
Noname manuscript No.
(will be inserted by the editor)

An Asymptotic Analysis of Labeled and Unlabeled
k-Trees

Michael Drmota · Emma Yu Jin

Received: date / Accepted: date

Abstract In this paper we provide a systematic treatment of several shape
parameters of (random) k-trees. Our research is motivated by many important
algorithmic applications of k-trees in the context of tree-decomposition of a
graph and graphs of bounded tree-width. On the other hand, k-trees are also a
very interesting object from the combinatorial point of view. For both labeled
and unlabeled k-trees, we prove that the number of leaves and more generally
the number of nodes of given degree satisfy a central limit theorem with mean
value and variance that are asymptotically linear in the size of the k-tree. In
particular we solve the asymptotic counting problem for unlabeled k-trees. By
applying a proper singularity analysis of generating functions we show that
the numbers Uk(n) of unlabeled k-trees of size n are asymptotically given
by Uk(n) ∼ ckn

−5/2ρ−n
k , where ck > 0 and ρk > 0 denotes the radius of

convergence of the generating function U(z) =
∑

n≥0 Uk(n)z
n.

Keywords k-trees · generating function · singularity analysis · central limit
theorem

Mathematics Subject Classification (2000) MSC 05A16 · 05A15

The first author is partially supported by the Austrian Science Fund FWF, Project F50-
02. The second author is supported by the German Research Foundation DFG, Project JI
207/1-1.

Michael Drmota
Institut für Diskrete Mathematik und Geometrie, TU Wien
Wiedner Hauptstr. 8–10
1040 Wien, Austria
E-mail: michael.drmota@tuwien.ac.at

Corresponding author: Emma Yu Jin
Institut für Diskrete Mathematik und Geometrie, TU Wien
Wiedner Hauptstr. 8–10
1040 Wien, Austria
Tel.: +43-(1)58801-104583
E-mail: yu.jin@tuwien.ac.at; jin@cs.uni-kl.de



2 Michael Drmota, Emma Yu Jin

1 Introduction

A k-tree is a generalization of a tree and can be defined recursively: a k-tree is
either a complete graph on k vertices (= a k-clique) or a graph obtained from
a smaller k-tree by adjoining a new vertex together with k edges connecting
it to a k-clique of the smaller k-tree (and thus forming a (k + 1)-clique). In
particular, a 1-tree is a usual tree. Here the parameter k is fixed, not depending
on the number of vertices in a k-tree.

A k-tree is an interesting graph from an algorithmic point of view since
many NP-hard problems on graphs have polynomial, in fact usually linear, dy-
namic programming algorithms when restricted to k-trees and their subgraphs
for fixed values of k [3,28,17]; subgraphs of k-trees are called partial k-trees.
Such NP-hard problems include maximum independent set size, minimal domi-
nating set size, chromatic number, Hamiltonian circuit, network reliability and
minimum vertex removal forbidden subgraph [2,5]. Several graphs which are
important in practice [21], have been shown to be partial k-trees, among them
are

1. Trees/ Forests (partial 1-trees)
2. Series parallel networks (partial 2-trees)
3. Outplanar graphs (partial 2-trees)
4. Halin graphs (partial 3-trees).

However, other interesting graph classes like planar graphs or bipartite graphs
are not partial k-trees.

k-trees are also very interesting from a combinatorial point of view. For
example, the enumeration problem for k-trees has been studied in various
ways, see [4,23,13,8,19,20,14–16]. The number of labeled k-trees has been
determined by Beineke and Pippert [4], Moon [23], Foata [13], Darrasse and
Soria [8]; as usual a k-tree on n vertices is called labeled if the integers from
{1, 2, . . . , n} have been assigned to its vertices (one-to-one) and two labeled k-
trees are considered to be different if the corresponding edge sets are different.

It turns out that it is convenient to consider the number of hedra instead
of the number of vertices as the size of a k-tree. A hedron is a (k + 1)-clique
in a k-tree, and by definition a k-tree with n hedra has n+ k vertices. It was
shown by [4,23,13,8] that the number Lk(n) of labeled k-trees having n hedra
is given by

Lk(n) =

(
n+ k

k

)
(kn+ 1)n−2. (1)

The factor nk + 1 has a nice interpretation in terms of fronts. A front of a
k-tree is a k-clique (we adopt the notions from [16]). By definition it easily
follows that a k-tree with n hedra has kn+ 1 fronts.

However, the counting problem of unlabeled k-trees is much more difficult.
Only the case of 2-trees was already solved by Harary and Palmer [19,20]
and Fowler et al. [14] by using the dissimilarity characteristic theorem. The
general case was a long-standing open problem and was solved just recently by
Gainer-Dewar [15]. Subsequently both Gessel and Gainer-Dewar [16] simplified
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the generating function approach for unlabeled k-trees by coloring the vertices
of a k-tree in (k + 1) colors such that adjacent vertices have different colors.
(This breaks the symmetry of k-trees and avoids the use of compatible cyclic
orientation of each hedron in a k-tree.)

