ON THE NUMBER OF PREDECESSORS IN CONSTRAINED RANDOM MAPPINGS

BERNHARD GITTENBERGER

Abstract

We consider random mappings from an n-element set into itself with constraints on coalescence as introduced by Arney and Bender. A local limit theorem for the distribution of the number of predecessors of a random point in such a mapping is presented by using a generating function approach and singularity analysis.

1. Introduction

For $M_{n}=\{1,2, \ldots, n\}$ let F_{n} denote the set of all functions from M_{n} into itself equipped with the uniform distribution. Then an element of F_{n} is called a random mapping. Each random mapping f can be represented by a functional graph, i.e. the graph consisting of the nodes $1,2, \ldots, n$, and of the edges $(i, f(i)), i=1, \ldots, n$. Various characteristics of random mappings have been studied. See e.g. $[1,3,4,6,8,9,10,12]$.

Arney and Bender [1] examined a more general model: They considered mappings such that the number of preimages of every point lies in a given set D of nonnegative integers (with $0 \in D)$ or, equivalently, the degrees of the nodes of the functional graph have to be in D. Let F_{n}^{D} denote the set of those mappings on M_{n}. Arney and Bender derived the distributions of many random mapping characteristics for F_{n}^{D} mainly by means of combinatorial counting arguments. In this paper we will study the distribution of a further random mapping characteristic using a generating function approach.

Let $x \in M_{n}$ and $f \in F_{n}^{D} . y \in M_{n}$ is called a predecessor of x if there exists a $j>0$ such that the j-th iterate of f applied on y yields x. Denote the number of predecessors of x by $\omega(x)$. Then we will show

Theorem 1. Let $\phi(x)=\sum_{k \in D} x^{k} / k!$ and β be the positive root of $\beta \phi^{\prime}(\beta)=\phi(\beta)$. Furthermore define $\lambda:=\beta^{2} \phi^{\prime \prime}(\beta) / \phi(\beta)$ and $d:=\operatorname{gcd}\{k: k \in D\}$. Then for a randomly chosen point of a mapping of F_{n}^{D} the expected number of predecessors equals $\sim \sqrt{\frac{\pi n}{2 \lambda}}$ and moreover a local limit theorem holds: If $d \mid r$ then

$$
\mathbf{P}[\omega=r]=\frac{d}{\sqrt{2 \pi \lambda r^{3}\left(1-\frac{r}{n}\right)}}(1+o(1))
$$

for $r \rightarrow \infty$ and $n-r \rightarrow \infty$. Otherwise $\mathbf{P}[\omega=r]=0$
Remark. For the special cases $D=\{0,1,2, \ldots\}$ and $D=\{0, k\}$ the above result was obtained by Rubin and Sitgreaves [11].

2. Combinatorial Background

The basic concept which our method relies on is that of combinatorial constructions described e.g. in [13]: Let \mathcal{A} be a set of combinatorial objects where each object $\sigma \in \mathcal{A}$ has a size $|\sigma|$. If a_{n} denotes the number of objects in \mathcal{A} having size n, then

$$
\hat{A}(z)=\sum_{n \geq 0} a_{n} \frac{z^{n}}{n!}
$$

Key words and phrases. random mappings, generating functions.
is called the (exponential) generating function (GF) of \mathcal{A}.
The advantage of the generating function approach is the fact that there is a direct correspondence between operations on combinatorial constructions and on GFs (see [13]). Using the graph representation of random mappings it is easy to see that they may be regarded as multisets of cycles of Cayley trees, i.e. labelled rooted trees. Let \mathcal{A} denote the set of Cayley trees. Then \mathcal{A} can be defined recursively by the symbolic equation

$$
\mathcal{A}=0 * \operatorname{mset}(\mathcal{A})
$$

where \circ represents a node. Analogously, we get for the set of random mappings, \mathcal{F} :

$$
\mathcal{F}=\operatorname{mset}(\operatorname{cycle}(\mathcal{A}))
$$

This implies the following equations for the corresponding GFs: The GF of Cayley trees is given by

$$
a(z)=z e^{a(z)}
$$

and the GF of random mappings

$$
f(z)=\frac{1}{1-a(z)}
$$

As we want to study the random mappings with constraints on coalescence, we have to modify $a(z)$ properly and obtain

$$
a(z)=z \phi(a(z)) \quad \text { where } \phi(z)=\sum_{k \in D} \frac{z^{k}}{k!}
$$

