, u3)k2−l1−1

× φ1(z, u3, 1)k3−l2−1

If we consider random trees, then the heights of the leaves m1,m2,m3 as well as the path
lengths l1, l2 become random variables. Let us denote this multivariate random variable by
(K1, L1,K2, L2,K3). Its distribution is determined by

[znum1
1 um2

2 um3
3 ]Bk1l1k2l2k3(z, u1, u2, u3).

This coefficient can be calculated asymptotically by means of Cauchy’s integral formula. The
integration path is chosen in that way that one part lies close to the singularity (this part yields
the main term) and the remaining part is asymptotically negligible (for details see next section).
Thus the limiting distribution is completely determined by the local behaviour of the GF.

Let ki, i = 1, 2, 3, and lj , j = 1, 2, be proportional to
√
n and mi, i = 1, 2, 3, satisfy the

condition ε < mi
n
ϕ(τ)
ϕ0

< 1− ε for arbitrary ε > 0. Using Lemma 3.2 and the fact that ki − 1 ∼ ki
and li − 1 ∼ li it can be shown that Bk1l1k2l2k3(z, u1, u2, u3) admits the local representation

ϕ3
0z

5
0ϕ
′′(τ)2

4
exp

(
− σ√

2
(l1(c123 + c) + (k1 − l1)(c123 + c23) + (l2 − l1)(c23 + c)

+ (k2 − l2)(c23 + c3) + (k3 − l2)(c3 + c))
)

×

1 +O
(
M

(
|t|
n

+
|s1|
m1

+
|s2|
m2

+
|s3|
m3

))
+O

√ |t|
n

+
|s1|
m1

+
|s2|
m2

+
|s3|
m3


(3.4)

for l1 < l2 and
ϕ3

0z
5
0ϕ
′′(τ)2

4
exp

(
− σ√

2
(l2(c123 + c) + (k1 − l1)(c123 + c23) + (l1 − l2)(c123 + c3)

+ (k2 − l1)(c23 + c3) + (k3 − l2)(c3 + c))
)

×

1 +O
(
M

(
|t|
n

+
|s1|
m1

+
|s2|
m2

+
|s3|
m3

))
+O

√ |t|
n

+
|s1|
m1

+
|s2|
m2

+
|s3|
m3


for l1 > l2, respectively, where M = max(k1, k2, k3). The difference of the exponents is

(l1 − l2)(c123 + c− c23 − c− c123 − c3 + c23 + c3) = 0
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Figure 2. The chosen shape of T0

and thus (3.4) also holds for the case l1 > l2, that means that the local representation of
Bk1l1k2l2k3(z, u1, u2, u3) is invariant with respect to the shape of T0. Generalizing the above con-
siderations we get
Lemma 3.3 (Invariance property). Let Bk1l1...kp−1lp−1kp(z, u1 . . . , up) be the GF of (K1,
L1, . . . ,Kp−1, Lp−1,Kp) and Bp denote the set of all binary trees with p leaves where p is a fixed
positive integer. Assume that T0 ∈ Bp and that the quantities k2

i ,mi, i = 1, . . . , p, and l2j , j =
1, . . . , p−1, are asymptotically proportional to n. Then for ‖z−z0, u1−1, . . . , up−1‖max = o (

√
n)

there exists a local asymptotic representation of Bk1l1...kp−1lp−1kp(z, u1 . . . , up) that holds for all
T0 ∈ Bp.

Proof. As the lemma is intended to simplify the proofs in the following section, we have to consider
the one special shape of T0 which is most convenient to work with and then show that the local
representation is invariant with respect to the shape of T0. Thus we choose the one that satisfies
l1 < l2 < · · · < lp (according to Figure 2) in order to get rid of the usually unpleasant terms
min(li, lj) and max(li, lj) occurring in the GFs. This leads to the GF

B(z, u1, . . . , up) = ϕp0z
pu1u

2
2 · · ·upp

p−1∏
i=1

[
φ1(z, ui · · ·up, ui+1 · · ·up)ki−li−1

× φ1(z, ui · · ·up, 1)li−li−1−1+δi1φ2(z, ui · · ·up, ui+1 · · ·up)
]

× φ1(z, up, 1)kp−lp−1−1,

where we define l0 = 0 and δij the Kronecker delta defined by δij = 1−sgn|i−j|. Let z = z0

(
1 + t

n

)
and ui = 1 + si

mi
be chosen in such a way that the assumptions of Lemma 3.2 hold. Then we get

for ki = κi
√
n and li = λi

√
n the local representation

B(z, u1, . . . , up) = ϕp0z
p
0

(
z0ϕ
′′(τ)
2

)p−1

exp

(
− σ√

2

(
p−1∑
i=1

((ki − li)(ci···p + ci+1,··· ,p)

+ (li − li−1)(ci···p + c)) + (kp − lp−1)(cp + c)

))

×

1 +O

(
Mp

(
|t|
n

+
p∑
i=1

|si|
mi

))
+O

√√√√ |t|
n

+
p∑
i=1

|si|
mi


(3.5)

where Mp = max1≤i≤p ki.
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Vλ1+···+λq−2