The purpose of this paper is to provide a systematic asymptotic analysis
of k-trees. First we review the counting formula Lk(n) for labeled k-trees with
the help of a generating function approach and Lagrange inversion formula [8].
Second, we consider unlabeled k-trees and provide the same kind of results.
Instead of proving an explicit counting formula (which is maybe not easy to
state, even for the case of trees there is no closed formula) we will solve the
asymptotic counting problem and show (see Theorem 3) that the numbers
Uk(n) of unlabeled k-trees of size n are asymptotically given by

Uk(n) ∼ ckn
−5/2ρ−n

k ,

where ck > 0 and ρk > 0 denotes the radius of convergence of the generat-
ing function U(z) =

∑
n≥0 Uk(n)z

n. This is in complete accordance with Ot-
ter’s result for trees [24], Labelle’s et al. result for unlabeled 2-trees [22], and
also with the corresponding results for labeled k-trees (recall that nn−2/n! ∼
(2π)−1/2n−5/2en). We note that the subexponential term n−5/2 suggests k-tree
is a “tree-like” structure.

Similarly to trees, where we can distinguish between leaves and internal
vertices, we distinguish in k-trees between hedra that have only one front
in common with other hedra (= leaves or fringe of a k-tree) and the other
(internal) hedra. Furthermore we can generalize the degree of a tree vertex by
considering the number of hedra that have a given front in common. Thus, if
we consider a random k-tree (of given size), it is natural to ask the following
questions:

1. What is the limiting distribution for the number of hedra that have only
one front in common with other hedra in a uniformly chosen k-tree?

2. For a given integer d, what is the limiting distribution for the number of
fronts that are contained in d distinct hedra in a uniformly chosen k-tree?

Actually the main purpose of this paper is to answer questions 1 and 2 for
labeled and unlabeled k-trees and to prove they all satisfy a central limit
theorem with mean value and variance that are asymptotically linear in the
number of hedra (Theorems 1 and 2, Theorems 4 and 5). This is also a natural
generalization of corresponding results for (unlabeled) trees, see [10].

We expect that labeled and unlabeled k-trees have many asymptotic prop-
erties in common with trees. For example, it is very likely that k-trees scaled
by 1/

√
n converge weakly to the so-called continuum random tree as it holds

for labeled and unlabeled trees (see [1,18]). In this case it would follow that
the diameter Dn scaled by 1/

√
n has a limiting distribution. Further well-

known “tree-like” graph classes are the subcritical graph classes, but it should
be mentioned that k-trees are not subcritical for k ≥ 2. Informally, a graph
class is subcritical if for a graph, the average size of 2-connected components is
bounded so that the block-decomposition looks tree-like. Recently Panagiotou
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et al. [25] have proved that, for a uniform random graph Cn with n vertices
drawn from a subcritical graph class of connected graphs, the rescaled graph
Cn/

√
n converges weakly to the continuum random tree. As a consequence,

the diameter of the graph Cn and the height of pointed graph C•
n, scaled by

1/
√
n, satisfy a limit distribution.
However, there are other parameters of interest – like the maximum degree

– that cannot be characterized by a continuum tree property. Anyway, as in
the case of trees (see [9]) we expect that the maximum degree of unlabeled
k-trees should be concentrated at c log n (for a proper constant c > 0) and the
maximum degree of labeled k-trees is concentrated at log n/ log log n. We plan
to work on these (and related) questions in a follow-up paper. This corresponds
to the fact that the tails of the degree distributions are different.

The plan of the paper is as follows. In Section 2 we study the numbers
Lk(n) of labeled k-trees having n hedra, in Section 3 the number of leaves
and in Section 4 the number of nodes of given degree for the labeled k-trees.
Then in Section 5 we recall the combinatorial background for unlabeled k-trees
from [16], in particular we present a system of equations for their generating
functions. This system is then used to solve the asymptotic counting problem
for unlabeled k-trees (Section 6). Finally, the number of leaves and the number
of nodes of given degree for the unlabeled k-trees are discussed in Section 7
and 8.

2 Combinatorics of labeled k-trees

According to the inductive construction of a k-tree, the number of vertices in
a k-tree having n hedra is k + 1 + (n − 1) = n + k. Since we will extend the
counting problem to obtain the limit laws in Section 3 and 4, we present a
detailed discussion of the counting problem. Here we use exponential generat-
ing functions for labeled k-trees to derive eq. (1), see [8]. We consider labeled
k-trees having n hedra that are rooted at a front and translate labeled k-trees
into k-front coding trees which are slightly different from the k-coding trees
for unlabeled k-trees in Section 5.