and the GF of constrained random mappings is given by

$$
f(z)=\frac{1}{1-b(z)} \quad \text { where } b(z)=z \phi^{\prime}(\bar{a}(z))
$$

since the root of each tree has an additional predecessor coming from the cycle.
Let $c_{n k}^{(r)}$ denote the number of mappings in F_{n}^{D} which have exactly k points x satisfying $\omega(x)=r$, where $\omega(x)$ is the number of predecessors of the point x. The number of all points in all mappings of F_{n}^{D} that satisfy this equation is denoted by $b_{n}^{(r)}$. Hence we have

$$
\frac{1}{\left|F_{n}^{D}\right| n} b_{n}^{(r)}=\mathbf{P}\{\omega=r\}
$$

Thus for establishing the local limit theorem we have to compute $b_{n}^{(r)}$. Obviously the relation

$$
b_{n}^{(r)}=\sum_{k \geq 1} k c_{n k}^{(r)}
$$

holds. Therefore $b_{n}^{(r)}$ can be calculated by

$$
\begin{equation*}
b_{n}^{(r)}=\left[\frac{z^{n}}{n!}\right]\left(c_{r}\right)_{u}(z, 1) \tag{1}
\end{equation*}
$$

where $\left[z^{n}\right] f$ denotes the coefficient of z^{n} in the power series of f and $\left(c_{r}\right)_{u}$ denotes the partial derivative with respect to $u . c_{r}(z, u)$ is defined by

$$
c_{r}(z, u)=\sum_{n, k \geq 0} c_{n k}^{(r)} \frac{z^{n}}{n!} u^{k}
$$

and can be obtained by marking the nodes we are keeping track of in the functional graphs which corresponds to introducing a further variable in the GF. Further examples of these marking techniques in combinatorial constructions can be found in $[3,4]$.
(1) shows that in order to get the asymptotic behaviour of $b_{n}^{(r)}$ we have to evaluate the coefficients of certain power series. In order to do this we will use the following theorem by Flajolet and Odlyzko [7].

Theorem 2. Let $f(z)$ be analytic in the domain

$$
\Delta=\{z /|z| \leq s+\eta,|\arg (z-s)| \geq \phi\},
$$

where s, η are positive real numbers and $0<\phi<\frac{\pi}{2}$. Furthermore let $\sigma(u)=u^{\alpha} \log ^{\beta} u$, $\alpha \notin$ $\{0,-1,-2, \ldots\}$. Then the Taylor coefficients of f satisfy

$$
f(z) \sim \sigma\left(\frac{1}{1-z / s}\right) \text { for } z \rightarrow s \text { in } \Delta \Longrightarrow\left[z^{n}\right] f(z) \sim \frac{\sigma(n)}{s^{n} n \Gamma(\alpha)}
$$

Analogous formulas hold for \mathcal{O} and o instead of \sim.

3. Proof of Theorem 1

For convenience, define $a_{r}=\left[z^{r}\right] a(z), b_{m r}=\left[z^{r}\right] b(z)^{m}$ and assume that $d=1 . b_{n}=\left[z^{n}\right] 1 /(1-$ $b(z))$. First of all, let us set up the GF $c_{r}(z, u)$. Therefore we have to mark all nodes that are roots of a tree with size r. This leads to the following modification of $a(z)$:

$$
t_{r}(z, u)=z \phi\left(t_{r}(z, u)\right)+(u-1) a_{r} z^{r}
$$

Moreover we have to take into account that the set of predecessors of a node which belongs to a cycle consists of all nodes in the component. Hence in a component of size r all nodes in the cycle have to be marked. For components containing a cycle of length m this yields the GF

$$
\frac{\left(z \phi^{\prime}\left(t_{r}(z, u)\right)\right)^{m}}{m}+\frac{1}{m}\left(u^{m}-1\right) z^{r} b_{m r} .
$$

Thus we have

$$
c_{r}(z, u)=\frac{1}{1-z \phi^{\prime}\left(t_{r}(z, u)\right)} \exp \left(z^{r} \sum_{m=1}^{r} \frac{u^{m}-1}{m} b_{m r}\right)
$$

and consequently

$$
\begin{equation*}
\left(c_{r}\right)_{u}(z, 1)=\frac{a_{r} z^{r+1} \phi^{\prime \prime}(a(z))}{(1-b(z))^{3}}+\frac{z^{r} \sum_{m=1}^{r} b_{m r}}{1-b(z)} \tag{2}
\end{equation*}
$$

