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Abstract. In State spaces of the snake and its tour – Convergence of the discrete snake the
authors showed a limit theorem for Galton-Watson trees with geometric offspring distribution.

In this note it is shown that their result holds for all Galton-Watson trees with finite offspring

variance.

In [4] the following process was considered: Let f(m) denote the mth vertex during a depth
first search process of a Galton-Watson tree with n vertices. Vn(m) denotes the distance between

f(m) and the root. Furthermore, an R
d-valued random variable y(x) is associated to each nonroot

vertex x where the y(x) are assumed to be independent. Then to each node x there corresponds

a finite random walk ρx = (ρx(j))j=1,...,h(x) where h(x) is the height of x and ρj(x) =
∑j

i=1 y(ξi).
The nodes root, ξ1, . . . , ξh(x) = x comprise the path from the root to x. Now define for integer k
and j

Wn(k, j) := ρf(k)(j), Rn(k) := Wn(k, Vn(k))

and by linear interpolation for non-integer values of k and j (see [4] for details). Then
(Wn(x, ·), Vn(y))(x,y)∈[0,2n]2 is called the discrete snake, (Rn(x), Vn(y))(x,y)∈[0,2n]2 the tour of the
discrete snake. In [4] it was proved:

Theorem 1. If there exist a p > 6 such that E|y(x)|p < ∞ and (Rn(x), Vn(y))(x,y)∈[0,2n]2 is
the tour of a discrete snake with underlying tree equal to a plane tree (i.e., Galton-Watson with
geometric offspring distribution), then

(

Rn(2ns)

n1/4
,
Vn2nt√

n

)

w−→ (r(s), v(t))

where (r(s), v(t)) = (w(s, v(s)), v(t)) is a Brownian snake scaled by v(s) =
√

2e(s) with a standard
Brownian excursion e(s).

In this note it is shown that, if E|y(x)|p < ∞ for some p > 8, then this theorem is true if the
underlying tree is any Galton-Watson process with finite offspring variance.

Let V̌n(m, l) := minm≤k≤l Vn(k) and vn(t) = Vn(2nt)/
√

n and v̌n(s, t) = V̌n(2ns, 2nt)/
√

n.
Then in order to generalize the theorem, it suffices to generalize [4, Th. 3.5] to all Galton-Watson
trees with finite offspring variance: we must show that for 2sn, 2tn integers the inequality

P {|vn(s) + vn(t) − 2v̌n(s, t)| ≥ ε} ≤ C

|s − t| exp

(

−D
ε

√

|s − t|

)

(1)

is true for every such Galton-Watson tree, where C > 0 and D > 0 do not depend on ε, s, and t.
We will estimate this probability by counting the trees for which the depth first search process

satisfies the appropriate inequality. Therefore, let bm1k1lm2k2n be the weighted number of Galton-
Watson trees with total progeny n, such that V (m1) = k1, V (m2) = k2, V̌ (m1,m2) = l. In [3] it
is shown that the generating function of these numbers,

Bk1lk2
(z, u1, u2) =

∑

n

∑

m1

∑

m2

bm1k1lm2k2nznum1

1 um2

2 ,

Date: August 14, 2003.
Department of Geometry, Technische Universität Wien, Wiedner Hauptstraße 8-10/113, A-1040 Wien, Austria.

This research has been supported by BM f. Wissenschaft und Kunst, project Amadé, no. V3.
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satisfies the relation

Bk1lk2
(z, u1, u2) = A

(

z(u1u2)
2, u2

)

φ1(z, u1u2, u2)
k1−l−1φ1(z, u2, 1)

k2−l−1

× φ1(z, u1u2, 1)
l−1φ2(z, u1u2, u2)A(z, u2), (2)

where

A(z, u) = uz
∑

i≥0

ϕi

i
∑

j=0

a(zu2)ja(z)i−j

= uz
a(zu2)ϕ(a(zu2)) − a(z)ϕ(a(z))

a(zu2) − a(z)
,

φ1(z, u, v) = uvz
ϕ(a(zu2)) − ϕ(a(zv2))

a(zu2) − a(zv2)

φ2(z, u, v, w) = z
∑

i≥2

ϕi

∑

j1+j2+j3=i−2

a(zu2)j1a(zv2)j2a(zw2)j3

and a(z) is the generating function for Galton-Watson trees and satisfies a functional equation of
the form a(z) = zϕ(a(z)) for some power series ϕ(t) =

∑

i ϕit
i with ϕ(0) > 0. It is well known

that a(z) (see [2] for a treatment of general functional equations) has a positive singularity on
the circle of convergence which we will denote by z0 > 0 in the sequel. Moreover, without loss of
generality we may assume that z0 is the only singularity on the circle of convergence.