Vλ1+λ2

Vλ1

lλ1

lλ1+λ2 − lλ1

lλ1+···+λq−1 − lλ1+···+λq−2

lλ1+···+λq−1+1

−lλ1+···+λq−1

Figure 3. The general shape of T0

t
t

t t

t
t

t t
t

mλ1+···+λν−1+1

mλ1+···+λν−2

mλ1+···+λν−1 mλ1+···+λν

Vλ1+···+λν

Vλ1+···+λν−1

Vλ1+···+λν−2

Vλ1+···+λν−1+2

Vλ1+···+λν−1+1

lλ1+···+λν−1+1 − lλ1+···+λν

lλ1+···+λν−1+2 − lλ1+···+λν−1+1

lλ1+···+λν−1 − lλ1+···+λν−2

kλ1+···+λν
−lλ1+···+λν−1

Figure 4. Zooming into Aν

From this formula it is easy to see how the structure of T0 can be translated into the proper
terms of the exponent in the local expansion of the corresponding GF. We complete our proof by
induction on p. Note that the general shape of T0 has the form of Figure 3 where Aν are trees
with λν marked leaves such that

∑q
ν=1 λν = p. The GF corresponding to Aν is a product of φ1-

and φ2-terms and by the induction hypothesis the local behavior is independent of the shape of
the underlying part of T0 which we denote by T0ν . Thus we may assume that T0ν is already “well
shaped”, i.e. as shown in Figure 4. By (3.5) the exponent in the expansion of the GF corresponding
to Aν ∪ (Vλ1+···+λν , Vλ1+···+λν−1+1) (where (i, j) denotes the edge in T0 which connects i and j)
is given by

Λν∑
i=Λν−1+1

[
(ki − li)(ci···p + ci+1,...,p) + (li − li−1 + δi,Λν−1+1(li−1 − lΛν )(ci···p + cΛν+1,...,p)

]
+ (kΛν − lΛν−1) (cΛν ,···p + cΛν+1,...,p)
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where we defined for convenience Λν = λ1 + · · · + λν and furthermore we have to set Λ0 := 0,
lΛq := lΛq−1 and cΛq+1,...,p := c. Hence we have to show the following identity:

q∑
ν=1

 Λν−1∑
i=Λν−1+1

[
(ki − li)(ci···p + ci+1,...,p) + (li − li−1 + δi,Λν−1+1(li−1 − lΛν ))(ci···p + cΛν+1,...,p)

]
+ (kΛν − lΛν−1) (cΛν ,···p + cΛν+1,...,p)

]
+
q−1∑
ν=1

(lΛν − lΛν−1)
(
cΛν−1+1,...,p + c

)
=

p−1∑
i=1

[(ki − li)(ci···p + ci+1,...,p) + (li − li−1)(ci···p + c)] + (kp − lp−1)(cp + c).

Subtracting
∑p−1
i=1 [(ki − li)(ci···p + ci+1,...,p) + (li − li−1)ci···p] gives

q∑
ν=1

 Λν−1∑
i=Λν−1+1

(li − li−1 + δi,Λν−1+1(li−1 − lΛν ))cΛν+1,...,p +
(
lΛν−1 − lΛν

)
cΛν−1+1,...,p

+ (kΛν − lΛν−1) (cΛν ,···p + cΛν+1,...,p)

]
+
q−1∑
ν=1

(lΛν − lΛν−1)
(
cΛν−1+1,...,p + c

)
−
q−1∑
ν=1

[(kΛν − lΛν ) (cΛν ,···p + cΛν+1,...,p) + (lΛν − lΛν−1) cΛν ,···p]

= kp(cp + c)− lp−1cp

and this can be easily checked. �

3.3. The finite dimensional distributions. Applying the substitution wi = ki + ki+1 − 2li on
(3.5) yields

B(z, u1, . . . , up) = ϕp0z
p
0

(
z0ϕ
′′(τ)
2

)p−1

exp

(
− σ√

2

(
c1···pk1 +

p−1∑
i=1

ci+1,...,pwi + ckp

))

×

(
1 +O

(
Mp

(
|t|
n

+
p∑
i=1

|si|
mi

)))
, (3.6)

and by means of this formula we are able to prove

Theorem 3.1. Let ε > 0 and wi = ki + ki+1 − 2li. Then we have uniformly for m1
n ≥ ε,

mj+1−mj
n ≥ ε, j = 1, . . . , p − 1, ϕ0

ϕ(τ) −
mp
n ≤ ε and ki = O (

√
n), i = 1, . . . , p, wj = O (

√
n),

j = 1, . . . , p− 1,

[znum1
1 · · ·umpp ]B = C ′pk1w1 · · ·wp−1kp

×
[
m1(m2 −m1) · · · (mp −mp−1)

(
n− ϕ(τ)

ϕ0
mp

)]−3/2

× exp

(
−σ

2

8
ϕ0

ϕ(τ)

(
k2

1

m1
+

p∑
i=2

w2
i−1

mi −mi−1
+

k2
p

ϕ0
ϕ(τ)n−mp

))

×
(

1 +O
(

1√
n

))
, n→∞, (3.7)
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where

C ′p = ϕp0z
p−n
0

(
σ√
2

)p+1(
z0ϕ
′′(τ)
2

)p−1 1
(2
√
π)p+1

(
ϕ0

ϕ(τ)

)p/2
= z−n0

τ

2p+1

(
σ√
2

)3p−1

π−(p+1)/2

(
ϕ0

ϕ(τ)

)3p/2

.

