
ON THE PROFILE OF RANDOM TREES

MICHAEL DRMOTA AND BERNHARD GITTENBERGER

Abstract. Let T be a plane rooted tree with n nodes which is regarded as family tree of a

Galton-Watson branching process conditioned on the total progeny. The profile of the tree

may be described by the number of nodes or the number of leaves in layer t
√

n, respectively.

It is shown that these two processes converge weakly to Brownian excursion local time. This

is done via characteristic functions which are obtained by means of generating functions

arising from the combinatorial setup and complex contour integration. Besides, an integral

representation for the two dimensional density of Brownian excursion local time is derived.

1. Introduction

Consider a class A of plane rooted trees. Define for each T ∈ A the size |T | by the number
of nodes T consists of and a weight

ω(T ) =
∏

k≥0

ϕ
nk(T )
k , (1.1)

where (ϕk; k ≥ 0) are non-negative numbers and nk(T ) is the number of nodes v ∈ T with
out-degree k. Furthermore set

an =
∑

T :|T |=n

ω(T ).

Then the corresponding generating function (GF) a(z) =
∑

n≥0 anz
n satisfies the functional

equation

a(z) = zϕ(a(z)), (1.2)

where ϕ(t) =
∑

k≥0 ϕkt
k. According to Meir and Moon [20] we will call such a family of trees

simply generated. Now equip the sets An = {T ∈ A : |T | = n} with the probability distribution
induced by the weight function ω(T ). Then we call each tree T ∈ A a random tree.

As Aldous [1] pointed out there is a natural correspondence between simply generated random
trees and Galton-Watson branching processes: Let X be a branching process with offspring
distribution ξ determined by

P {ξ = k} =
τkϕk

ϕ(τ)
,

where τ is an arbitrary nonnegative number within the circle of convergence of ϕ(t). Then the
distribution of X conditioned on the total progeny |X| is determined by P {X = T ||X| = n}
and it is easily seen that this distribution coincides with that induced by (1.1). Furthermore it
is obvious to see that there occurs no loss of generality if only critical branching processes are
considered. The condition for a branching process to be critical, Eξ = 1, translated into the
”language of trees” is τϕ′(τ) = ϕ(τ) and the variance of ξ is given by

σ2 =
τ2ϕ′′(τ)

ϕ(τ)
. (1.3)
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Consider a simply generated tree T ∈ An. We denote by LT (k) the number of nodes at
distance k from the root where the distance of two nodes v and w is defined as usual by the
number of edges of the path connecting v and w. If T is a random tree then LT (k) becomes a
random variable denoted by Ln(k). For non-integer k we define Ln(k) by linear interpolation:

Ln(t) = (btc + 1 − t)Ln(btc) + (t− btc)Ln(btc + 1), t ≥ 0.

We will show that the scaled process

ln(t) =
1√
n
Ln(t

√
n), t ≥ 0,

weakly converges to Brownian excursion local time as n tends to infinity. This proves a conjec-
ture stated by Aldous [1, Conjecture 4].

Theorem 1.1. Let ϕ(t) be the GF of a family of random trees. Besides, let W (s) denote
Brownian excursion of duration 1 and l(t) its (total) local time at level t, i.e.

l(t) = lim
ε→0

1

ε

1
∫

0

I[t,t+ε](W (s)) ds

Assume that ϕ(t) has a positive or infinite radius of convergence R and d = gcd{i|ϕi > 0} = 1.
Furthermore suppose that the equation

tϕ′(t) = ϕ(t)

has a minimal positive solution τ < R and that σ2 defined by (1.3) is finite. Then the process
ln(t) converges weakly to Brownian excursion local time, exactly that means

ln(t)
w−→ σ

2
l
(σ

2
t
)

in C[0,∞), as n→ ∞.

Remark 1. The case d > 1 can be treated analogously. All weak limit theorems throughout this
paper remain unchanged except that we have to require n ≡ 1 mod d. In case of local limit
theorems the only difference is a factor d in the density of the limiting distribution. Thus we
may restrict ourselves to d = 1.

Remark 2. Originally Aldous [1] formulated his conjecture in terms of the step function process
1√
n
Ln(bt√nc). The reason that we decided to work with a linear interpolated process instead

of a step function process is that the proof of tightness (section 6) is essentially shorter for
the first one since all “trajectories” of the process are continuous functions in C[0,∞). More
precisely, there is a similar tightness condition for the space D[0,∞) in which step functions are
allowed (see [4]) and in fact, by using direct (but messy) extensions of the method presented in
section 6 we are also able to prove the “original” conjecture.

Since the distribution of supt≥0 l(t) is the same as that of 2 sup0≤t≤1W (t) (see [3] or [1]),
which has been shown to be

P

{

sup
0≤t≤1

W (t) ≤ x

}

= 1 − 2
∑

k≥1

(4x2k2 − 1)e−2x2k2

(1.4)

by Kennedy [16], Theorem 1.1 immediately implies the following property for the width of trees:

Corollary. Under the assumption of Theorem 1.1 we have

sup
t≥0

ln(t)
w−→ σ sup

0≤t≤1
W (t)

as n→ ∞.
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The process ln(t) may be viewed as the ”local” process corresponding to the search depth
process (for details see Aldous [1]) which is obtained by traversal of the contour of the tree.
Aldous [2] proved that this process converges weakly to Brownian excursion. A process similar
to the search depth process is the contour process introduced by Gutjahr and Pflug [12] which
is constructed of the leaf heights of the tree. This process also converges to Brownian excursion
(see [10]) and so it is natural to expect that the corresponding local process converges to local

time, too: Let L̂T (k) denote the number of leaves at distance k from the root and L̂n(k) the
random variable we get if T is a random tree. Then the following theorem holds:

Theorem 1.2. Under the assumptions of Theorem 1.1 the scaled process

l̂n(t) =
1√
n

(

(bt
√
nc + 1 − t

√
n)L̂n(bt

√
nc) + (t

√
n− bt

√
nc)L̂n(bt

√
nc + 1)

)

, t ≥ 0,

converges weakly to Brownian excursion local time: Precisely we have

l̂n(t)
w−→ ϕ0

ϕ(τ)

σ

2
l
(σ

2
t
)

in C[0,∞), as n→ ∞.

The density of local time. The one dimensional density of (l(t); t ≥ 0) at t = ρ is well studied.
There are several representations available in the literature: Using the theory of branching
processes Kennedy [15] and Kolchin [18, Theorem 2.5.6] obtained

fρ(x) =
x

4

1
∫

0

(1 − s)−
3
2 e−

x2ρ2

8(1−s) g2ρ

(x

2
, s
)

ds, (1.5)

where gr(z, s) is the density of a distribution given by its characteristic function:

ψr(θ1, θ2) =





sinh(r
√
−2iθ2)

r
√
−2iθ2

− iθ1

(

sinh(r
√

−iθ2/2)

r
√

−iθ2/2

)2




−1

Takács [23] calculated this density by means of a generating function approach

fρ(x) = 2
∑

j≥1

j
∑

k=1

(

j

k

)

e−(x+2ρj)2/2 (−x)k

(k − 1)!
Hk+2(x+ 2ρj). (1.6)

Hk(z) are the Hermite polynomials defined by

Hk(z) = (−1)kez2/2 d
k

dzk
e−z2/2.

Knight [17] worked directly with Brownian excursion and obtained

fρ(x) = 2−1/2π5/2ρ−3

1
∫

0

f∗
(

π2(1 − s)

2ρ2

)

h(s, x) ds (1.7)

with

f∗(z) = 4
√

2π3
∑

k≥1

k2 d

dz

(

e−k2π2/z

√
2πz3

)

and

h(s, x) = − 1

2ρ
√

2πs

∑

i≥0

1

i!

di−1

dxi−1

(

xi d
2

dx2
e−2ρ2(x+i)2/s

)

,

where d−1

dx−1 =
(

d
dx

)−1
.
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Getoor and Sharpe [9] also used a direct approach and derived a double Laplace transform
of the density:

∞
∫

0

e−αt

t
∫

0

1√
2πs

∞
∫

t−s

1√
2πr3

E
[

e−βl(ρ/
√

r)
√

r
]

dr ds dt = φρ(α, β) (1.8)

where

φρ(α, β) =
1

α

√
2α+ β(1 + e−2ρ

√
2α)√

2α+ β(1 − e−2ρ
√

2α)
− β

√
2

(1 + 2ρβ)α3/2
.

This formula was also shown by Louchard [19] who found a considerably shorter proof via Kac’s
formula for Brownian functionals.

When studying M/M/1-queues Cohen and Hooghiemstra [5] got an integral representation
for the above density:

fρ(x) =
1

i
√

2π

∫

γ

−se−s

sinh2(ρ
√
−2s)

exp

(

− x√
2

√
−seρ

√
−2s

sinh(ρ
√
−2s)

)

ds, (1.9)

where γ is the straight line {z : <z = −1}. They also derived the Laplace transform of the two
dimensional densities of local and occupation time. We will get an integral representation for
the density of the two dimensional distribution as a side result.