Note that $b_{m r}=0$ if $m=0$ or $m>r$ and thus

$$
\sum_{m=1}^{r} b_{m r}=\sum_{m=0}^{\infty} b_{m r}=\left[z^{r}\right] \frac{1}{1-b(z)}=b_{r}
$$

Hence the functions $a(z)$ and $b(z)$ contain the information we need. $a(z)$ has a singularity ρ on the circle of convergence which is determined by

$$
\begin{aligned}
a(\rho) & =\rho \phi(a(\rho)) \\
1 & =\rho \phi^{\prime}(a(\rho)) .
\end{aligned}
$$

To proceed we will need the following lemma which is an immediate consequence of [5, Theorem 7.1]:

Lemma 1. Let $F(z, y)$ be continuous in $\left\{(x, y):\left|z-z_{0}\right|<r_{1},\left|y-y_{0}\right|<r_{2}\right\}$. Furthermore assume that if one variable is fixed, then F is analytic in the other variable. If $F\left(z_{0}, y_{0}\right)=$ $F_{y}\left(z_{0}, y_{0}\right)=0, F_{z}\left(z_{0}, y_{0}\right) \neq 0$ and $F_{y y}\left(z_{0}, y_{0}\right)$, then there exists a function $y(z)$ which admits the local representation

$$
y(z) \sim y_{0}-\sqrt{\frac{2 F_{z}\left(z_{0}, y_{0}\right)}{F_{y y}\left(z_{0}, y_{0}\right)}} \sqrt{z_{0}-z}
$$

for $z \rightarrow z_{0}$.

Thus in the vicinity of $\rho a(z)$ admits the following local expansion:

$$
a(z) \sim \beta-\sqrt{\frac{2 \phi(\beta)}{\phi^{\prime \prime}(\beta)}} \sqrt{1-\frac{z}{\rho}}=\beta-\frac{\beta \sqrt{2}}{\sqrt{\lambda}} \sqrt{1-\frac{z}{\rho}}, \quad \text { as } z \rightarrow \rho
$$

where $\beta=a(\rho)$ and $\lambda=\beta^{2} \phi^{\prime \prime}(\beta) / \phi(\beta)$. By expanding $\phi(z)$ we immediately obtain

$$
b(z) \sim 1-\rho \sqrt{2 \phi(\beta) \phi^{\prime \prime}(\beta)} \sqrt{1-\frac{z}{\rho}}=1-\sqrt{2 \lambda} \sqrt{1-\frac{z}{\rho}} \quad \text { as } z \rightarrow \rho
$$

and thus

$$
\begin{equation*}
\frac{1}{1-b(z)} \sim \frac{1}{\sqrt{2 \lambda}}\left(\frac{1}{1-z / \rho}\right)^{1 / 2} \quad \text { as } z \rightarrow \rho \tag{3}
\end{equation*}
$$

Now we are able to apply Theorem 2 and get

$$
\begin{equation*}
a_{r} \sim \frac{\beta}{\rho^{r} \sqrt{2 \pi \lambda r^{3}}} \quad \text { and } \quad b_{r} \sim \frac{1}{\rho^{r} \sqrt{2 \pi \lambda r}} \quad \text { as } r \rightarrow \infty \tag{4}
\end{equation*}
$$

Using this we finally get

$$
\begin{aligned}
\frac{b_{n}^{(r)}}{\left|F_{n}^{D}\right| n} & =\frac{1}{n b_{n}}\left[z^{n}\right]\left(c_{r}\right)_{u}(z, 1) \\
& \sim \frac{\rho^{n} \sqrt{2 \pi \lambda n}}{n}\left(\frac{a_{r} \lambda}{\beta}\left[z^{n-r}\right] \frac{1}{(1-b(z))^{3}}+\left[z^{n-r}\right] \frac{1}{1-b(z)}\left[z^{r}\right] \frac{1}{1-b(z)}\right) \\
& \sim \frac{\rho^{n} \sqrt{2 \pi \lambda n}}{n}\left(\frac{\lambda}{\rho^{r} \sqrt{2 \pi \lambda r^{3}}} \frac{\sqrt{n-r}}{\rho^{n-r} \sqrt{2 \pi \lambda^{3}}}+\frac{1}{\rho^{r} \sqrt{2 \pi \lambda r}} \frac{1}{\rho^{n-r} \sqrt{2 \pi \lambda(n-r)}}\right) \\
& =\frac{1}{\sqrt{2 \pi \lambda r^{3}(1-r / n)}}
\end{aligned}
$$