First we introduce unlabeled k-front coding trees. An unlabeled k-front
coding tree has unlabeled black nodes and labeled white nodes. To construct
an unlabeled k-front coding tree from a labeled k-tree, an unlabeled black node
in a k-front coding tree represents a hedron in the labeled k-tree. A white node
labeled by the set {i1, i2, . . . , ik} represents a front whose vertices are labeled
by the integers i1, i2, . . . , ik in the labeled k-tree. A black node connects with
a white node if the corresponding hedron contains the corresponding front.
It is clear that labeled k-trees having n hedra are in bijection with unlabeled
k-front coding trees with n black nodes and kn + 1 labeled white nodes. See
Figure 1 for an example. Next we reduce the problem of counting unrooted
trees to the problem of counting rooted trees. This can be done by rooting an
unlabeled k-front coding tree at one of its fronts. Suppose that an unlabeled
k-front coding tree is rooted at a white node labeled by the set {i1, i2, . . . , ik}.
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Fig. 1 The bijection between a labeled 2-tree (left) and an unlabeled 2-front coding tree
(right).

Then we label the black nodes in this k-front coding tree as follows. For every
hedron whose vertices are labeled by the integers j1, j2, . . . , jk+1 in a labeled
k-tree, the corresponding black node connects with white nodes labeled by
the k-subsets of {j1, j2, . . . , jk+1} in the unlabeled k-front coding tree. We
label this black node by an integer jm if among all its neighbors, the white
node labeled by the set {j1, j2, . . . , jk+1} − {jm} is closest to the root. In
this way we get a k-front coding tree rooted at {i1, i2, . . . , ik} with all black
nodes labeled. So a labeled k-tree rooted at a front can be identified as a
k-front coding tree rooted at a white node. See Figure 2 for an example. A
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Fig. 2 The bijection between a labeled 2-tree rooted at a front whose vertices are labeled
by 1, 2 (left) and a 2-front coding tree rooted at a white node labeled by {1, 2} (right).

jm-reduced black-rooted tree is a k-front coding tree rooted at a black node
with labeling jm and if this black node represents the hedron whose vertices
are labeled by j1, j2, . . . , jk+1, then all the neighbors of this root are labeled
by the k-subsets of {j1, j2, . . . , jk+1} that contain jm. For a permutation π
of the set {x1, . . . , xk}, we write π(xr) = ir and π = i1 · · · ik. We further
observe every jm-reduced black-rooted tree is fixed by any permutation of the
set {j1, j2, . . . , jk+1} − {jm} and every k-front coding tree rooted at a white
node labeled by the set {i1, i2, . . . , ik} is fixed by any permutation of the set
{i1, i2, . . . , ik}.
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Let Rk(n) denote the number of labeled k-trees having n hedra that are
rooted at a particular front whose vertices are labeled by i1, i2, . . . , ik, which
also counts k-front coding trees on n labeled black nodes and kn + 1 labeled
white nodes that are rooted at a white node labeled by the set {i1, i2, . . . , ik}.
Note that the number Rk(n) is independent of the choice of the particu-
lar root {i1, i2, . . . , ik}. Let Ck(z) be the exponential generating function for
{i1, i2, . . . , ik}-rooted k-front coding trees where every black node has weight
z, that is,

Ck(z) =
∞∑

n=0

Rk(n)
zn

n!
. (2)

Let Bk(z) be the exponential generating function for jm-reduced black-rooted
k-front coding trees where every black node has weight z. In fact, every k-front
coding tree rooted at a white node labeled by {i1, i2, . . . , ik} can be identified
as a set of reduced black-rooted trees that are fixed by any permutation of
{i1, i2, . . . , ik}. Thus according to the exponential formula for labeled struc-
tures, we have

Ck(z) = exp(Bk(z)). (3)

We observe that the black root jm in a reduced black-rooted tree connects with
k white-rooted coding trees. All these k white-rooted coding trees are respec-
tively rooted at the white nodes labeled by the k-subsets of {i1, i2, . . . , ik, jm}
except {i1, i2, . . . , ik}. This yields

Bk(z) = z(Ck(z))
k.

In combination of eq. (3), we get

Bk(z) = z exp(kBk(z)). (4)

By applying Lagrange inversion formula on eq. (4), we obtain the coefficients
of Bk(z):

[zn]Bk(z) =
1

n
[zn−1] exp(knz) =

(kn)n−1

n!
.

This implies that the number of jm-reduced black rooted k-front coding trees
having n black nodes is (kn)n−1. Similarly we can derive the coefficients of
Ck(z) from eq. (3) by using again Lagrange inversion formula:

[zn]Ck(z) =
1

n
[zn−1] exp((kn+ 1)z) =

(kn+ 1)n−1

n!
.