Finally it should be mentioned that Hooghiemstra [13] found a direct proof for the equivalence
of (1.7) and (1.9).

Remark. Note that the expressions (1.5)–(1.9) are only representations of the continu-
ous part of the local density. Obviously the local time density has a jump of magnitude
P
{

sup0≤t≤1W (t) < ρ
}

at 0. This quantity is given by (1.4).

2. Plan of the proof

In order to prove Theorems 1.1 and 1.2 we will use [4, Theorem 12.3]. Thus we have to show

that the finite dimensional distributions (fdd’s) of ln(t) and l̂n(t), respectively, converge weakly
to those of Brownian excursion local time and that these sequences are tight. The proof of
tightness is presented in section 6 and so we turn now to the weak limit theorems.

Consider a random tree T ∈ An and set

admn =
∑

T∈An,LT (d)=m

ω(T ).

Thus the distribution of Ln(d) is given by

P {Ln(d) = m|T ∈ An} =
admn

an
.

In order to obtain this distribution we use the immediate translation technique of combinato-
rial constructions into GFs which is widely used in combinatorial enumeration (for a description
see e.g. [24]): If we denote vertices by ◦, then A may be described by the symbolic recursion

A = Ψ(A),

where the operator Ψ is defined by

Ψ(X ) = ϕ0 · {◦} ∪ ϕ1 · {◦} × X ∪ ϕ2 · {◦} × X × X ∪ · · ·
As ∪ and × correspond to sum and product we immediately get the functional equation (1.2).

Now let us mark all nodes of layer d and denote marked nodes by •. Call the tree family
obtained from A in that way B and its GF ad(z, u). Then it is easy to see that

B = Ψd({•} × A)
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holds. Due to the correspondence

◦ ↔ z

• ↔ uz

we immediately get

ad(z, u) = yd(z, ua(z))

where

y0(z, u) = u

yi+1(z, u) = zϕ(yi(z, u)), i ≥ 0. (2.1)

Further applications of these marking techniques can be found in [7].
Obviously the GF corresponding to B satisfies

ad(z, u) =
∑

n,m≥0

admnu
mzn.

Thus the distribution of Ln(d) can be obtained by extracting the coefficient of znum of ad(z, u)
which we denote by [znum]ad(z, u). In order to prove Theorems 1.1 and 1.2 we need only weak
limit theorems and thus it suffices to work with characteristic functions. The characteristic
function of 1√

n
Ln(k) is

φkn(t) =
1

an
[zn]yk

(

z, eit/
√

na(z)
)

.

The characteristic function of 1√
n
L̂n(k) can be derived analogously using combinatorial con-

structions as described above:

φ̂kn(t) =
1

an
[zn]yk

(

z, ϕ0z(e
it/

√
n − 1) + a(z)

)

.

In a similar way we get the characteristic function for the higher dimensional distributions: The

characteristic function of
(

1√
n
Ln(k1), . . . ,

1√
n
Ln(kp)

)

is given by

φk1···kpn(t1, . . . , tp) =
1

an
[zn]yk1

(

z, eit1/
√

nyk2−k1

(

z, . . . ykp−kp−1

(

z, eitp/
√

na(z)
)

. . .
)

and that of
(

1√
n
L̂n(k1), . . . ,

1√
n
L̂n(kp)

)

by

φ̂k1···kpn(t1, . . . , tp) =
1

an
[zn]yk1

(

z, ϕ0z
(

eit1/
√

n − 1
)

+ yk2−k1

(

z, · · · + ykp−kp−1

(

z, ϕ0z
(

eitp/
√

n − 1
)

+ a(z)
)

. . .
)

.

In order to extract the desired coefficient asymptotically we will use Cauchy’s integral formula
with a suitably chosen integration contour and approximate the integrand there. Therefore we
need a detailed knowledge of the behaviour of the recursion (2.1):

Lemma 2.1. Let z0 be the point on the circle of convergence of a(z) which lies on the positive

real axis. Set z = z0
(

1 + x
n

)

and α = zϕ′(a(z)). Furthermore assume that |u− a(z)| = O
(

1√
n

)

and x
n → 0 in such a way that | arg(−x)| < π and

∣

∣

∣

∣

∣

1 −
√

−x
n

∣

∣

∣

∣

∣

≤ 1 +
C√
n

are satisfied. Then yk(z, u) admits the local representation

yk(z, u) = a(z) +
(u− a(z))αk

√

−x/n+ σ(τ − u)/τ
√

2

2
√

−x/n
+

√

−x/n− σ(τ − u)/τ
√

2

2
√

−x/n
αk + O

(
√

|x|
n

) ,
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uniformly for k = O (
√
n).

Remark. As a(z) has only non-negative coefficients and d = gcd{i|ϕi > 0} = 1 the function
a(z) has only one singularity on the circle of convergence which is located at z0 (for more details
see section 3). yk(z, u) is closely related to a(z) and hence it has also exactly one singularity
near z0 the nature of which is described by the above result.

By means of this lemma we will be able to derive the characteristic function of the limiting
distribution:

Theorem 2.1. Let ki = κi
√
n, i = 1, . . . , p where 0 < κ1 < · · · < κp. Then the charac-

teristic function φκ1...κp
(t1, . . . , tp) = lim

n→∞
φk1···kpn(t1, . . . , tp) of the limiting distribution of

(

1√
n
Ln(k1), . . . ,

1√
n
Ln(kp)

)

satisfies

φκ1...κp
(t1, . . . , tp) = 1 +

σ

i
√

2π

∫

γ

fκ1,...,κp,σ(x, t1, . . . , tp)e
−x dx, (2.2)

where

fκ1,...,κp,σ(x, t1, . . . , tp) =

Ψκ1σ(x, it1 + Ψκ2−κ1,σ(. . .Ψκp−1−κp−2,σ(x, itp−1 + Ψκp−κp−1,σ(x, itp)) · · · )
(2.3)

with

Ψκσ(x, t) =
t
√
−xe−κσ

√
−x/2

√
−xeκσ

√
−x/2 − t σ√

2
sinh

(

κσ
√

−x
2

)

(2.4)

and γ is the Hankel-like contour1 γ1 ∪ γ2 ∪ γ3 defined by

γ1 =
{

s
∣

∣|s| = 1 and <s ≤ 0
}

,

γ2 =
{

s
∣

∣=s = 1 and <s ≥ 0
}

,

γ3 = γ2.

(2.5)

Remark 1. Note that for p = 1, 2 Cohen and Hooghiemstra [5] established the above represen-
tation with a straight line parallel to the imaginary axis as integration path. However, it is easy
to see that bending the path does not change the value of the integral. Choosing the line means
that we need a more detailed asymptotic expansion of the integrand when estimating the error
term in section 5. Thus we use the Hankel contour instead.

Remark 2. Note that by using the method presented in this section the above theorem can only
be established for the step function process 1√

n
Ln (bt√nc). However, in section 6 we will show

the inequality

P
{∣

∣Ln

(

ρ
√
n
)

− Ln

(

(ρ+ θ)
√
n
)∣

∣ ≥ ε
√
n
}

≤ C
θ2

ε4

for some C > 0. This implies

P
{∣

∣Ln(ρ
√
n) − Ln

(

bρ
√
nc
)∣

∣ ≥ ε
√
n
}

≤ C

εβn
→ 0, as n→ ∞.

Therefore it suffices to prove the theorem for the step function process.

1The names ”Hankel contour”, ”Hankel integral”, etc. originate from Hankel’s representation of the Gamma
function,

1

2πi

∫

γ

(−s)−αe−s ds =
1

Γ(α)
,

and have become usual due to the quite frequent occurrence of integration contours similar to γ in asymptotical

problems in combinatorics.
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In the cases p = 1 and p = 2 the representation (2.2) coincides with the characteristic
functions of Brownian excursion local time (cf. [5]). But we still have to show that this is also
true for higher dimensions. Thus we have to determine the higher dimensional distributions of
local time. We will present two different methods for obtaining these distributions: First we
indicate how the generating function approach can be used in order to derive the fdd’s of local
time. As this approach allows no direct computation we have to do a detour via occupation
times: We will derive the characteristic function Φκ1···κpη(t1, . . . , tp) of the joint distribution of
Brownian excursion occupation time for the sets [κ1, κ1 + η] ∪ · · · ∪ [κp, κp + η]. Then we get
the characteristic function of the fdd’s of local time by

φ̄κ1···κp
(t1, . . . , tp) = lim

η→0
Φκ1···κpη

(

t1
η
, . . . ,

tp
η

)

. (2.6)

Second, we will present a direct computation of these fdd’s using excursion theory. Here we
compute the expected value of a suitably chosen random variable with respect to Itô’s measure
and then take the inverse Laplace transform. The evaluation of Itô’s measure is based on a
decomposition of the Brownian excursion sample path and Ray-Knight theorems.