Dividing (3.7) by an yields the following local limit theorem:

Corollary. Let kj = κj
√
n+ o(

√
n) ∈ N, j = 1, . . . , p and wj = ki+ki+1−2li = ωj

√
n+ o(

√
n) ∈

N, j = 1, . . . , p−1, satisfying |κj+1−κj | ≤ ωj ≤ κj+1+κj. Moreover assume ϕ(τ)
ϕ0

mj = µjn+o(n),
where 0 < µ1 < · · · < µp < 1 and let Wi denote the random variable Ki + Ki+1 − 2Li. Then the
density

P{K1 = k1,W1 = w1, . . . ,Kp−1 = kp−1,Wp−1 = wp−1,Kp = kp} =
bk1m1l1···kp−1mp−1lp−1kpmpn

an

of the random variable (K1,W1, . . . ,Kp−1,Wp−1,Kp) admits the following asymptotic expansion:

n(2p−1)/2 bk1m1l1···kp−1mp−1lp−1kpmpn

an
=

1
(2
√
π)p

(
σ√
2

)3p

κ1ω1 · · ·ωp−1κp

× [µ1(µ2 − µ1) · · · (µp − µp−1)(1− µp)]−3/2

× exp

−σ2

8

κ2
1

µ1
+

p∑
j=2

ω2
j−1

µj − µj−1
+

κ2
p

1− µp


+ o(1) (3.8)

for n → ∞. The error term is uniform in ωi, i = 1, . . . , p − 1, and for κj ∈ [aj , bj ], bj > aj > 0
and κj+1 − κj > ε > 0, j = 1, . . . , p.

Now the finite dimensional distribution of the contour process, i.e. the distribution of
(K1, . . . ,Kp), can be calculated. Due to uniformity of the error term it suffices to determine the
marginal density in (κ1, . . . , κp) of (3.8). Doing this we obtain a multivariate Maxwell distribution
which actually coincides with that of Brownian excursion. Thus the following theorem holds:

Theorem 3.2. Let πt1,··· ,tk be the projection defined by

πt1,··· ,tk: C[0, 1]→ Rk

x(t) 7→ (x(t1), . . . , x(tk))

Then the following limit theorem holds:

πt1,...,tk

(
X̂n

(
ϕ0

ϕ(τ)
t

))
d−→ πt1,...,tk

(
2
σ
W+(t)

)
Remark. Note that Theorem 3.1 and its corollary only provide the distributions at the vertices of
the polygon X̂n(t). Thus they imply a slightly different form of the above limit theorem: We have
to substitute X̂n(t) by the corresponding step function process X̂n (btc/n). However, by means of
the proof of tightness (see section 3.6) we are able to prove the theorem as we stated it (see end
of section 3).

3.4. Proof of Theorem 3.1: Determination of the main term. In order to prove Theorem
3.1 we use Cauchy’s integral formula

[znum1
1 · · ·umpp ]B(z, u1, . . . , up) =

1
(2πi)p+1

∫
Γ1

· · ·
∫
Γp

∫
Γ0

B(z, u1, . . . , up)

zn+1um1+1
1 · · ·ump+1

p

dz dup · · · du1.
(3.9)
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with the following integration contour: Let z run through the contour Γ0 = Γ01 ∪ Γ02 ∪ Γ03 ∪ Γ04

defined by

Γ01 =
{
z = z0

(
1 +

t

n

)∣∣∣∣<t ≤ 0 und |t| = 1
}

Γ02 =
{
z = z0

(
1 +

t

n

)∣∣∣∣=t = 1 und 0 ≤ <t ≤ log2 n

}
Γ03 = Γ02

Γ04 =
{
z

∣∣∣∣|z| = z0

∣∣∣∣1 +
log2 n+ i

n

∣∣∣∣ und arg
(

1 +
log2 n+ i

n

)
≤ | arg(z)| ≤ π

}
.

Note that while z is running through Γ0 the location of the singularity also changes. This fact has
to be taken care of when choosing the integration contour for the other variables. The location of
the singularity is determined asymptotically by the equations

t

n
= 0

ϕ0

ϕ(τ)
sp
mp

+
t

n
= 0

ϕ0

ϕ(τ)

(
sp−1

mp−1
+

sp
mp

)
+
t

n
= 0

...
...

ϕ0

ϕ(τ)

(
s1

m1
+ · · ·+ sp−1

mp−1
+

sp
mp

)
+
t

n
= 0

as one can easily see by looking at (3.6). Thus as the integration contour of u1, . . . , up we may
choose Γj = Γj1 ∪ Γj2 ∪ Γj3 ∪ Γj4 defined by

Γj1 =
{
uj =

(
1 +

sj
mj

)∣∣∣∣<sj ≤ −Rj(sj+1, · · · , sp, t) and

|sj +Rj(sj+1, · · · , sp, t) + Ij(sj+1, · · · , sj , t)i| = 1

}

Γj2 =
{
uj =

(
1 +

sj
mj

)∣∣∣∣=sj = −Ij(sj+1, · · · , sp, t) + 1,

−Rj(sj+1, · · · , sp, t) ≤ <sj and |uj | ≤
∣∣∣∣1 +

log2mj + i

mj

∣∣∣∣
}

Γj3 =
{
uj =

(
1 +

sj
mj

)∣∣∣∣=sj = −Ij(sj+1, · · · , sp, t)− 1,

−Rj(sj+1, · · · , sp, t) ≤ <sj and |uj | ≤
∣∣∣∣1 +

log2mj + i

mj

∣∣∣∣
}

Γj4 =
{
uj

∣∣∣∣|uj | = ∣∣∣∣1 +
log2mj + i

mj

∣∣∣∣ and arg uj ∈ [−π, arg zj3] ∪ [arg zj2, π]
}
,
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where