Equivalently, Rk(n) = (kn+1)n−1 counts the number of labeled k-trees having
n hedra that are rooted at a particular front whose vertices are labeled by
i1, i2, . . . , ik. Since there are

(
n+k
k

)
ways to choose the set {i1, i2, . . . , ik}, the

number of labeled k-trees having n hedra that are rooted at a front is

(kn+ 1)Lk(n) =

(
n+ k

k

)
Rk(n)

and the closed formula for Lk(n) given in eq. (1) follows.
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3 Leaves of labeled k-trees

In a k-front coding tree we call a black node a leaf if only one of its labeled white
neighbors connects with other black nodes. Every hedron that has only one
front in common with other hedra in a labeled k-tree therefore can be identified
as a leaf of an unlabeled k-front coding tree. In Figure 1 only the hedron with
nodes 1, 2, 3 has two fronts {1, 2}, {1, 3} in common with other hedra and
therefore only the black node connecting with white nodes {1, 2}, {2, 3}, {1, 3}
is not a leaf in the corresponding unlabeled 2-front coding tree.

Let Lk(n,m) denote the number of k-front coding trees having m leaves
among n labeled black nodes and let Rk(n,m) denote the number of k-front
coding trees having n labeled black nodes and m leaves that are rooted at a
white node labeled by a particular set {i1, i2, . . . , ik}. Since there are

(
n+k
k

)
ways to choose the set {i1, i2, . . . , ik}, the number of k-front coding trees having
n labeled black nodes and m leaves that are rooted at a white node is (kn +
1)Lk(n,m) =

(
n+k
k

)
Rk(n,m). Hence Lk(n,m)/Lk(n) = Rk(n,m)/Rk(n).

The main purpose of this section is to prove the following central limit
theorem.

Theorem 1 Let X̄n be the random variable associated with the number of
leaves of k-front coding trees given by

P(X̄n = m) =
Lk(n,m)

Lk(n)
.

Then E(X̄n) = (1/e)n + O(1) and Var(X̄n) = (1/e − 2/e2)n + O(1) and X̄n

satisfies a central limit theorem of type

X̄n − E(X̄n)√
Var(X̄n)

−→N(0, 1).

Proof Let Ck(z, w) be the exponential generating function for {i1, i2, . . . , ik}-
rooted k-front coding trees where every black node has weight z and every leaf
has weight w, that is,

Ck(z, w) =
∞∑

n=0

n∑
m=0

Rk(n,m)
znwm

n!
. (5)

With the help of this generating function we get

P(X̄n = m) =
Lk(n,m)

Lk(n)
=

Rk(n,m)

Rk(n)
=

[znwm]Ck(z, w)

[zn]Ck(z, 1)
.

Recall that a jm-reduced black-rooted tree is a k-front coding tree rooted at a
black node with labeling jm and if this black node represents the hedron whose
vertices are labeled by j1, j2, . . . , jk+1, then all the neighbors of this root are
labeled by the k-subsets of {j1, j2, . . . , jk+1} that contain jm. Let Bk(z, w) be
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the exponential generating function for jm-reduced black rooted trees where
every black node has weight z and every leaf has weight w. Then

Ck(z, w) = exp(Bk(z, w)),

Bk(z, w) = z(Ck(z, w))
k − z + zw,

which leads to

Bk(z, w) = z exp(kBk(z, w))− z + zw. (6)

We first analyze Bk(z) = Bk(z, 1) and Ck(z) = Ck(z, 1). Let W (z) denote
the classical tree function that is given by W (z) = z exp(W (z)). It then follows
that Bk(z) = Bk(z, 1) =

1
kW (kz). It is very well known that W (z) has radius

of convergence ρ = 1/e, that it has a singular expansion of the form

W (z) = 1−
√
2(1− ez)1/2 +

2

3
(1− ez) + · · ·

around z = 1/e and that W (z) can be analytically continued to a region of the
form {z ∈ C : |z| < 1/e+ η} \ [1/e,∞) for some η > 0. In particular it follows
that Bk(z) has corresponding properties, of course its radius of convergence
equals 1/(ke). Actually, in what follows we will only need that Bk(z) is analytic
in a so-called ∆-domain

∆α(M,ϕ) = {z | |z| < M, z ̸= α, | arg(z − α)| > ϕ}

where 0 < ϕ < π
2 . (Analyticity in ∆-domains is used to transfer the singular

expansion of the generating function into an asymptotic expansion for the co-
efficients, see Chapter VI.3 of [12].) In our case we know that Bk(z) is analytic
in ∆1/(ke)(1/(ke)+ η, ϕ). In view of Bk(z) =

1
kW (kz), Ck(z) = (z−1Bk(z))

1/k

and the expansion of W (z), we get the expansions of Bk(z) and Ck(z) around
the dominant singularity ξk = (ke)−1, too:

Bk(z) =
1

k
−

√
2

k
(1− ekz)1/2 +

2

3k
(1− ekz) +O(1− ekz)3/2

Ck(z) = e1/k −
√
2e1/k

k
(1− ekz)1/2 +

3− k

3k2
e1/k(1− ekz)

+O(1− ekz)3/2

Next we will analyze Bk(z, w) and Ck(z, w) based on eq. (6). We set

F (y, z, w) = z exp(ky) + z(w − 1)

which is analytic for (y, z, w) around (0, 0, 0) and we have F (y, 0, w) ≡ 0,
F (0, z, w) ̸≡ 0. Furthermore, the coefficients of F (y, z, w) are all non-negative.
Since Bk(z, w) is the unique solution of F (y, z, w) = y it can be expressed as