It turns out that

φ̄σκ1/2,...,σκp/2

(

σt1
2
, . . . ,

σtp
2

)

= φκ1···κp
(t1, . . . , tp)

which completes the first step in the proof of Theorem 1.1, i.e. the weak limit law for the fdd’s.
The proof of Theorem 1.2 runs along analogous lines due to the similarity of the involved GF’s
and thus we will omit the details.

The next section deals with the asymptotic solution of the recursion (2.1). Section 4 contains
the proof of Theorem 2.1 and section 5 provides the fdd’s of Brownian excursion occupation
time and its local time. Afterwards we will present the proof of tightness. The final section is
devoted to an integral representation of the two dimensional local time density which extends
the one of Cohen and Hooghiemstra [5].

3. Asymptotic solution of the main recursion

We will now establish an asymptotic solution of yi(z, u) of the recursion (2.1). Of course the
limit of interest is a(z), the analytic solution of a(z) = zϕ(a(z)). It is well known that a(z) has
a local expansion of the form

a(z) = τ − τ
√

2

σ

√

1 − z

z0
+ O

(∣

∣

∣

∣

1 − z

z0

∣

∣

∣

∣

)

(3.1)

around its singulariy z0 = 1/ϕ′(τ). The assumption d = 1 ensures that |zϕ′(a(z))| < 1 for
|z| = z0, z 6= z0. Hence, by the implicit function theorem a(z) has an analytic continuation to
the region |z| < z0+δ, arg(z−z0) 6= 0 for some δ > 0. Furthermore it follows that α = zϕ′(a(z))
has similar analytic properties, especially it has the local expansion

α = 1 − σ
√

2

√

1 − z

z0
+ O

(∣

∣

∣

∣

1 − z

z0

∣

∣

∣

∣

)

. (3.2)

The first step in establishing asymptotic solutions for yi(z, u) is to derive proper a-priori
estimates for

wi = wi(z, u) = yi(z, u) − a(z).

Lemma 3.1. Set α = zϕ′(a(z)) and suppose that w0 = u − a(z) = O (1) and 1/2 ≤ |α| ≤
1 + O (|w0|). If i = O

(

|w0|−1
)

then

wi = O
(

w0α
i
)

.

Proof. Set N = |w0|−1. Then we have i ≤ C1N and |α| ≤ 1 + C2/N for some constants
C1, C2 > 0. Furthermore there exists a constant C3 such that

max
|y|≤1

|zϕ′′(a(z) + y)| ≤ C3.
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If N < eC1(C2+C3) then i ≤ C1N is absolutely bounded and there is nothing to prove. Therefore
we may assume that N ≥ eC1(C2+C3). We will proceed by induction and we will show in a first
step that |wi| ≤ (1 + (C2 + C3)/N)i|w0|. By using the local expansion

yi+1(z, u) = zϕ(yi(z, u)) = zϕ(a(z) + wi)

= a(z) + zϕ′(a(z))wi + zϕ′′(a(z) + θi)w
2
i /2

= a(z) + αwi + zϕ′′(a(z) + θi)w
2
i /2 (3.3)

we immediately obtain

|wi+1| ≤ (1 + C2|w0| + C3|wi|) |wi|
≤
(

1 + C2/N + C3(1 + C3/N)i|w0|
)

(1 + (C2 + C3)/N)i|w0|
≤
(

1 + C2/N + C3e
C3C1/N

)

(1 + (C2 + C3)/N)i|w0|
= (1 + (C2 + C3)/N)i+1|w0|.

Hence |wi| ≤ eC1(C2+C3)/N ≤ 1 for i ≤ C1N .
Finally, |α| ≥ 1/2 gives

|wi+1| ≤ (|α| + C3|wi|)|wi|

≤ |α|
(

1 + 2(C2 + C3)e
C1(C2+C3)/N

)

|wi|

which implies

|wi| ≤ e2C1(C2+C3)e
C1(C2+C3) |α|i|w0|.

With help of this a-priori estimate we are now able to obtain a significantely better estimate
for wi via bootstrapping. This will prove Lemma 2.1. (A similar procedure has been used in
[6]). Note that under the assumptions of Lemma 2.1 w0 = O (

√
n) and α = 1 + O

(

n−1/2
)

.

Hence we can apply Lemma 3.1 for i = O (
√
n). The asymptotic relation

wi+1 = αwi + βw2
i + O

(

|wi|3
)

,

in which β = zϕ′′(a(z))/2, can be rewritten to

1

wi+1
=

1

αwi

1

1 + βwi/α+ O (|wi|2)

=
1

αwi
− β

α
+ O

( |wi|
|α|

)

.

If we set qi = αi

wi
then

qi+1 = qi − βαi−1 + O
(

|wi||α|i
)

which provides

qi =
1

w0
− β

α

1 − αi

1 − α
+ O

(

|w0|
∣

∣

∣

∣

1 − α2i

1 − α2

∣

∣

∣

∣

)

.

Recall that we use the representation z = z0
(

1 + x
n

)

. Thus

w0 = u− a(z) = u− τ +
τ
√

2

σ

√

−x
n

+ O
( |x|
n

)

β =
z0ϕ

′′(τ)

2

(

1 + O
(
√

|x|
n

))

=
σ2

2τ

(

1 + O
(
√

|x|
n

))

.

which gives

− w0β

α(1 − α)
=
σ2

2τ

τ − u− τ
√

2
σ

√

−x/n
σ
√

−2x/n
+ O

(
√

|x|
n

)

and proves Lemma 2.1.
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4. The finite dimensional limiting distributions

We will use the results of the previous section to prove Theorem 2.1. Let us first consider
the two dimensional case:

Proposition 4.1. Let k and h be nonnegative integers and denote by φk,k+h,n(s, t) the char-
acteristic function of the joint distribution of 1√

n
Ln(k) and 1√

n
Ln(k + h). Furthermore let

φκ,κ+η(s, t) = lim
n→∞

φk,k+h,n(s, t) denote the characteristic function of the limiting distribution

of
(

1√
n
Ln(k), 1√

n
Ln(k + h)

)

. Then φκ,κ+η(s, t) admits the following representation:

φκ,κ+η(s, t) = 1 +
σ

i
√

2π

×
∫

γ

√
−xe−x−κσ

√
−x/2



is+
it
√
−xe−ησ

√
−x/2

√
−xeησ

√
−x/2 − it σ√

2
sinh

(

ησ
√

−x
2

)



 dx

√
−xeκσ

√
−x/2 −



is+
it
√
−xe−ησ

√
−x/2

√
−xeησ

√
−x/2 − it σ√

2
sinh

(

ησ
√

−x
2

)



 sinh
(

κσ
√

−x
2

)

,

(4.1)

where γ is the Hankel contour (2.5).

Proof. Obviously we have

φk,k+h,n(s, t) =
1

an
[zn]yk

(

z, eis/
√

nyh

(

z, eit/
√

na(z)
))

=
1

2πian

∫

Γ

yk

(

z, eis/
√

nyh

(

z, eit/
√

na(z)
)) dz

zn+1

by Cauchy’s integral formula. As integration path we lay a truncated Hankel contour γ ′ =
Γ1 ∪ Γ2 ∪ Γ3 around the singularity (cf. remark after lemma 2.1) closed by a circular arc Γ4:

Γ1 =
{

z = z0

(

1 +
x

n

)∣

∣

∣
<x ≤ 0 and |x| = 1

}

Γ2 =
{

z = z0

(

1 +
x

n

)∣

∣

∣
=x = 1 and 0 ≤ <x ≤ log2 n

}

Γ3 = Γ2

Γ4 =

{

z

∣

∣

∣

∣

|z| = z0

∣

∣

∣

∣

1 +
log2 n+ i

n

∣

∣

∣

∣

and arg

(

1 +
log2 n+ i

n

)

≤ | arg(z)| ≤ π

}

.