What remains to do is the calculation of the mean value μ_{n} : By (2) we have

$$
\begin{aligned}
\mu_{n} & =\frac{1}{n b_{n}}\left[z^{n}\right] \sum_{r \geq 0} r\left(c_{r}\right)_{u}(z, 1) \\
& =\frac{1}{n b_{n}}\left[z^{n}\right]\left(\frac{\phi^{\prime \prime}(a(z))}{(1-b(z))^{3}} z^{2} a^{\prime}(z)+\frac{1}{1-b(z)} z\left(\frac{1}{1-b(z)}\right)^{\prime}\right)
\end{aligned}
$$

Using the functional equation of $a(z)$ we immediately get

$$
a^{\prime}(z)=\frac{a(z)}{z(1-b(z))}
$$

This implies

$$
\mu_{n}=\frac{1}{n b_{n}}\left[z^{n}\right]\left(\frac{2 z \phi^{\prime \prime}(a(z)) a(z)}{(1-b(z))^{4}}+\frac{z \phi^{\prime}(a(z))}{(1-b(z))^{3}}\right)
$$

Now observe that for $z \rightarrow \rho$ we have $z \phi^{\prime \prime}(a(z)) a(z) \sim \lambda$. Thus we get by using (3) and (4) and applying Theorem 2

$$
\mu_{n}=\sqrt{\frac{\pi n}{2 \lambda}}\left(1+\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)\right)
$$

and the proof is complete.
Remark 1. In an analogous way it is possible to reobtain Arney and Bender's [1] results by the method presented here or to derive local limit theorems for other random mapping characteristics. Note, for instance, that recently Baron, Drmota and Mutafchief [2] derived the missing distribution of [1, Table II] by using a generating function approach.

Remark 2. It should be mentioned that the coefficient of coalescence λ which occurs in the distributions of several random mapping characteristics has a simple probabilistic interpretation, as Aldous pointed out: If we consider the trees which build up the random mappings as representations of Galton-Watson branching processes, then the offspring distribution is determined by the tree function $\phi(z)$ and λ is equal to its variance.

References

[1] J. Arney and E. A. Bender, Random mappings with constraints on coalescence and number of origins, Pacific J. Math., 103 (1982), 269-294.
[2] G. Baron, M. Drmota and L. Mutafchief, Predecessors in random mappings, Combinatorics, Probability and Computing, to appear.
[3] M. Drmota and M. Soria, Marking in combinatorial constructions: generating functions and limiting distributions, Theoretical Comp. Science 144 (1995), 67-99.
[4] M. Drmota and M. Soria, Marking in combinatorial constructions: images and preimages in random mappings, SIAM J. on Discrete Math., to appear.
[5] E. A. Evgrafov, Analytic Functions, Dover, New York, 1966.
[6] P. Flajolet and A. M. Odlyzko, Random mapping statistics, In Advances in Cryptology (1990), J.-J. Quisquater and J. Vandewalle, Eds., vol. 434 of Lecture Notes in Computer Science, Springer Verlag, pp. 329-354. Proceedings of Eurocrypt '89, Houtalen, Belgium, April 1989.
[7] P. Flajolet and A. M. Odlyzko, Singularity analysis of generating functions, SIAM J. on Discrete Math. 3, 2 (1990), 216-240.
[8] B. Harris, Probability distributions related to random mappings, Annals of Mathematical Statistics 31, 2 (1960), 1045-1062.
[9] V. F. Kolchin, Random Mappings, Optimization Software, Inc., New York, 1986.
[10] L. R. Mutafciev, The limit distribution of the number of nodes in low strata of random mappings, Statistics 83 Probability Letters 7 (1989), 247-251.
[11] H. Rubin and R. Sitgreaves, Probability distributions related to random transformations of a finite set, Technical Report No. 19a, Applied Mathematics and Statistics Laboratory, Stanford, 1954.
[12] V. E. Stepanov, Limit distributions of certain characteristics of random mappings, Th. Prob. Appl. 14 (1969), 612-626.
[13] J. S. Vitter and P. Flajolet, Average-case analysis of algorithms and data structures, in Handbook of Theoretical Computer Science, J. van Leeuwen, Ed., vol. A: Algorithms and Complexity. North Holland, 1990, ch. 9, pp. 431-524.

Bernhard Gittenberger

Department of Algebra and Discrete Mathematics
TU Wien
Wiedner Hauptstrasse 8-10/118
A-1040 Wien,
Austria