Rj(sj+1, · · · , sp, t) =


max

(
0,
ϕ(τ)
ϕ0

mp

n
<t
)

if j = p

max
(

0,<
(
ϕ(τ)
ϕ0

tmj

n
+
sj+1mj

mj+1
+ · · ·+ spmj

mp

))
else,

Ij(sj+1, · · · , sp, t) =


max

(
n2/3,

ϕ(τ)
ϕ0

mp

n
=t
)

if j = p

max
(
n2/3,=

(
ϕ(τ)
ϕ0

tmj

n
+
sj+1mj

mj+1
+ · · ·+ spmj

mp

))
else.

and zjk denotes the point of Γjk with maximal absolute value.
Remark. The functions Rj and Ij guarantee that the Hankel-like contours1 Γ′j = Γj1 ∪ Γj2 ∪ Γj3
follow the movement of the singularity while z, uj+1, . . . , up are varying. It can be shown that for
these variables moving away from the Hankel contour along Γ.4 the singularity drifts out of the
circle determined by Γj4 and reaches a point x with |x| = 1 + Cn−1/3 when one of the variables
z, uj+1, . . . , up arrives at distance n−1/3 from the Hankel contour. Thus the term n2/3 in the
definition of Ij is justified.

Let us now consider the contribution of the Hankel integrals which yields the main term as we
will show in the next section. If we apply the substitutions z = z0

(
1 + t

n

)
, uj = 1 + sj

mj
to (3.9)

and use the asymptotic expansion (3.6), then we get

Cp
(2πi)p+1

∫
Γ′0

∫
Γ′1

· · ·
∫
Γ′p

exp

(
− σ√

2

(
c1···pk1 +

p−1∑
i=1

ci+1,...,pwi + ckp

)

− t− s1 − · · · − sp

)
dsp
mp
· · · ds1

m1

dt

n

1 +O

Mp

 1
n

+
p∑
j=1

1
mj

 ,

where

Cp = ϕp0z
p−n
0

(
z0ϕ
′′(τ)
2

)p−1

.

The shape of this integral suggests the substitution

ϕ0
ϕ(τ)m1

0 · · · 0

0
. . . . . .

...
... ϕ0

ϕ(τ)mp
0

0 0 1
n




v1

...

vp

t

 =



ϕ0
ϕ(τ)m1

ϕ0
ϕ(τ)m2

· · · ϕ0
ϕ(τ)mp

1
n

0 ϕ0
ϕ(τ)m2

· · · ϕ0
ϕ(τ)mp

1
n

...
. . . . . .

...
...

...
. . . ϕ0

ϕ(τ)mp
1
n

0 · · · · · · 0 1
n





s1

s2

...

sp

t


which finally leads to

Cp
m1 · · ·mpn

p∏
j=1

∫
γj

e−αj
√
−vj−βjvj dvj

∫
γ0

e−αp+1
√
−t−βp+1t dt

(
1 +O

(
1√
n

))
(3.10)

1According to Hankel’s representation of the Gamma function we will refer to the integration contour starting
at e2πi∞, passing the origin clockwise and returning to +∞ as Hankel contour. Similarly we will use the attribute

Hankel for all related concepts like Hankel integral,. . .
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where

α1 =
σk1√
2m1

√
ϕ0

ϕ(τ)
, β1 = 1,

αj =
σwj−1√

2mj

√
ϕ0

ϕ(τ)
, j = 2, . . . , p, βj = 1− mj−1

mj
, j = 2, . . . , p,

αp+1 =
σkp√

2n
, βp+1 = 1− mp

n

ϕ(τ)
ϕ0

.

and γj are Hankel contours meeting the constraint

<t ≤ log2 n, and <vj ≤ log2mj , j = 1, . . . , p.

Lemma 3.4. Let γ be a Hankel contour truncated at K. Then we have for α, β > 0

1
2πi

∫
γ

e−α
√
−t−βt dt =

αβ−
3
2

2
√
π

exp
(
−α

2

4β

)
+O

(
1
β
e−Kβ

)
. (3.11)

Proof. Substitute t = u2 and
√
βu− iα

2
√
β

= v. Then we get

αβ−
3
2

2π
exp

(
−α

2

4β

) ∞+iα/2β∫
−∞+iα/2β

e−v
2
dv

and this immediately implies (3.11). �

Applying this lemma to (3.10) yields the main term of (3.7).

3.5. The remainder integrals. In this section we have to show that those parts of the Cauchy
integral (3.9) where z or at least one of the uj lie in Γ04 or Γj4, respectively, are asymptotically
negligible. Therefore let Ip denote the integral (3.10) and Rp the remaining integral. Obviously we
have

Ip = O
(
z−n0 n−p−1

)
, n→∞. (3.12)

In order to estimate Rp observe that for z ∈ Γ04 and uj ∈ Γj4, respectively, the relations

|z−n−1| = O
(
z−n−1

0 e− log2 n
)

and |u−mj−1
j | = O

(
e− log2 mj

)
,

hold. B(z, u1, . . . , up) is composed of φ1(z, u, v) and φ2(z, u, v, w). As both functions are analytic
inside the integration domain (and thus bounded there) and moreover the latter one only appears
to the first power, it suffices to study the behaviour of φ1(z, u, v). Inside the domain max(|z −
z0|, |u−1|, |v−1|) ≤ ε, ε > 0 sufficiently small, we may use the local representation (3.3) provided
that ε is sufficiently small. Let z = 1 + t

n and consider the expression

A = 1− σ√
2

√
− t
n

for t ∈ Γ0 and z0| tn | ≤ ε. If t ∈ Γ01, then

−t = eiψ, ψ ∈
[
−π

2
,
π

2

]
and immediately we get |A| ≤ 1. Let t ∈ Γ02 ∪ Γ03, that means t = r ± i, where 0 ≤ r ≤ log2 n.
Then √