(4.2)

If z ∈ γ′, then substitute z = z0
(

1 + x
n

)

and set x̄ = x
n and α = zϕ′(a(z)). Besides, let

u = eis/
√

n and v = eit/
√

n. Now, applying lemma 2.1 yields

yh(z, va(z)) = a(z) +Rh(v, z)

where

Rh(v, z) =
(v − 1)a(z)αh

√
−x̄+ σ

τ
√

2
(τ − va(z))

2
√
−x̄ −

√
−x̄+ σ

τ
√

2
(τ − va(z))

2
√
−x̄ αh + O

(

√

|x̄|
)

and
yk(z, uyh(z, va(z))) = a(z) +Rk(u, v, z)

where

Rk(u, v, z) =
(a(z)(u− 1) + uRh(v, z))αk

1

2

(

1 + αk +
σ

τ
√
−2x̄

(τ − ua(z) − uRh(v, z))(1 − αk)

)

+ O
(

√

|x̄|
)
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Now fix s and t and set k = bκ√nc. Then it follows from (3.1) and (3.2) that, as n → ∞, the
following asymptotic expansions apply:

a(z)(u− 1) =
isτ√
n

+ O
(

√

|x|
n

)

αk = exp

(

−2κ
σ√
2

√
−x
)(

1 + O
( |x|√

n

))

τ − ua(z) = τ(1 − u) +
uτ

√
2

σ

√

−x
n

+ O
( |x|
n

)

= − isτ√
n

+
τ
√

2

σ

√

−x
n

+ O
( |x|
n

)

Hence we have

Rk(u, v, z) ∼ τ√
n

√
−x exp

(

−κ σ√
2

√
−x
)(

isτ +
√

n
τ Rh

)

√
−x exp

(

κ σ√
2

√
−x
)

−
(

isτ +
√

n
τ Rh

)

σ√
2

sinh
(

κ σ√
2

√
−x
) .

(4.3)

and in an analogous way it can be shown that for h = bη√nc

Rh ∼ τ√
n

it
√
−x exp

(

−η σ√
2

√
−x
)

√
−x exp

(

η σ√
2

√
−x
)

− it σ√
2

sinh
(

η σ√
2

√
−x
) , (4.4)

Note that for x = y ± i we have Rk(u, v, z) ∼ 1 as y → ∞ and therefore the substitution of
the integration path γ′ by γ is justified by the dominated convergence theorem.

What remains to be done is to estimate the contribution of Γ4. It is easy to see that
[

∂

∂x2
yh(x1, x2)

]

x1=z,x2=a(z)

= αh,

where α = zϕ′(a(z)). Thus by Taylor’s theorem we have

yk(z, uyh(z, va(z))) = a(z) + αk(uyh(z, va(z)) − a(z)) + O
(

(uyh(z, va(z)) − a(z))2
)

= a(z) + a(z)αk
(

u− 1 + αh(v − 1)u+ O
(

(v − 1)2
))

+ O
(

(

u− 1 + αh(v − 1)u
)2
)

The first term satisfies
1

2πian

∫

γ′∪Γ4

a(z)
dz

zn+1
= 1

and hence there is nothing more to do. In order to estimate the remainder observe that due to
d = 1 the maximum of α on Γ4 is attained for z ∈ γ′ ∩ Γ4. Then

αk ∼ exp
(

−κσ
√
−2x

)

and as x = log2 n± i we have

<
√
−x = <

√

− log2 n+ i = cos

(

π

2
− 1

2
arctan

1

log2 n

)

∼ 1

2 log n
.

This implies αk = O (1) for z ∈ Γ4. On the other hand for z ∈ γ′ α reaches its minimum if
z = 1 − 1/n. Therefore

min
z∈γ′

|αk| ∼ exp
(

−κσ
√

2
)

and hence

max
z∈Γ4

|αk| = O
(

min
z∈γ′

|αk|
)

.
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Finally, the facts that |z−n−1| ∼ e− log2 n for z ∈ Γ4 and that the length of γ′ is O
(

log2 n/n
)

give
∣

∣

∣

∣

∫

Γ4

Rk(u, v, z)
dz

zn+1

∣

∣

∣

∣

= O
(∣

∣

∣

∣

∫

γ′

Rk(u, v, z)
dz

zn+1

∣

∣

∣

∣

n

log2 n
e− log2 n

)

.

Thus the contribution of Γ4 is negligibly small and using

an =
τ

σzn
0

√
2πn3

(

1 + O
(

1

n

))

we get (4.1) and the proof is complete.

Now, iterating the steps of the above proof yields Theorem 2.1 as an immediate corollary.

5. Finite dimensional distributions of occupation and local time

In this section we will determine the fdd’s of Brownian excursion local time. This theorem
in conjunction with tightness of Ln(t) implies Theorem 1.1.

Theorem 5.1. Let φ̄κ1...κp
(t1, . . . , tp) denote the characteristic function of the joint distribu-

tion of (l(κ1), . . . , l(κp)). Then we have

φ̄κ1...κp
(t1, . . . , tp) = 1 +

√
2

i
√
π

∫

γ

fκ1,...,κp,2(x, t1, . . . , tp)e
−x dx,

where fκ1,...,κp,2(x, t1, . . . , tp) is given by (2.3).

We offer two different proofs of Theorem 5.1. The first one is the generating function approach
we already used in the previous section and the second one is a direct computation by means
of probabilistic arguments from excursion theory.

Proposition 5.1. The characteristic function of the joint distribution of L([κ1, κ1 + η]), . . . ,
L([κp, κp + η]) satisfies

Φκ1...κpη(t1, . . . , tp) = 1 +
1

i
√
π

∫

γ

Fκ1,...,κp,η(x, t1, . . . , tp)e
−x dx, (5.1)

where

Fκ1,...,κp,η(x, t1, . . . , tp) =

Ξκ1,η(x, t1,Ξκ2−κ1,η(. . .Ξκp−1−κp−2,η(x, tp−1,Ξκp−κp−1,η(x, tp, 0)) · · · )
with

Ξκ(x, t, y) =
(√

−xe−κ
√
−2x

(

(

it+ y
√
−x
)

sinh
(

η
√

−2(x+ it)
)

−y
√
−x− it cosh

(

η
√

−2(x+ it)
)))

×
[

√

−x(−x− it)eκ
√
−2x cosh

(

η
√

−2(x+ it)
)

−
(

(

it+ y
√
−x
)

sinh
(

ησ
√

(−x− it)/2
)

−y
√
−x− it cosh

(

η
√

−2(x+ it)
))

sinh
(

κ
√
−2x

)

+
√
−x
(√

−x+ y
)

eκ
√
−2x sinh

(

η
√

−2(x+ it)
)]−1

This proposition immediately implies Theorem 5.1 by means of (2.6).

Proof. Denote Brownian excursion occupation time of [a, b] by

L([a, b]) =

∫ 1

0

I[a,b](W (s)) ds.
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In order to derive the fdd’s of occupation time we observe that the process

Hn(t) =
1

n

∑

k≤t
√

n

Ln(k), t ≥ 0

weakly converges to occupation time (see Aldous [1, Corollary 3]): Exactly, we have

Hn(t)
w−→ L

([

0,
σt

2

])

(5.2)

in C[0,∞), as n→ ∞. Hence the characteristic function of the fdd’s of occupation time satisfies

Φσκ1/2,...,σκp/2,ση/2(t1, . . . , tp) =

lim
n→∞

1

an
[zn] yk1

(z, yh(u1z, u1yk2
(. . . , up−1ykp

(z, yh(upz, upa(z))) · · · ) (5.3)

where uj = eitj/n, j = 1, . . . , p, kj = bκj
√
nc and h = bη√nc. For calculating the coefficient

on the right-hand side we use again Cauchy’s integral formula with the integration contour Γ
given by (4.2).

Note that (5.2) holds for any choice of ϕ(t). In order to abbreviate our calculations we
set ϕ(t) = 1/(1 − t). In this case the recursion (2.1) can be solved exactly: By elementary
considerations we get

yh(z, u) = z
dh(z) − udh−1(z)

dh+1(z) − udh(z)
, (5.4)

where

dh(z) =

(

1 +
√

1 − 4z

2

)h

−
(

1 −
√

1 − 4z

2

)h

. (5.5)

Let us first consider the case p = 1. For notational convenience we introduce the following
abbreviations:

w =
√

1 − 4z, w̃ =
√

1 − 4uz,

a =
1 + w

2
, ã =

1 + w̃

2
,

b =
1 − w

2
, b̃ =

1 − w̃

2
,

c =
b

a
, c̃ =

b̃

ã
.

(5.6)

The GF we are dealing with now is yk(z, yh(uz, ua(z))). Besides, note that according to the
above convention a(z) = b. So we have

yk(z, yh(uz, ua(z))) = z
dk(z) − uz

ã Bdk−1(z)

dk+1(z) − uz
ã Bdk(z)

= b

(

1 − ck−1(1 − c) (ãc− ubB)

ã− ubB − ck (ãc− ubB)

)

= b(1 −R) (5.7)

where

B = 1 −
w̃b̃h

(

1 − ub/b̃
)

ãh+1 (1 − ub/ã) − b̃h+1
(

1 − ub/b̃
) = 1 − R̄ (5.8)
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Now set u = eit/n and consider the case z ∈ γ′. Then z = z0
(

1 + x
n

)

where x = o(
√
n ). This

implies

1 − u
b

b̃
∼ 1 − 1 − w

1 − w̃
∼
√

−x
n
−
√

−x− it

n

1 − u
b

ã
∼ 1 − 1 − w

1 + w̃
∼
√

−x
n

+

√

−x− it

n

and

ak ∼ eκ
√
−x, bk ∼ eκ

√
−x,

ãh ∼ eη
√
−x−it, b̃h ∼ eη

√
−x−it.