Bk(z, w) = α1(z, w)− β1(z, w)

[
1− z

ξk(w)

]1/2
,
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where ξk(1) = (ek)−1 and α1(z, w), β1(z, w), ξk(w) are analytic for |w−1| ≤ ϵ,
|z − ξk(w)| < ε, | arg(z − ξk(w))| > ϕ (for some ϕ ∈ (0, π/2)) and ϵ, ε
are sufficiently small. Furthermore, β(ξk(w), w) ̸= 0 and Bk(ξk(w), w) =
α1(ξk(w), w) = k−1 + (w − 1)ξk(w). Since Bk(z, w) = zCk(z, w)

k + z(w − 1),
Ck(z, w) has a corresponding representation

Ck(z, w) = a1(z, w) + b1(z, w)

[
1− z

ξk(w)

]1/2
(7)

where ξk(1) = (ek)−1 and a1(z, w), b1(z, w) are analytic functions around
(z, w) = (ξk, 1), b(ξk(w), w) ̸= 0, Ck(ξk(w), w) = a1(ξk(w), w) = (kξk(w))

−1/k.
By applying [9, Theorem 2.25] to eq. (7) and Lemma 4 of [11], it follows that
X̄n satisfies the central limit theorem as stated.

It also follows that E(X̄n) = µ̄ n+O(1) and Var(X̄n) = σ2 n+O(1), where
µ̄ and σ2 can be computed by

µ̄ = −ξ′k(1)

ξk(1)
=

Fw

zFz
=

1

e

and

σ2 = −ξ′′k (1)

ξk(1)
+

ξ′k(1)
2

ξk(1)2
− ξ′k(1)

ξk(1)

= µ̄+ µ̄2 +
1

z0F 3
z Fyy

(
F 2
z (FyyFww − F 2

yw)− 2FzFw(FyyFzw − FyzFyw)

+ F 2
w(FyyFzz − F 2

yz)
)
,

where all partial derivatives are evaluated at the point (y0, z0, w0) = (1/k, 1/(ek), 1).
See Theorem 2.23 in [9]. More precisely, we compute Fz = exp(ky) + w − 1
and Fw = z. It follows that µ̄ = (Fz(y0, z0, w0))

−1 = 1/e. Furthermore, Fyy =
zk2 exp(ky) and Fyy(y0, z0, w0) = k, Fww = 0, Fyw = 0, Fzw = 1, Fzz = 0,
Fw = z and Fw(y0, z0, w0) = 1/(ek), Fy = kz exp(ky), Fyy = zk2 exp(ky) and
Fyy(y0, z0, w0) = k, Fyz = k exp(ky) and Fyz(y0, z0, w0) = ek. This gives

µ̄ =
1

e
and σ2 =

1

e
− 2

e2

and completes the proof of the theorem.
⊓⊔

4 The degree distribution of labeled k-trees

In order to quantify the number of “neighbors” in k-trees we refer to the cor-
responding k-front coding trees and consider the degree distribution of white
nodes (since every black node in the k-front coding tree has degree k+1). It is
convenient to change the underlying statistics by measuring the size of a k-tree
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according to the number of white labeled nodes. Let C̃k(x) be the exponential
generating function for {i1, i2, . . . , ik}-rooted k-front coding trees, that is:

C̃k(x) =
∞∑

n=0

Rk(n)
xkn+1

n!
= xCk(x

k).

Let B̃k(x) be the exponential generating function for jm-reduced black rooted
trees where every white node has weight x. Then we have

C̃k(x) = x exp(B̃k(x)), B̃k(x) = (C̃k(x))
k.

That leads to B̃k(x) = xk exp(kB̃k(x)). By using the same techniques shown
in Section 3, we conclude that the dominant singularity x = ζk = (ek)−1/k of
B̃k(x) satisfying B̃k(ζk) = 1/k, is of square root type, i.e.,

B̃k(x) = k−1 −
√

2

k

(
1− x(ek)1/k

)1/2
+O(1− x(ek)1/k),

C̃k(x) = k−1/k −
√

2

k1+2/k

(
1− x(ek)1/k

)1/2
+O(1− x(ek)1/k).

Since B̃k(x) = Bk(x
k) and C̃k(x) = xCk(x

k), the corresponding local singular
expansions hold for x = (ek)−1/ke2πiℓ/k and ℓ = 1, 2, . . . , k − 1.

Now we give each labeled white node of degree di a weight ui. Let u =
(u1, · · · , uM ), m = (m1, · · · ,mM ) where mi ≥ 0 and d = (d1, · · · , dM )
where di > 0, and the coefficient of xkn+1um/n! in the exponential generating

function C̃
(d)
k (x,u) is R

(d)
k (n,m), which counts the number of {i1, i2, . . . , ik}-

rooted k-front coding trees having n black nodes and there are mi white nodes
out of kn+ 1 total white nodes having degree di for every i, 1 ≤ i ≤ M :

C̃
(d)
k (x,u) =

∑
n≥0

∑
m

R
(d)
k (n,m)

xkn+1um

n!
.