− t
n

=
(1 + r2)1/4

√
n

exp
(
i

(
π

2
− 1

2
arctan

1
r

))
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and that implies

|A|2 =


1− σ√

n
+O

(
r√
n

)
+O

(
1
n

)
for small r

1− σ√
2rn

+O
(

1√
r5n

)
+O

(
log2 n

n

)
for large r

It remains to investigate the case z ∈ Γ04. In this case we have z
z0

= aeiψ/n, where

a =
∣∣∣∣1 +

log2 n+ i

n

∣∣∣∣
and ψ ≤ εn. An easy calculation shows√

− t
n
∼

√
− log2 n

n
− iaψ

n

and using this we immediately obtain |A| ≤ 1.
Obviously the above considerations are also valid, if we use√

− ϕ0

ϕ(τ)

(
sj
mj

+ · · ·+ sp
mp

)
− t

n

or sums of terms of this form instead of
√
− t
n . Thus we have for max(|z − z0|, |u− 1|, |v− 1|) ≤ ε

the inequality

|φ1(z, u, v)| ≤ 1

which implies

Rp = O
(
z−n0 e−C log2 n

)
(3.13)

for a suitable constant C.
Now let (z, u, v) be outside the region where the local expansion of φ1(z, u, v) is valid. Set

z = z0

(
1 + t

n

)
, u = 1 + s

m and v = 1 + r
l , l,m proportional to n and, for example,

∣∣ r
l

∣∣ > ε. Then
φ1(z, u, v) is analytic for |u| ≤

∣∣1 + cm−1/3
∣∣ and |z| ≤ z0

∣∣1 + c′n−1/3
∣∣. Thus it is bounded and as

the exponents ki and li are bounded by
√
n we have

|B(z, u1, . . . , up)| = O
(
e
√
n
)
.

On the other hand we may choose the circles |u| =
∣∣1 + cm−1/3

∣∣ and |z| = z0

∣∣1 + c′n−1/3
∣∣ as

integration contours for u and z. Thus we get finally

Rp = O
(
z−n0 exp

(√
n− n2/3

))
(3.14)

Finally, equations (3.12)–(3.14) imply that the remainder integrals are exponentially small and
therefore negligible which completes the proof of Theorem 3.1.

3.6. Tightness. In order to complete the proof of Theorem 1.1 we have to prove that the process
X̂n(t) is tight. This can be done by employing Theorem 12.3 of [4]: The first condition is trivial,
as P{X̂n(0) = 0} = 1. Furthermore it can be shown that for polygonal functions like X̂n(t) it
suffices to establish the second condition of this theorem only for the vertices of the polygon (use
the ideas of [9, p.86]), i.e. we have to prove that

P

{∣∣∣∣X̂n

(
i

n

)
− X̂n

(
j

n

)∣∣∣∣ ≥ ε} ≤ K

εβ

∣∣∣∣ i− jn
∣∣∣∣α ,
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where K > 0, β ≥ α > 1, holds for all n ≥ 1, 0 ≤ i, j ≤ n, ε > 0. Therefore we have to set up the
GF corresponding to the bivariate distributions of X̂n(t):

Bk1k2(z, u1, u2) =
min(k1,k2)−1∑

l=0

Bk1lk2(z, u1, u2)

= ϕp0z
2u1u

2
2φ2(z, u1u2, u2)

min(k1,k2)−1∑
l=0

φ1(z, u1u2, 1)l

× φ1(z, u1u2, u2)k1−1−lφ1(z, u2, 1)k2−1−l

= ϕp0z
2u1u

2
2φ2(z, u1u2, u2)φ1(z, u1u2, u2)k1−1

× φ1(z, u2, 1)k2−1 1− q(z, u1u2, u2)min(k1,k2)

1− q(z, u1u2, u2)
,

where

q(z, u, v) =
φ1(z, u, 1)

φ1(z, u, v)φ1(z, v, 1)
.

Then

P

{∣∣∣∣X̂n

(
bµ1nc
n

)
− X̂n

(
bµ2nc
n

)∣∣∣∣ ≥ ε} =
1
an

[znum1
1 um2

2 ]
∑
k,l≥1

|k−l|≥bε
√
nc

Bkl(z, u1, u2).

Therefore we have to get estimates for the expression

1
1− q

∑
k,l≥0

|k−l|≥bε
√
nc

xkyl − 1
1− q

∑
k,l≥0

|k−l|≥bε
√
nc

xkylqmin(k,l)+1

where we used the abbreviations

x = φ1(z, u1u2, u2), y = φ1(z, u2, 1), xyq = φ1(z, u1u2, 1).