Hence

R̄ ∼ 1√
n

2
√
−x− it

(√
−x−

√
−x− it

)

e−η
√
−x−it

(√
−x+

√
−x− it

)

eη
√
−x−it −

(√
−x−

√
−x− it

)

e−η
√
−x−it

.

Combining (5.7) and (5.8) gives

R =
wbk

(

ã/a− u+ uR̄
)

ak+1
(

ã/a− ub/a+ ubR̄/a
)

− bk+1
(

ã/a− u+ uR̄
) .

Using

ã

a
− u ∼ 1 + w̃

1 + w
− 1 ∼

√

−x− it

n
−
√

−x
n

ã

a
− u

b

a
∼ 1 + w̃

1 + w
− 1 − w

1 + w
∼
√

−x− it

n
+

√

−x
n

we get

R ∼ 2√
n

√
−x(

√
−x− it−

√
−x+ R̄

√
n )e−κ

√
−x

(
√
−x+

√
−x− it+ R̄

√
n )eκ

√
−x − (

√
−x− it−

√
−x+ R̄

√
n )e−κ

√
−x
.

(5.9)

In a similar way as in the previous section it can be shown that
∣

∣

∣

∣

∫

Γ4

a(z)R(z)
dz

zn+1

∣

∣

∣

∣

= O
(∣

∣

∣

∣

∫

γ′

a(z)R(z)
dz

zn+1

∣

∣

∣

∣

n3/2

log n
e− log2 n

)

and so we are able to compute the right-hand side of (5.3) now: In case of ϕ(t) = 1/(1 − t) we
have

an =
1

n

(

2n− 2

n− 1

)

∼ 4n−1

√
πn3

(5.10)

and σ2 = 2. Due to (5.2) the considered process converges to L([κ/
√

2, (κ+ η)/
√

2]). Thus we

have to perform the substitutions κ → κ
√

2 and η → η
√

2 in order to get the desired formula.
This yields

Φκη(t) = 1 +
1

i
√
π

∫

γ

N(t, x)

D(t, x)
e−x dx, (5.11)

where

N(t, x) =
√
−xe−κ

√
−2xit sinh

(

η
√

−2(x+ it)
)

D(t, x) =
√

−x(−x− it)eκ
√
−2x cosh

(

η
√

−2(x+ it)
)

− xeκ
√
−2x sinh

(

η
√

−2(x+ it)
)

− it sinh
(

κ
√
−2x

)

sinh
(

η
√

−2(x+ it)
)

.
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Note that the numerator is bounded by exp(C
√

|x|) and for x = y+ i the denominator satisfies

D(t, x) ∼ −yeκ
√

−2(y+i)+η
√

−2(y+(1+t)i), y → ∞.

Due to the fact that the real part of the exponent converges to zero as y → ∞ the denominator
is bounded from below by a positive constant. Therefore the substitution of the integration
path γ′ by γ is justified by the dominated convergence theorem.

In the case p = 2 we have to consider the GF yk(z, yh(u1z, u1yl(z, yh(u2z, u2a(z))))). Pro-
ceeding analogously to the case p = 1 gives

Φκλη(s, t) = 1 +
1

i
√
π

∫

γ

N(s, t, x)

D(s, t, x)
e−x dx (5.12)

where

N(x, s, t) =
√
−xe−κ

√
−2x

(

(

is+
√
−xR

√
n
)

sinh
(

η
√

−2(x+ is)
)

−
√
−x− isR

√
n cosh

(

η
√

−2(x+ is)
))

D(x, s, t) =
√

−x(−x− is)eκ
√
−2x cosh

(

η
√

−2(x+ is)
)

−
((

is+
√
−xR

√
n
)

× sinh
(

λ
√

−2(x+ is)
)

−
√
−x− isR

√
n cosh

(

λ
√

−2(x+ is)
))

× sinh
(

κ
√
−2x

)

+
√
−x
(√

−x+R
√
n
)

eκ
√
−2x sinh

(

λ
√

−2(x+ is)
)

Finally, from (5.11) and (5.12) we immediately obtain (5.1) by induction.

We now turn to a probabilistic proof of Theorem 5.1. In order to simplify notation set for a
probability measure P and a random variable X

P [X] =

∫

Ω

X dP.

Proposition 5.2. Let πr denote the law of Brownian excursion of length r and lr(t) the cor-
responding (total) local time. Then we have for <x < 0

∞
∫

0

1

2
√

2πr3
πr

[(

1 − ei(t1lr(κ1)+···+tplr(κp)
)]

exr dr = −fκ1,... ,κp,2(x, t1, . . . , tp).

Since

φ̄κ1···κp
(t1, . . . , tp) = π1

[

e(i(t1l(κ1)+···+tpl(κp))
]

(5.13)

Theorem 5.1 follows directly by taking the inverse Laplace transform and setting r = 1. (Note
that the integration path of the inverse Laplace transform is a straight line parallel to the
imaginary axis. However, bending the line to a Hankel contour does not change the value of the
integral, cf. Remark 2 after Theorem 2.1.)

Proof. Recall that the Itô measure of positive excursions (for details in excursion theory see
e.g. [22, Ch. XII]) is given by

n+ =

∞
∫

0

1

2
√

2πr3
πr dr.

This means that we have to compute

n+
[

(1 − exp (i(t1lζ(κ1) + · · · + tplζ(κp))) e
xζ
]

=

∞
∫

0

1

2
√

2πr3
πr [1 − exp (i(t1lr(κ1) + · · · + tplr(κp)))] e

xr dr,

where ζ is the life time of the excursion.
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Denote by Ta = inf{t > 0 : W (t) = a}, a ≥ 0, the first hitting time of a. Then the
sample path of a Brownian excursion of length ζ may be decomposed into the two processes
(W (t); 0 ≤ t ≤ Tκ1

) and (W (t);Tκ1
≤ t ≤ ζ), provided that Tκ1

< ζ. By Williams’ path
decomposition theorem (see [25, 26] or [22, Ch. VII, Theorem (4.9)]) the first one is a three
dimensional Bessel process started at 0 and stopped at Tκ1

and the second one is a Brownian
motion started at κ1 and killed at 0. Furthermore these two processes are independent under
n+ conditionally on Tκ1

< ζ (for details see [22, Ch. XII, sect. 4]). Let R0 denote the law of
a Bessel 3 process, Pκ1

the law of Brownian motion started at κ1, T0 the first hitting time of
0 of Brownian motion started at κ1 (i.e. ζ = Tκ1

+ T0), and lT0
(t) the local time of Brownian

motion started at κ1 and killed at 0. Then we have

n+
[

(1 − exp (i(t1lζ(κ1) + · · · + tplζ(κp))) e
xζ
]

= n+(Tκ1
< ζ)R0

[

exTκ1

]

Pκ1

[

(1 − exp (i (t1lT0
(κ1) + · · · + tplT0

(κp))) e
xT0
]

=

√
−2x

2 sinh
(

κ1

√
−2x

)Pκ1

[

(1 − exp (i (t1lT0
(κ1) + · · · + tplT0

(κp))) e
xT0
]

,
(5.14)

where we used

n+(Tκ1
< ζ) =

1

2κ1
and R0

[

exTκ1

]

=
κ1

√
−2x

sinh
(

κ1

√
−2x

) .

In order to evaluate (5.14) we will use the Ray-Knight theorems: Denote by BESQd(x) the
square of a Bessel process of dimension d started at x. Then the process (lT0

(x); 0 ≤ x ≤ κ1)
and BESQ2(0) (restricted on the interval [0, κ1]) have the same law. Moreover, if we set τy =
inf{t : lt(0) = y} then (lτy

(x);x ≥ 0) and BESQ0(y) have the same law, i.e. (lT0
(x);x ≥ κ1)

is a BESQ0(lT0
(x)). Due to the Markov property the two processes (lT0

(x); 0 ≤ x ≤ κ1) and
(lT0

(x);x ≥ κ1) are independent, conditionally on lT0
(κ1).

Now, observe that

T0 =

∞
∫

0

lT0
(a) da =

κ1
∫

0

lT0
(a) da+

κ2
∫

κ1

lT0
(a) da+ · · · +

κp
∫

κp−1

lT0
(a) da+

∞
∫

κp

lT0
(a) da

Thus we have

Pκ1

[(

1 − ei(t1lT0
(κ1)+···+tplT0

(κp)
)

exT0

]

= E

[

(

1 − ei(t1Xκ1
+···+tpXκp

)

exp

(

x

∫ κ1

0

Xu du+ x

∫ ∞

κ1

Xu du

)]

where (Xu; 0 ≤ u ≤ κ1) is a BESQ2(0) and (Xu;u ≥ κ1|Xκ1
= x) is a BESQ0(x).