Let L
(d)
k (n,m) denote the number of labeled k-trees having kn+1 fronts and

there are mi fronts that are contained in di hedra for every i, 1 ≤ i ≤ M .
Then the number of white-rooted k-front coding trees on kn+ 1 white nodes
is

(kn+ 1)L
(d)
k (n,m) =

(
n+ k

k

)
R

(d)
k (n,m).

The main result of this section is a multivariate central limit theorem for the
joint distribution of the number of white nodes with given degrees. It certainly
applies for one given degree, i.e., the case M = 1.
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Theorem 2 Let Ȳn,d = (Ȳ
(1)
n,d1

, · · · , Ȳ (M)
n,dM

) be the random vector of the num-
ber of white nodes in a k-front coding tree that have degrees d1, · · · , dM , re-
spectively, that is,

P(Ȳn,d = m) =
L
(d)
k (n,m)

Lk(n)
.

Set

µd = e−1/k k−d+1

(d− 1)!
,

σd,t =

−µdµt

(
1 + (dk−k−1)(tk−k−1)

k

)
if d ̸= t,

µd − µ2
d

(
1 + (dk−k−1)2

k

)
if d = t

and

M = (µd1
, . . . , µdM

) and S = (σdi,dj
)1≤i,j≤M .

Then E(Ȳn,d) = Mkn+O(1) and Cov(Ȳn,d) = Skn+O(1). Furthermore Ȳn,d

satisfies a central limit theorem of the form

Ȳn,d − E(Ȳn,d)√
kn

−→N(0,S).

Proof In terms of the generating function, we have

P(Ȳn,d = m) =
L
(d)
k (n,m)

Lk(n)
=

R
(d)
k (n,m)

Rk(n)
=

[xkn+1um]C̃
(d)
k (x,u)

[xkn+1]C̃k(x)
.

Let P̃
(d)
k (x,u) denote the exponential generating function for k-front coding

trees whose root only connects to the root of a white-rooted k-front coding

tree. So that P̃
(d)
k (x,1) = C̃

(d)
k (x,1). We use P̃

(d)
k (x,u) to distinguish the case

that the white node root has degree di for some i, 1 ≤ i ≤ M . Furthermore, let

B̃
(d)
k (x,u) be the exponential generating function for jm-reduced black rooted

trees that each white node of degree di has weight ui for 1 ≤ i ≤ M . We get
the functions

B̃
(d)
k (x,u) = (P

(d)
k (x,u))k

C̃
(d)
k (x,u) = x exp(B̃

(d)
k (x,u)) +

M∑
j=1

x(uj − 1)
B̃

(d)
k (x,u)dj

dj !
(8)

P̃
(d)
k (x,u) = x exp(B̃

(d)
k (x,u)) +

M∑
j=1

x(uj − 1)
B̃

(d)
k (x,u)dj−1

(dj − 1)!

and we consider

S̄(x, y,u) =

xey +
M∑
j=1

x(uj − 1)
B̃

(d)
k (x,u)dj−1

(dj − 1)!

k

.
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Since S̄(0, y,u) ≡ 0, S̄(x, 0,u) ̸≡ 0 and all coefficients of S̄(x, y,1) are real

and positive, then y(x,u) = B̃
(d)
k (x,u) is the unique solution of the functional

equation S̄(x, y,u) = y. Furthermore, (x, y) = (ζk, 1/k) is the only solution of
S̄(x, y,1) = 0 and S̄y(x, y,1) = 1 with S̄x(ζk, 1/k,1) ̸= 0, S̄yy(ζk, 1/k,1) ̸= 0.

Consequently, B̃
(d)
k (x,u) can be represented as

B̃
(d)
k (x,u) = ḡ(x,u)− h̄(x,u)

[
1− x

ζk(u)

]1/2
which holds locally around (x,u) = (ζk,1) and h̄(ζk(u),u) ̸= 0. In view of

eq. (8), C̃
(d)
k (x,u) also has expansion of square root type, i.e.,

C̃
(d)
k (x,u) = s̄(x,u)− t̄(x,u)

[
1− x

ζk(u)

]1/2
(9)

where t̄(ζk(u),u) ̸= 0 since t̄(ζk(1),1) ̸= 0 and t is an analytic function
around (x,u) = (ζk,1). Of course there are corresponding representations
locally around (x,u) = (ζke

2πiℓ/k, 1) for ℓ = 1, 2, . . . , k − 1.
Finally by applying [9, Theorem 2.25] (as in the proof of Theorem 1) and

setting Ā(u) = log ζk(1)−log ζk(u),M = (Āuj
(1))1≤j≤M and S = (Āuiuj

(1)+
δi,jĀuj (1))1≤j≤M then E(Ȳn,d) = M kn+O(1), Cov(Ȳn,d) = S kn+O(1), and
the central limit theorem follows. It is a simply exercise to compute M and S
explicitly (compare with the proof of Theorem 1).