Splitting this sum yields

S1 =
∑

k≥bε
√
nc

∑
l<k−bε

√
nc

xkyl =
x1+bε

√
nc

(1− x)(1− xy)

S2 =
∑
k≥0

∑
l≥k+bε

√
nc

xkyl =
ybε
√
nc

(1− y)(1− xy)

S3 = q
∑

k≥bε
√
nc

∑
l<k−bε

√
nc

xk(qy)l =
qx1+bε

√
nc

(1− x)(1− xyq)

S4 = q
∑
k≥0

∑
l≥k+bε

√
nc

(xq)kyl =
qybε

√
nc

(1− y)(1− xyq)
.

Summing up gives

S1 + S2 − S3 − S4

1− q
=

x1+bε
√
nc

(1− x)(1− xy)(1− xyq)
+

ybε
√
nc

(1− y)(1− xy)(1− xyq)
.

(3.15)

Now we are ready to estimate the coefficient [znum1
1 um2

2 ] of (3.15). If we substitute u1u2 =
u, u2 = v and calculate the coefficient [znumvl], m = µn, l = λn, then v keeps track on the
difference l = (i − j) which is the most important quantity in proving tightness after all. As the
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terms S1 − S3 and S2 − S4 are of similar form, it suffices to consider one of those, say S1 − S3. In
order to get an estimate we again use Cauchy’s integral formula:

[znumvl](S1 − S3) =
1

(2πi)3

∫
Γz

∫
Γu

∫
Γv

φ1(z, u, v)kz−n−1u−m−1v−l−1 dv du dz

(1− φ1(z, u, v))(1− φ1(z, u, v)φ1(z, v, 1))(1− φ1(z, u, 1))
,

(3.16)

where k = bε
√
nc and the integration contour Γz = Γz1 ∪ Γz2 ∪ Γz3 ∪ Γz4 is chosen as follows:

Γz4

Γz1

Γz2

Γz3

z0 -

6

q

Figure 5: Integration contour Γz

Γz1 =
{
z = z0

(
1 +

eit

n

)∣∣∣∣α ≤ |t| ≤ π}
Γz2 =

{
z = z0

(
1 +

t

n
eiα
)∣∣∣∣ 1 ≤ |t| ≤ log2 n

}
Γz3 = Γz2

Γz4 =
{
z

∣∣∣∣|z| = z0

∣∣∣∣1 +
log2 n

n
eiα
∣∣∣∣ ,

arg
(

1 +
log2 n

n
eiα
)
≤ | arg z| ≤ π

}

If z is sufficiently close to z0, that means the local representation (3.2) holds, then the integration
in u and v is done along the analogous contours (i.e. z0 has to be replaced by f̃(z), for Γu we
replace t

n by s
m , and for Γv we use r

l instead of t
n , where m = µn and l = λn). Otherwise we

choose the unit circle as integration contour for u und v. To proceed we need the following result:

Lemma 3.5. Let fn ≥ 0 and

F (z) =
∑
n≥0

fnz
n.

Assume that F (z) is analytic in the domain

∆ = {z | |z| ≤ 1 + ε, |arg(z − 1)| ≥ α} ,

ε > 0, and satisfies for z ∈ ∆ the inequality

|F (z)| ≤
∣∣∣e−C√1−z

∣∣∣ ,
where C > 0. Then there exists a constant C ′ > 0 such that

[zn]F (z)k = O
(

1
n

exp
(
−C ′ k√

n

))
(3.17)

uniformly for k ≥ 0.

Proof. For convenience assume z0 = 1. Furthermore Ci will denote appropriate positive constants
throughout this proof. We have

[zn]F (z)k =
1

2πi

∫
Γz

F (z)k

zn+1
dz.

First let z ∈ Γz1. Obviously the relations

<
√

1− z ≥ C1√
n

(3.18)
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and z−n−1 = O (1) hold. The length of the integration contour is O
(

1
n

)
and thus∫

Γz1

F (z)k

zn+1
dz = O

(
1
n

exp
(
−C2

k√
n

))
.

Now let z ∈ Γz2 ∪ Γz3. Then z = 1 + t
ne

iα and thus

z−n−1 = O
(
exp

(
−teiα

))
holds. The estimate (3.18) is also valid. To get the desired result we extend the integration contour
to 0 ≤ t ≤ ∞. This leads to∫

Γz2∪Γz3

F (z)k

zn+1
dz ≤ C3

n

∞∫
0

exp
(
−C4

k√
n
− C5t

)
dt

=
C3

nC5
exp

(
−C4

k√
n

)
.

Finally let z ∈ Γz4. Obviously (3.18) still holds and thus

|F (z)|k ≤ exp
(
−C6

k√
n

)
.

Additionally we have

|z|−n−1 ∼ e− log2 n ≤ 1
n

and this implies ∫
Γz4

F (z)k

zn+1
dz = O

(
1
n

exp
(
−C6

k√
n

))
Finally set C ′ ≤ min(C2, C4, C6) to get (3.17). �

Now we are able to estimate the integral (3.16). If (z, u, v) lies in the domain where the local
expansion (3.2) holds then we may estimate the denominator of the integrand as follows:

|(1− φ1(z, u, v))(1− φ1(z, u, v)φ1(z, v, 1))(1− φ1(z, u, 1))|

= C̄3

(√
1− u

f̃(z)
+
√

1− v

f̃(z)

)(√
1− u

f̃(z)
+

√
1− 1

f̃(z)

)

×

(√
1− u

f̃(z)
+ 2
√

1− v

f̃(z)
+

√
1− 1

f̃(z)

)

≥ C1

n3/2

(
1
√
µ

+
1√
λ

)(
1 +

1
√
µ

+
2√
λ

)(
1 +

1
√
µ

)
≥ C2

n3/2
,

where C̄ = σ√
2

√
z0

ϕ0
ϕ(τ) and λ, µ as defined above. It is an easy exercise to verify the validity of

the above inequality for the whole integration domain. In order to cope with the numerator we
have to distinguish two cases according as we consider X̂n(t) near t = ϕ0

ϕ(τ) or not.