If Xt is a BESQ0 then [21, formula (2.k)] yields for κ′ < κ′′

E

[

exp

(

itXκ′′ + x

∫ κ′′

κ′

Xu du

)∣

∣

∣

∣

∣

Xκ′

]

= exp

(

−Xκ′

√

−x
2

1 − it
√

−2/x coth
(

(κ′′ − κ′)
√
−2x

)

coth
(

(κ′′ − κ′)
√
−2x

)

− it
√

−2/x

)

(5.15)

and

E

[

exp

(

x

∫ ∞

κ′′

Xu du

)∣

∣

∣

∣

Xκ′′

]

= exp

(

−Xκ′′

√

−x
2

)

. (5.16)
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Hence, equations (5.15), (5.16), and the Markov property imply

E

[

exp

(

itpXκp
+ x

∫ ∞

κp−1

Xu du

)∣

∣

∣

∣

∣

Xκp−1

]

= E

[

exp

(

itpXκp
+ x

∫ κp

κp−1

Xu du

)

E

[

exp

(

x

∫ ∞

κp

Xu du

)∣

∣

∣

∣

∣

Xκp

]∣

∣

∣

∣

∣

Xκp−1

]

= E

[

exp

(

(

itp −
√

−x
2

)

Xκp
+ x

∫ κp

κp−1

Xu du

)∣

∣

∣

∣

∣

Xκp−1

]

= exp

(

−Xκp−1

(
√

−x
2
− Ψκp−κp−1,2(x, itp)

))

where Ψ(x, t) is defined by (2.4). Consequently we have

E

[

exp

(

itp−1Xκp−1
+ itpXκp

+ x

∫ ∞

κp−2

Xu du

)∣

∣

∣

∣

∣

Xκp−2

]

= E

[

exp

(

itp−1Xκp−1
+ x

∫ κp−1

κp−2

Xu du

)

× E

[

exp

(

(

itp −
√

−x
2

)

Xκp
+ x

∫ κp

κp−1

Xu du

)∣

∣

∣

∣

∣

Xκp−1

]∣

∣

∣

∣

∣

Xκp−2

]

= E

[

exp

(

(

itp−1 + Ψκp−κp−1
(x, itp) −

√

−x
2

)

Xκp−1
+ x

∫ κp−1

κp−2

Xu du

)∣

∣

∣

∣

∣

Xκp−2

]

= exp

(

−Xκp−2

(
√

−x
2
− Ψκp−1−κp−2,2

(

x, itp−1 + Ψκp−κp−1,2(x, itp)
)

))

and proceeding analogously we obtain after all

E

[

exp

(

it2Xκ2
+ · · · + itpXκp

+ x

∫ ∞

κ1

Xu du

)∣

∣

∣

∣

Xκ1

]

= exp

(

−Xκ1

(
√

−x
2
− f̃κ2···κp

(x, t2, . . . , tp)

))

where

f̃κ2,...,κp
(x, t1, . . . , tp) = Ψκ2−κ1,2(. . .Ψκp−1−κp−2,2(x, itp−1 + Ψκp−κp−1,2(x, itp)) · · · ).

In order to complete the computation of (5.14) we use that (Xu; 0 ≤ u ≤ κ1) is a BESQ2(0)
and apply again [21, formula (2.k)] with d = 2 and x = 0 and get

E

[

exp

(

it1Xκ1
+ · · · + itpXκp

+ x

∫ ∞

0

Xu du

)]

= E

[

exp

(

itXκ1
+ x

∫ κ1

0

Xu du

)

E

[

exp

(

it2Xκ2
+ · · · + itpXκp

+ x

∫ ∞

κ1

Xu du

)∣

∣

∣

∣

Xκ1

]]

= E

[

exp

((

it−
√

−x
2

+ f̃κ2···κp
(x, t2, . . . , tp)

)

Xκ1
+ x

∫ κ1

0

Xu du

)]

=
1

eκ1

√
−2x − 2

(

it1 + f̃
)

sinh
(

κ1

√
−2x

)

/
√
−2x

.
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Hence

E
[

exp (xT0) − exp
(

it1Xκ1
+ · · · + itpXκp

+ xT0

)]

=
1

eκ1

√
−2x

− 1

eκ1

√
−2x − 2

(

it1 + f̃
)

sinh
(

κ1

√
−2x

)

/
√
−2x

=
−
√

2
(

it1 + f̃
)

sinh
(

κ1

√
−2x

)

√
−xeκ1

√
−2x −

(

it1 + f̃
)√

2 sinh
(

κ1

√
−2x

)

= −2
sinh

(

κ1

√
−2x

)

√
−2x

fκ1···κp2(x, t1, . . . , tp)

which completes the proof of Proposition 5.2.

6. Tightness

In this section we will show that the sequence of random variables ln(t) = n−1/2Ln(t
√
n),

t ≥ 0, is tight in C[0,∞). Since a sequence of stochastic processes Xn(t), t ≥ 0 is tight in
C[0,∞) if and only if Xn(t), 0 ≤ t ≤ T is tight in C[0, T ] for all T > 0 (see [14, p. 63]) we may
restrict ourselves to finite intervals, i.e. it suffices to consider Ln(t), 0 ≤ t ≤ A

√
n, where A > 0

is an arbitrary real constant.
By [4, Theroem 12.3] tightness of ln(t) = n−1/2Ln(t

√
n), 0 ≤ t ≤ A, follows from tightness

of Ln(0) (which is obvioulsy satisfied) and from an estimate of the form

P
{

|Ln(ρ
√
n) − Ln((ρ+ θ)

√
n)| ≥ ε

√
n
}

≤ C
θα

εβ
(6.1)

for some α > 1, β ≥ 0, and C > 0 uniformly for 0 ≤ ρ ≤ ρ+ θ ≤ A. We will derive (6.1) from
the following property:

Theorem 6.1. There exists a constant C > 0 such that

E (Ln(r) − Ln(r + h))
4 ≤ C h2n (6.2)

holds for all non-negative integers n, r, h.

Obviously Theorem 6.1 proves (6.1) for α = 2 and β = 4 if ρ
√
n and θ

√
n are non-negative

integers. However, in the case of linear interpolation it is an easy exercise (see [12] or [10]) to
extend (6.1) to arbitrary ρ, θ ≥ 0 (probably with a different constant C).

Remark. It should be mentioned that it is not sufficient to consider the second moment
E (Ln(r) − Ln(r + h))

2
. The optimal upper bound is given by

E (Ln(r) − Ln(r + h))
2 ≤ C h

√
n

which provides (6.1) just for α = 1.

It remains to prove Theorem 6.1. Since the coefficient

ankl,rh = [znukvl]yr(z, uyh(z, va(z)))

is the (weighted) number of trees of size n with k nodes in layer r and l nodes in layer r + h,
i.e.

P {Ln(r) = k, Ln(r + h) = l} =
ankl,rh

an
,

we obtain

P {Ln(r) − Ln(r + h) = m} =
1

an
[znum]yr(z, uyh(z, u−1a(z)))

and consequently

E (Ln(r) − Ln(r + h))
4

=
1

an
[zn]Hrh(z), (6.3)
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in which

Hrh(z) =

(

∂

∂u
+ 7

∂2

∂u2
+ 6

∂3

∂u3
+

∂4

∂u4

)

yr(z, uyh(z, u−1a(z)))

∣

∣

∣

∣

u=1

. (6.4)

In order to prove Theorem 6.1 we have to use a proper representation of Hrh(z).

Proposition 6.1. Set α = zϕ′(a(z)) and

∆ = {z : |z| < z0 + η, | arg(z − z0)| > ϑ}, (6.5)

in which 0 < ϑ < π/2 is arbitrary but fixed. Then Hrh(z) can be represented as

Hrh(z) = G1,rh(z)
(1 − αh)2

(1 − α)3
+G2,rh(z)

1 − αh

(1 − α)2
+G3,rh(z)

1

1 − α
+G4,rh(z),

(6.6)

in which Gj,rh(z), 1 ≤ j ≤ 4, are uniformly bounded for z ∈ ∆ and r, h ≥ 0.

The proof of Proposition 6.1 requires the following formulas.

Lemma 6.1. Let α = zϕ′(a(z)), β = zϕ′′(a(z)), γ = zϕ′′′(a(z)), and δ = zϕ′′′′(a(z)). Then
we have

∂yr

∂u
(z, 1) = αr,

∂2yr

∂u2
(z, 1) =

β

α
αr 1 − αr

1 − α
,

∂3yr

∂u3
(z, 1) =

γ

α
αr 1 − α2r

1 − α2
+ 3

β2

α
αr (1 − αr)(1 − αr−1)

(1 − α)(1 − α2)
,

∂4yr

∂u4
(z, 1) =

δ

α
αr 1 − α3r

1 − α3

+
(

2βγ(2 + 5α+ 5αr + 3αr+1) + 3β3/α
)

αr (1 − αr)(1 − αr−1)

(1 − α2)(1 − α3)

+ 3β3(1 + 5α)αr (1 − αr)(1 − αr−1)(1 − αr−2)

(1 − α)(1 − α2)(1 − α3)
.