⊓⊔

5 Combinatorics of unlabeled k-trees

In this section we recall the combinatorial background for counting unlabeled
k-trees. More precisely we shall use the terminology introduced in [15,16] to
formulate a system of equations for the generating functions.

Let g ∈ Sm be a permutation of {1, 2, · · · ,m} that has ℓi cycles of size i,
1 ≤ i ≤ k, in its cyclic decomposition. Then its cycle type λ = (1ℓ1 2ℓ2 · · · kℓk)
is a partition of m where m = ℓ1 + 2ℓ2 + · · · + kℓk. (In what follows we
will denote by λ ⊢ m that λ is a partition of m.) Furthermore we set zλ =
1ℓ1ℓ1!2

ℓ2ℓ2! · · · kℓkℓk! and note that m!
zλ

is the number of permutations in Sm

of cycle type λ.
We recall that a hedron is a (k + 1)-clique in a k-tree and a front is a

k-clique in a k-tree. The number of vertices in a k-tree having n hedra is
k + 1 + (n − 1) = n + k. A colored hedron-labeled k-tree is a k-tree that has
each vertex colored from the set {1′, 2′, · · · , (k+1)′} so that any two adjacent
vertices are colored differently, and each hedron is labeled with a distinct
number from {1, 2, · · · , n}. The only automorphism that preserves hedra and
colors of a colored hedron-labeled k-tree is the identity automorphism, for
which we can ignore the colors of vertices. We now introduce k-coding trees. A
k-coding tree has labeled black nodes and colored nodes. Each edge connects
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a labeled black node with a colored node from colors {1, 2, · · · , k + 1}. To
construct a k-coding tree from a colored hedron-labeled k-tree, we color each
front of a hedron with a distinct color from {1, 2, · · · , k+1}. The corresponding
k-coding tree has a black node labeled with i representing a hedron of the
k-tree with label i and a j-colored node representing a front of the k-tree
with color j. We connect a black node with a colored node if and only if
the corresponding hedron contains the corresponding front. As a result, the
colored hedron-labeled k-trees are in bijection with the k-coding trees. Under
the action of Sn and Sk+1, the orbits of colored hedron-labeled k-tree, which
are unlabeled k-trees are in bijection with the orbits of unlabeled k-coding trees
under the action of Sk+1. See Figure 3 for an example. In [16] the following

1

2

3
4

1
2

3

3

1
1

3

2

3

2

31

1

3

3

1

2

3

3

1

4

2

Fig. 3 The bijection between a colored hedron-labeled 2-tree (left) and a 2-coding tree
(right).

system of equations was set up that determines the generating function U(z)
for unlabeled k-trees by

U(z) = B(z) + C(z)− E(z),

where

B(z) =
∑

λ⊢k+1

Bλ(z)

zλ

C(z) =
∑
µ⊢k

Cµ(z)

zµ

E(z) =
∑
µ⊢k

B̄µ(z)Cµ(z)

zµ

Bλ(z) = z
∏
i

Cλi(zi) (10)

B̄µ(z) = z
∏
i

Cµi(zi) (11)

Cµ(z) = exp

[ ∞∑
m=1

B̄µm(zm)

m

]
. (12)

Here B(z) is the generating function for color-orbits of black-rooted un-
labeled k-coding trees, C(z) is the generating function for color-orbits of
colored-rooted unlabeled k-coding trees and E(z) is the generating function
for color-orbits of unlabeled k-coding trees rooted at an edge. We call an
unlabeled k-coding tree a j-reduced black-rooted tree if it is a black-rooted
k-coding tree with all the neighbors of the root are colored by the integers
1, 2, · · · , j − 1, j + 1 · · · , k + 1. B̄(z) is the generating function for j-reduced
black-rooted trees. For any π ∈ Sk+1, Bλ(z) is the generating function for
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black-rooted trees that are fixed by π where π has cycle type λ. For any
σ ∈ Sk, B̄µ(z) (resp. Cµ(z)) is the generating function for j-reduced black-
rooted trees (resp. colored-rooted trees) that are fixed by σ where σ has cycle
type µ. The generating functions B̄µ(z), Cµ(z) are related to the unlabeled k-
coding trees for a fixed k. For any σ ∈ Sk, B̄µ(z) (resp. Cµ(z)) is the generating
function for j-reduced black-rooted trees (resp. colored-rooted trees) that are
fixed by σ where σ has cycle type µ. Here note that σ ∈ Sk is equivalent to
say, σ ∈ Sk+1 and σ has an element j fixed. We need this condition since every
j-reduced black-rooted tree has one color j fixed and every color-rooted tree
has the color on its root fixed. Consequently B̄µ(z) = B̄λ(z), Cµ(z) = Cλ(z) if
λ is obtained from µ by adding a part 1 and µ ⊢ k. If λ ⊢ (k+1) has no part of
size 1, then B̄λ(z) = Cλ(z) = 0. In particular, the functions B̄1k(z) = B̄1k+1(z)
and C1k(z) = C1k+1(z) hold in the context of k-trees. Cλi(z) is the generating
function for color-rooted trees that are fixed by πi and λi denotes the cycle
type of permutation πi where π ∈ Sk+1 has cycle type λ and i is a part of λ.
Finally, the above products over i range over all parts i of λ or µ, respectively,
that is, if i is contained m times in λ then it appears m times in the product.
For simplicity, we write Bλ(z) = B1ℓ1 2ℓ2 ··· kℓk (z), B̄λ(z) = B̄1ℓ1 2ℓ2 ··· kℓk (z),
Cλ(z) = C1ℓ1 2ℓ2 ··· kℓk (z) and zλ = z1ℓ1 2ℓ2 ··· kℓk if λ = (1ℓ1 2ℓ2 · · · kℓk).