3.6.1. The process X̂n(t) outside the vicinity of t = ϕ0
ϕ(τ) . Let us further consider the domain where

(3.2) holds and substitute ū = u
f̃(z)

, v̄ = v
f̃(z)

in (3.16). From (3.2) we obviously get

φ1(z, u, v) = O
(∣∣exp

(
−C

(√
1− ū+

√
1− v̄

))∣∣) (3.19)

and application of Lemma 3.5 yields the upper bound

C1

ml
exp

(
−C2

(
k√
m

+
k√
l

))∫
|f̃(z)|−l−m

|zn+1|
dz (3.20)

for the integral (3.16).
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In order to proceed we expand f̃ in a Taylor series and get

1
f̃(z)

=
1

f̃(z0)
− f̃ ′(z0)
f̃(z0)2

(z − z0) +O
(
(z − z0)2

)
= 1 +

ϕ(τ)
ϕ0

(
z

z0
− 1
)

+O
(
(z − z0)2

)
(3.21)

Using z
z0

= 1 + eit

n for z ∈ Γz1 and z
z0

= 1 + t
ne

iα for z ∈ Γz2 ∪ Γz3 we obtain

f̃(z)−m−l
(
z

z0

)−n
∼


exp

((
ϕ(τ)
ϕ0

(λ+ µ)− 1
)
eit
)

= O (1) for z ∈ Γz1

exp
((

ϕ(τ)
ϕ0

(λ+ µ)− 1
)
teiα

)
for z ∈ Γz2 ∪ Γz3.

(3.22)

Under the assumption ϕ(τ)
ϕ0

(λ+ µ) ≤ 1− η, η > 0, this implies

∫
Γz1∪Γz2∪Γz3

|f̃(z)|−l−m

|zn+1|
|dz| = O

 1
n
zn0

1 +

∞∫
0

exp (−ηt cosα) dt


= O

(
1
n
zn0

)
. (3.23)

It remains to consider z ∈ Γz4. As long as (z, u, v) lies inside a sufficiently small δ-ball Uδ around
the singularity we may still use (3.2). Set z

z0
= aeit/n, where a =

∣∣∣1 + log2 n
n eiα

∣∣∣ and |t| ≤ δn. Then
we have

|f̃(z)| ≥ 1− ϕ(τ)
ϕ0

log2 n

n
+
t

n

an for ϕ(τ)
ϕ0

(λ+ µ) ≤ 1− η this yields

|f̃(z)|−m−l
(
z

z0

)−n
≤ |f̃(z)|−

ϕ0
ϕ(τ)n+ηn

(
z

z0

)−n
≤ exp

(
−ηϕ(τ)

ϕ0
log2 n−

(
ϕ0

ϕ(τ)
− η
)
t

)
(3.24)

and therefore ∫
Γz4∩Uδ

|f̃(z)|−l−m

|zn+1|
|dz| = O

(
e− log2 n

)
. (3.25)

If (z, u, v) /∈ Uδ, then the inequality

|φ1(z, u, v)| ≤ 1− ϑ

with ϑ > 0 holds. Thus the corresponding integral is exponentially small and therefore negligible.
Collecting (3.20), (3.23), (3.25) and recalling k = bε

√
nc we obtain for λ+ µ ≤ ϕ0

ϕ(τ) − η∣∣[znumvl](S1 − S3)
∣∣

=
1

(2π)3

∫
Γz

∫
Γu

∫
Γv

∣∣∣∣ φ1(z, u, v)kz−n−1u−m−1v−l−1 dv du dz

(1− φ1(z, u, v))(1− φ1(z, u, v)φ1(z, v, 1))(1− φ1(z, u, 1))

∣∣∣∣
≤ C z

n
0 n

3/2

nml
exp

(
−D

(
k√
m

+
k√
l

))
≤ C z

n
0 n
−3/2

ε4

(
ε
√
µ

ε√
λ

)2

exp
(
−D

(
ε
√
µ

+
ε√
λ

))
(3.26)
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where C and D are suitably chosen positive constants. Applying (3.1) and x2e−x ≤ c
xk

, for
arbitrary k > 0 and sufficiently large c > 0, we obtain the tightness condition

P{|X̂n(s)− X̂n(t)| ≥ ε} ≤ C 1
ε6

(
ε√
|s− t|

)2

exp

(
−D ε√

|s− t|

)

≤ C ′

ε12
|s− t|3/2, (3.27)

for 0 < s, t < ϕ0
ϕ(τ) − η.

3.6.2. The process X̂n(t) in the vicinity of t = ϕ0
ϕ(τ) . For proving the tightness inequality in case

of λ+µ ≥ ϕ0
ϕ(τ) −η it suffices to investigate the terms (3.22) and (3.24). Integrating the right-hand

sides of these formulae with respect to t gives as in the derivation of (3.26) the estimate∣∣[znumvl](S1 − S3)
∣∣ ≤ C zn0 n

3/2(
n− ϕ(τ)

ϕ0
(m+ l)

)
ml

exp
(
−D

(
k√
m

+
k√
l

))

which directly yields the tightness condition (3.27) if n− ϕ(τ)
ϕ0

(m+ l) ≥ ϕ(τ)
ϕ0

l holds.