Proof. From yr+1(z, u) = zϕ(yr(z, u)) we directly obtain the recurring relations

∂yr+1

∂u
= zϕ′(yr)

∂yr

∂u
,

∂2yr+1

∂u2
= zϕ′′(yr)

(

∂yr

∂u

)2

+ zϕ′(yr)
∂2yr

∂u2
,

∂3yr+1

∂u3
= zϕ′′′(yr)

(

∂yr

∂u

)3

+ 3zϕ′′(yr)
∂yr

∂u

∂2yr

∂u2
+ zϕ′(yr)

∂3yr

∂u3
,

∂4yr+1

∂u4
= zϕ′′′′(yr)

(

∂yr

∂u

)4

+ 6zϕ′′′(yr)

(

∂yr

∂u

)2
∂2yr

∂u2

+ 3zϕ′′(yr)

(

∂2yr

∂u2

)2

+ 4zϕ′′(yr)
∂yr

∂u

∂3yr

∂u3
+ zϕ′(yr)

∂4yr

∂u4
.

Since yr(z, 1) = a(z) for all r ≥ 0 this system of recurring relations has the explicit solutions
stated in Lemma 6.1 for u = 1.

Proof. (Proposition 6.1) First we can use Lemma 6.1 to make (6.4) more explicit. Since

∂

∂u
yr(z, uyh(z, u−1a(z))) =

∂yr

∂u
(z, uyh(z, u−1a(z)))

×
(

yh(z, u−1a(z)) − u−1a(z)
∂yh

∂u
(z, u−1a(z))

)

.
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we obtain
∂

∂u
yr(z, uyh(z, u−1a(z)))

∣

∣

∣

∣

u=1

= a(z)αr(1 − αh).

Similarly

∂2

∂u2
yr(z, uyh(z, u−1a(z)))

∣

∣

∣

∣

u=1

= a(z)2
∂2yr

∂u2
(z, 1)(1 − αh)2 + a(z)2αr ∂

2yh

∂u2
(z, 1),

∂3

∂u3
yr(z, uyh(z, u−1a(z)))

∣

∣

∣

∣

u=1

= a(z)3
∂3yr

∂u3
(z, 1)(1 − αh)3 + 3a(z)3

∂2yr

∂u2
(z, 1)

∂2yh

∂u2
(z, 1)(1 − αh),

− 3a(z)2αr ∂
2yh

∂u2
(z, 1) − a(z)3αr ∂

3yh

∂u3
(z, 1),

and

∂4

∂u4
yr(z, uyh(z, u−1a(z)))

∣

∣

∣

∣

u=1

= a(z)4
∂4yr

∂u4
(z, 1)(1 − αh)4 + 7a(z)4

∂3yr

∂u3
(z, 1)

∂2yh

∂u2
(z, 1)(1 − αh)2

− 12a(z)4
∂2yr

∂u2
(z, 1)

∂2yh

∂u2
(z, 1)(1 − αh)

+ 3a(z)4
∂2yr

∂u2
(z, 1)

(

∂2yh

∂u2
(z, 1)

)2

− 4a(z)4
∂2yr

∂u2
(z, 1)

∂3yh

∂u3
(z, 1)(1 − αh) + 12a(z)2αr ∂

2yh

∂u2
(z, 1)

+ 8a(z)3αr ∂
3yh

∂u3
(z, 1) + a(z)4αr ∂

4yh

∂u4
(z, 1),

yielding an explicit expression of Hrh(z) in terms of a(z).
Now notice that

sup
z∈∆

|α| = 1 (6.7)

since α = zϕ′(a(z)) has the local expansion (3.2). Hence, a representation of the form (6.6)
follows immediately with functions Gj,rh(z), 1 ≤ j ≤ 4, which are uniformly bounded for
z ∈ ∆.

The final step of the proof of Theorem 6.1 is to use (6.6) and the following lemma from
singularity analysis [8]:

Lemma 6.2. Let F (z) be analytic in ∆ (defined in (6.5)) in which z0 and η are positive real
numbers and 0 < ϑ < π/2. Furthermore suppose that there exists a real number β such that

F (z) = O
(

(1 − z/z0)
−β
)

(z ∈ ∆).

Then

[zn]F (z) = O
(

z−n
0 nβ−1

)

.

Proof. (Theorem 6.1) Since an ∼ (τ/
√

2πσ2)z−n
0 n−3/2 Theorem 6.1 is equivalent to

[zn]Hrh(z) = O
(

z−n
0

h2

√
n

)

(6.8)

uniformly for all r, h ≥ 0. Note that Hr0(z) ≡ 0. So we may assume that h ≥ 1.
First, let us consider the first term of Hrh(z) (in the representation (6.6)):

G1,rh(z)
(1 − αh)2

(1 − α)3
= G1,rh(z)

1

1 − α

h−1
∑

i=0

αi
h−1
∑

j=0

αj

=
h−1
∑

i,j=0

G1,rh(z)
αi+j

1 − α
= O

(

h2 1

|1 − α|

)

.
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Since
1

1 − α
= O

(

(1 − z/z0)
−1/2

)

.

we can apply Lemma 6.2 with β = 1/2 and obtain

G1,rh(z)
(1 − αh)2

(1 − α)3
= O

(

z−n
0 h2n−1/2

)

.

The coefficient of the second term is even smaller:

[zn]G2,rh(z)
(1 − αh)

(1 − α)2
= [zn]G2,rh(z)

1

1 − α

h−1
∑

i=0

αi

= O
(

z−n
0 hn−1/2

)

= O
(

z−n
0 h2n−1/2

)

.

Similarly we can treat the remaining terms:

[zn]G3,rh(z)
1

1 − α
= O

(

z−n
0 n−1/2

)

= O
(

z−n
0 h2n−1/2

)

and

[zn]G4,rh(z) = O
(

z−n
0 n−1

)

= O
(

z−n
0 h2n−1/2

)

.

Thus we have proved (6.8) which is equivalent to (6.2).

Remark. The proof of tightness of l̂n(t) runs along the same lines as that for ln(t).

7. The two dimensional density of Brownian excursion local time

In this section we indicate how our method can be used to obtain an integral represention
of the two dimensional density of local time (extending the result of Hooghiemstra [13]) by
showing a local limit theorem for planted plane trees.

We want to note that it is also possible to derive this integral representation for this den-
sitiy directly by probabilistic means in a similar fashion as in section 5. However, the multidi-
mensional local time density will be treated in a forthcoming paper [11], where also a direct
probabilistic proof is offered.

Proposition 7.1. Let κ, λ, ρ, θ > 0. Besides, set k = bκ√nc, l = bλ√nc, r = bρ√nc and
h = bθ√nc. Denote by ankl,rh number of all planted plane trees of size n having k nodes in
layer r and l nodes in layer r + h. Then the following limit theorem holds:

lim
n→∞

n
ankl,rh

an
= lim

n→∞
n

an
[ukvlzn]yr(z, uyh(z, bv))

=
1

i
√
π

∫

γ

κx2

sinh2
(

θ
√
−x
)

sinh2
(

ρ
√
−x
) exp

(

−
√
−x
(

λeθ
√
−x

sinh
(

θ
√
−x
)

+
κ sinh

(

(ρ+ θ)
√
−x
)

sinh
(

ρ
√
−x
)

sinh
(

θ
√
−x
)

))

∑

j≥0

(−κλx)j

j!(j + 1)! sinh2j
(

θ
√
−x
)e−x dx,

(7.1)

where γ is the straight line {z : <z = −1}. Furthermore,

lim
n→∞

√
n
ank0,rh

an
=

1

i
√
π

∫

γ

−xe−x

sinh2
(

ρ
√
−x
) exp

(

−
√
−x κ sinh

(

(ρ+ θ)
√
−x
)

sinh
(

ρ
√
−x
)

sinh
(

θ
√
−x
)

)

dx,
(7.2)

and

lim
n→∞

an00,rh

an
= − 1

i
√
π

∫

γ

√
−x cosh

(

ρ
√
−x
)

sinh
(

ρ
√
−x
) e−x dx (7.3)
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Denote the joint density of l(ρ) and l(ρ+ θ) by fρ,θ(κ, λ). Set r = ρ
√
n, h = θ

√
n, k = κ

√
n

and l = λ
√
n. Then fρ,θ(κ, λ) satisfies

4

σ2
fσ

2 ρ, σ
2 θ

(

2

σ
κ,

2

σ
λ

)

= lim
n→∞

n

an
[znukvl]yr(z, uyh(z, va(z)). (7.4)

Hence (7.1) yields the continuous part of local time density. (Note that σ2 = 2 for ϕ(t) =
1/(1 − t).) It remains to determine the discrete parts. Obviously there are Brownian excursion
sample paths which do not reach level ρ + θ or not even level ρ and each of these situations
occurs with positive probability. Equivalently, this means P {l(ρ) = 0, l(ρ+ θ) = 0} > 0 and
P {l(ρ) ∈ [a, b], l(ρ+ θ) = 0} > 0 for an arbitrary interval [a, b]. Thus there is a point mass at
the origin and each interval on the κ-axis contains mass, too. In order to determine these masses
we can use (7.2) and (7.3).