Let τ denote the solution of tϕ′(t) = ϕ(t) and σ2 the offspring variance. Then with m1 = bµ1nc
and m2 = bµ2nc we have

P

{∣

∣

∣

∣

vn

(bµ1nc
n

)

+ vn

(bµ2nc
n

)

− 2v̌n

(bµ1nc
n

,
bµ2nc

n

)∣

∣

∣

∣

≥ ε

}

=
1

[zn]a(z)
[znum1

1 um2

2 ]
∑

k,l,m≥1

|k+m−2l|≥bε√nc

Bklm(z, u1, u2)

=
1

[zn]a(z)
[znumvl]

(

φ1(z, v, 1)ε
√

n − φ1(z, u, v)ε
√

n

(1 − φ1(z, u, v)/φ1(z, v, 1))(1 − φ1(z, v, 1))(1 − φ1(z, u, 1))

+
φ1(z, u, v)ε

√
n

(1 − φ1(z, u, v))(1 − φ1(z, v, 1))(1 − φ1(z, u, 1))

)

(3)

where we used (2) and the substitution u = u1, v = u1u2 and consequently m = bµ1nc and
l = b(µ2 − µ1)nc in the last step. By Lemma 3.1 in [3] we have the local expansion

a(zu2) ∼ τ − τ

σ
√

2

√

− t

n
− 2s

m

for z = z0

(

1 + t
n

)

, u = 1+ s
m and n,m → ∞ where m ∼ cn, c > 0 and s, t = o (

√
n). Consequently,

in the same range for z and u and with v = 1 + r
l we have (for details cf. [1])

φ1(z, u, v) ∼ 1 − σ√
2

(

√

− t

n
− 2s

m
+

√

− t

n
− 2

r
l

)

.

Note that there is a representation of the form

y(z, u) = g̃(z, u) − h̃(z, u)

√

1 − u

f̃(z)

as well, where g(z, u), h(z, u), and f(z) are analytic functions satisfying

g(z0, 1) = τ, h(z0, 1) =

√

2ϕ(τ)

ϕ′′(τ)
=

τ
√

2

σ
, and f(z0) = 1.
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If we call the function on the right-hand side of (3) F (z, u, v). then the desired coefficient can be
expressed in terms of the Cauchy integral

[znumvl]F (z, u, v) =
1

(2πi)3

∫

Γz

∫

Γu

∫

Γv

F (z, u, v)

zn+1um+1vl+1
dv du dz (4)

where the integration contour Γz = Γz1 ∪ Γz2 ∪ Γz3 ∪ Γz4 is chosen as follows:

Γz1 =

{

z = z0

(

1 +
eit

n

)∣

∣

∣

∣

α ≤ |t| ≤ π

}

Γz2 =

{

z = z0

(

1 +
t

n
eiα

)∣

∣

∣

∣

1 ≤ |t| ≤ log2 n

}

Γz3 = Γz2

Γz4 =

{

z

∣

∣

∣

∣

|z| = z0

∣

∣

∣

∣

1 +
log2 n

n
eiα

∣

∣

∣

∣

, arg

(

1 +
log2 n

n
eiα

)

≤ | arg z| ≤ π

}

The contours Γu and Γv are identical with Γz up to a suitable shift (depending on z) in order to
follow the singularity when z is varying (see [3, pp. 452] for a detailed description)

Note that the above expansion of the function φ1 as well as the integrand in (4) are very similar
to the ones which occur in the proof of tightness for the contour of Galton-Watson trees (see [3]).
Hence we can argue exactly in the same way as in [3, pp.454]: First we estimate the denominator
in (3) and show that Cn3/2 is an upper bound. Next, applying [3, Lemma 3.5] to the numerator
immediately yields the upper bound

C1

ml
exp

(

−C2

(

ε√
µ1

+
ε√

µ2 − µ1

))
∫ |f(z)|−l−m

|zn+1| dz.

Provided that µ1 and µ2 stay away from 1, the integral can be shown to be O (1/zn
0 n) which

implies the exponential bound (1).
If µ1 and µ2 are arbitrarily close to 1 (the case where only one of the two values is close to one

is trivial, since in this case the distance |s − t| is large), then in [3] we showed the exponential
bound

P

{

vn

(m

n

)

≥ ε
}

=
C1

an
[zn−1um−1]

φ1(z, u, 1)k

1 − φ1(z, u, 1)
≤ C2

(n − m)m
exp

(

−C3

(

ε
√

n√
m

+
ε
√

n√
n − m

))

,

where C1, C2, C3 are appropriate constants. This in conjunction with the estimate

P {|vn(µ1) + vn(µ2) − 2v̌n(µ1, µ2)| ≥ ε} ≤ P {vn(µ1) ≥ ε} + P {vn(µ2) ≥ ε}
yields (1).
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