So let n− ϕ(τ)
ϕ0

(m+ l) ≤ ϕ(τ)
ϕ0

l. If we prove

P

{
X̂n

(
ϕ0

ϕ(τ)
− δ
)
≥ ε
}
≤ C

εγ
δα (3.28)

with γ ≥ α > 1, then by means of

P
{
|X̂n(µ)− X̂n(µ2)| ≥ ε

}
≤ P

{
X̂n(µ) ≥ ε

2

}
+ P

{
X̂n(µ2) ≥ ε

2

}
and

ϕ0

ϕ(τ)
− µ− λ ≤ λ and

ϕ0

ϕ(τ)
− µ ≤ 2(λ).

the tightness condition can immediately be established. To prove (3.28) set again k = bε
√
nc.

Then we have

P
{
X̂n

(m
n

)
≥ ε
}

=
ϕ0

an
[zn−1um−1]

φ1(z, u, 1)k

1− φ1(z, u, 1)
Using the same integration contour as in the previous section and the substitution u

f̃(z)
= ū we

obtain as before

|1− φ1(z, u, 1)| ≥ C√
n

for a suitable positive constant C. Furthermore we have(
z

z0

)n
∼
(

1
f(z)

)nϕ0/ϕ(τ)

and of course (3.19). Thus substituting x = 1
f(z) gives finally

[zn−1um−1]
φ1(z, u, 1)k

1− φ1(z, u, 1)
≤ C1

∫∫ ∣∣∣e−k√1−ūū−m
∣∣∣ ∣∣∣e−k√1−xx−

ϕ0
ϕ(τ)n+m

∣∣∣ |dū dx|
≤ C2k

4n−3/2

ε4
(

ϕ0
ϕ(τ)n−m

)
m

exp

−C3

 k√
m

+
k√

ϕ0
ϕ(τ)n−m

 ,

where C1, C2, C3 are appropriate constants. This implies tightness and thus the proof of Theorem
1.1 is complete.
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Now we are able to complete the proof of Theorem 3.2. We have only to show that the difference
of the contour process and the step process X̂n (btc/n) converges to zero in probability. Obviously
we have for t ∈ [i/n, (i+ 1)/n]∣∣∣∣X̂n(t)− X̂n

(
i

n

)∣∣∣∣ ≤ ∣∣∣∣X̂n

(
i+ 1
n

)
− X̂n

(
i

n

)∣∣∣∣ .
Combining this with the tightness inequality (3.27) we get

P

{∣∣∣∣X̂n(t)− X̂n

(
i

n

)∣∣∣∣ ≥ ε} ≤ C ′

ε12
n−3/2

which proves the theorem.

4. The traverse process

In order to deal with the traverse process we first have to set up the basic GFs. The procedure
is analogous to that used in the previous section: We mark the nodes associated to the vertices of
the polygonal functions the process is constructed of. Then the nodes of all subtrees left of that
one which contains a marked node contribute the term 2 to the number of the considered node as
each edge is passed twice during pre-order traversal. Thus the GF is given by

ỹ(z, u) = a(zu2) = y(zu2, 1).

From Lemma 3.1 we immediately get the local expansion

a(zu2) ∼ τ −

√
2ϕ(τ)
ϕ′′(τ)

√
− t
n
− 2s
m

for z = z0

(
1 + t

n

)
, u = 1 + s

m and n,m→∞ where m ∼ cn, c > 0.
Remark. Note that we did not define the traverse process on the tree T but instead on T ′ = {◦}×T
in order to avoid zeros away from the boundary. This modification only causes a factor z in the
GFs and a layer shift.

Let amn denote the sum of weights over all trees where the m-th node of the traverse function
coincides with the root and let

A(z, u) =
∑
m,n≥0

amnz
num

be the associated GF. Suppose that the root has degree i. Obviously the path of the traverse
function passes the root if and only if j (0 ≤ j ≤ i) trees have already been traversed, but no node
of the j + 1-st tree. This implies

Ã(z, u) = uz
∑
i≥0

ϕi

i∑
j=0

ỹ(z, u)j ỹ(z, u)i−j

= uz
ỹ(z, u)ϕ(ỹ(z, u))− ỹ(z, 1)ϕ(ỹ(z, 1))

ỹ(z, u)− ỹ(z, 1)

Define

φ̃1(z, u, v) = uvz
ϕ(ỹ(z, u))− ϕ(ỹ(z, v))

ỹ(z, u)− ỹ(z, v)
.

and φ̃2 analogously tu φ2. It is also easy to see from the previous section that an analogon of Lemma
3.3 applies and thus we are able to set up the GF leading to the finite dimensional distributions
of the process:

B(z, u1, . . . , up) =
p−1∏
i=1

A
(
z(ui · · ·up)2, up

) [
φ1(z, ui · · ·up, ui+1 · · ·up)ki−li−1

× φ1(z, ui · · ·up, 1)li−li−1−1φ2(z, ui · · ·up, ui+1 · · ·up)
]

×A(z, up)φ1(z, up, 1)kp−lp−1−1.
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Due to the similarity of the GFs to those associated with the contour process tightness can be
proved analogously after all which proves Theorem 1.2.
Acknowledgment. The author thanks Michael Drmota for several useful comments and suggestions.
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