Theorem 7.1. The joint distribution of l(ρ) and l(ρ + θ) is absolutely continuous w.r.t.
Lebesgue measure on the set {(κ, λ) : κ ≥ 0 and λ > 0}. Its density is given by

fρ,θ(κ, λ) =

1

i2
√

2π

∫

γ

κx2

sinh2
(

θ
√
−2x

)

sinh2
(

ρ
√
−2x

) exp

(

−
√

−x
2

(

λeθ
√
−2x

sinh
(

θ
√
−2x

)

+
κ sinh

(

(ρ+ θ)
√
−2x

)

sinh
(

ρ
√
−2x

)

sinh
(

θ
√
−2x

)

))

∑

j≥0

(−κλx)j

j!(j + 1)!2j sinh2j
(

θ
√
−2x

)e−x dx,

Along the line λ = 0 and the distribution function has a jump of height

1

i
√

2π

∫

γ

−xe−x

sinh2
(

ρ
√
−2x

) exp

(

−
√

−x
2

κ sinh
(

(ρ+ θ)
√
−2x

)

sinh
(

ρ
√
−2x

)

sinh
(

θ
√
−2x

)

)

dx.

and at the origin one of height

− 1

i
√
π

∫

γ

√
−x cosh

(

ρ
√
−2x

)

sinh
(

ρ
√
−2x

) e−x dx.

Remark. Note that the infinite sum appearing in the representation of fρ,θ(κ, λ) in Theorem 7.1
is related to the first Bessel function J1(z).

Proof. (Sketch) Obviously, we have

yr(z, uyh(z, bv)) = z
dr − uyh(z, bv)dr−1

dr+1 − uyh(z, bv)dr

= z
dr − uyh(z, bv)dr−1

dr+1

∑

i≥0

(

dr

dr+1
yh(z, bv)

)i

ui,

where dr = dr(z) is defined by (5.5) and b = a(z) (again we use notation (5.6)). A similar
representation holds for yh(z, bv) and thus we have

[ukvl]yr(z, uyh(z, bv)) = z

(

1 − dr−1dr+1

d2
r

)(

dr

dr+1

)k+1(
zdh

dh+1

)k (
bdh

dh+1

)l

×
min(k,l)−1
∑

i=0

(

k

i+ 1

)(

l − 1

i

)(

1 − dh−1dh+1

d2
h

)i+1

(7.5)

Now, we have to determine the coefficient of zn in the above expression. In order to do this we use
Cauchy’s integral formula choosing a truncated line normal to the real axis and complemented
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by a circular arc as integration path. To be precise, we integrate along Γ = γ ′ ∪ Γ′ given by

γ′ =

{

z : z =
1

4

(

1 − 1 + it

n

)

and |t| ≤
√

2n+ 1

}

Γ′ =

{

z : |z| =
1

4
and arctan

√
2n+ 1

n− 1
≤ | arg z| ≤ π

}

Evaluating each factor in (7.5) asymptotically gives on γ ′ by means of the substitution z =
1
4

(

1 + x
n

)

we get

1 − dh−1dh+1

d2
h

∼ 1

n

−x
sinh2

(

θ
√
−x
) (7.6)

(

zdh

dh+1

)k

∼ 2−k exp

(

−κ
√
−x cosh

(

θ
√
−x
)

sinh
(

θ
√
−x
)

)

(7.7)

(

bdh

dh+1

)l

∼ exp

(

− λ
√
−xeθ

√
−x

sinh
(

θ
√
−x
)

)

(7.8)

(

dr

dr+1

)k+1

∼ 2k+1 exp

(

−κ
√
−x cosh

(

ρ
√
−x
)

sinh
(

ρ
√
−x
)

)

(7.9)

With the help of Stirling’s formula it can be shown that for any ε > 0 we have

∑

i≤n1/4−ε

(

k

i+ 1

)(

l − 1

i

)(

1 − dh−1dh+1

d2
h

)i

∼
√
n

∑

i≤n1/4−ε

κi+1

(i+ 1)!

λi

i!

(

−x
sinh2

(

θ
√
−x
)

)i

(7.10)

and that the remainder of the sum is O
(

e−Cm log n
)

for a suitable constant C. Collecting the
constants in (7.6)–(7.10) and applying (5.10) yields (7.1).

Finally, it can be shown in a similar way as in section 5 that the contributions of Γ′ and
γ \ γ′ are negligibly small and the proof is complete.

Similary we obtain

[znukv0]yr(z, uyh(z, vb)) = [zn]z

(

1 − dr−1dr+1

d2
r

)(

dr

dr+1

)k+1(
zdh

dh+1

)k

∼ 4n−1

iπn2

∫

γ

−xe−x

sinh2
(

ρ
√
−x
) exp

(

−
√
−x κ sinh

(

(ρ+ θ)
√
−x
)

sinh
(

ρ
√
−x
)

sinh
(

θ
√
−x
)

)

dx,

for k > 0 and

[znu0v0]yr(z, uyh(z, bv)) = [zn]z
dr

dr+1
∼ 4n−1

iπn

∫

γ

(

1 −
√
−x cosh

(

ρ
√
−x
)

√
n sinh

(

ρ
√
−x
)

)

e−x dx

= − 4n−1

iπn3/2

∫

γ

√
−x cosh

(

ρ
√
−x
)

sinh
(

ρ
√
−x
) e−x dx

which completes the proof of Proposition 7.1.

Acknowledgment. The authors are indebted to Guy Louchard for pointing out some references
dealing with the one dimensional local time density as well as to an anonymous referee for
indicating a direct proof of Theorem 5.1.

References

[1] D. J. Aldous, The continuum random tree II: an overview, Stochastic Analysis, M. T. Barlow and N. H.

Bingham, Eds., Cambridge University Press 1991, 23–70.
[2] D. J. Aldous, The continuum random tree III, Ann. Prob. 21 (1993), 248–289.

[3] P. Biane and M. Yor, Valeurs principales associees aux temps locaux Browniens, Bull. Sci. Math. 111

(1987), 23–101.

[4] P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, New York, 1968.



ON THE PROFILE OF RANDOM TREES 23

[5] J. W. Cohen and G. Hooghiemstra, Brownian excursion, the M/M/1 queue and their occupation times,

Mathematics of Operations Research 6, 4 (1981), 608–629.
[6] M. Drmota and P. Kirschenhofer, On generalized independent subsets of trees, Random Structures and

Algorithms 2 (1991), 187–208.

[7] M. Drmota and M. Soria, Marking in combinatorial constructions: generating functions and limiting

distributions, Theoretical Comp. Science 144 (1995), 67–99.

[8] P. Flajolet and A. M. Odlyzko, Singularity analysis of generating functions, SIAM J. on Discrete Math.

3, 2 (1990), 216–240.

[9] R. K. Getoor and M. J. Sharpe, Excursions of Brownian motion and Bessel processes, Z. Wahrsch. verw.

Gebiete 47 (1979), 83-106.

[10] B. Gittenberger, On the contour of random trees, submitted.

[11] B. Gittenberger and G. Louchard, The Brownian excursion multidimensional local time density, in

preparation.

[12] W. Gutjahr and G. Ch. Pflug, The asymptotic contour process of a binary tree is a Brownian excursion,

Stochastic Processes and their Applications 41 (1992), 69–89.

[13] G. Hooghiemstra, On the explicit form of the density of Brownian excursion local time, Proc. AMS 84

(1982), 127–130.

[14] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York, 1988.

[15] D. P. Kennedy, The Galton-Watson process conditioned on the total progeny, J. Appl. Prob. 12 (1975),

800–806.

[16] D. P. Kennedy, The distribution of the maximum Brownian excursion, J. Appl. Prob. 13 (1976), 371–376.

[17] F. B. Knight, On the excursion process of Brownian motion, Trans. AMS 258 (1980), 77–86.

[18] V. F. Kolchin, Random Mappings, Optimization Software, New York, 1986.

[19] G. Louchard, Kac’s formula, Levy’s local time and Brownian excursion, J. Appl. Prob. 21 (1984), 479-499.

[20] A. Meir and J. W. Moon, On the Altitude of Nodes in Random Trees, Canadian Journal of Mathematics

30 (1978), 997–1015.

[21] J. W. Pitman and M. Yor, A decomposition of Bessel bridges, Z. Wahrsch. verw. Gebiete 59 (1982),
425–457.

[22] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, 1991.
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