6 Asymptotics of unlabeled k-trees

Let Uk(n) = [zn]U(z) denote the number of unlabeled k-trees having n hedra.
Then we have the following asymptotic property.

Theorem 3 The number of unlabeled k-trees with n hedra is asymptotically
given by

Uk(n) =
1

k!

(kρk)
− 1

k

√
2πk2

[
ρkm

′(ρk)

m(ρk)

]3/2
n−5/2ρ−n

k (1 +O(n−1)), (13)

where m(z) = z exp
[
k
∑∞

m=2 B̄1k(z
m)/m

]
, B̄1k(z) = m(z)ekB̄1k

(z) and ρk is
the unique real positive solution of m(z) = (ek)−1. More precisely, we have
(4k)−1 ≤ ρk ≤ (ek)−1 and the asymptotic expansion

ρk =
1

ek
− 1

2e3k2
+O

(
k−3

)
, k → ∞.

Furthermore, ρkm
′(ρk)/m(ρk) = 1 +O(k−1) as k → ∞.

We will prove Theorem 3 in the following way:

1. The dominant singularity z = ρk of B̄1k(z) and C1k(z) are of square root
type.

2. For any k ≥ 2 and µ ̸= (1k), B̄µ(z) and Cµ(z) are analytic at z = ρk.
3. The coefficient for the term (ρk − z)1/2 in the singular expansion of U(z)

is zero and the coefficient for (ρk − z)3/2 is positive.
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4. Asymptotic behavior of ρk as k → ∞.

Each step of the proof will be described below with more details explained.

Proof Step 1: The dominant singularity z = ρk of B̄1k(z) and C1k(z) are of
square root type.

For µ = (1k), from eq. (11) and (12), we have

B̄1k(z) = z exp

[
k

∞∑
m=1

B̄1k(z
m)

m

]
= exp(kB̄1k(z)) · z · exp

[
k

∞∑
m=2

B̄1k(z
m)

m

]
.

(14)

Setting

m(z) = z exp

[
k

∞∑
m=2

B̄1k(z
m)

m

]
, (15)

and B̄1k(z) = T (m(z)) for some power series T (z) we thus obtain T (z) =
z exp(kT (z)). Recall that in Section 2, W (z) denotes the classical tree function
that is given by W (z) = z exp(W (z)) it follows that T (z) = 1

kW (kz) and we
can expand T (z) in the region ∆1/(ke)(1/(ke) + η, ϕ) based on the expansion
of W (z).

Let ρk be the unique dominant singularity of B̄1k(z), within this step we
shall prove that the dominant singularity z = ρk of B̄1k(z) is of square root
type, too. Since m(z) has radius of convergence

√
ρk > ρk it follows that it

is analytic at z = ρk. More precisely the singular expansion of B̄1k(z) close
to z = ρk comes from composing the singular expansion of T (z) at 1/(ek)
with the analytic expansion of m(z) at ρk. In this context we also observe that
m(ρk) = (ek)−1 and m′(ρk) > 1. According to this we get the local expansion

B̄1k(z) =
1

k
−

√
2

k

[
1− m(z)

m(ρk)

]1/2
+

2

3k

[
1− m(z)

m(ρk)

]
+
∑
i≥3

(−1)imi

[
1− m(z)

m(ρk)

]i/2

=
1

k
−

√
2

k

[
(ρk − z)m′(ρk)

m(ρk)

]1/2
+

2

3k

[
(ρk − z)m′(ρk)

m(ρk)

]
+O(ρk − z)3/2.

Henceforth C1k(z) = z−1/kB̄1k(z)
1/k has z = ρk as dominant singularity of

square root type, too, and a local expansion of the form

C1k(z) = (kρk)
−1/k+a(ρk−z)1/2+b(ρk−z)+c(ρk−z)3/2+O(ρk−z)2 (16)

where a, b are given by

a = −
√
2(kρk)

(k−1)/k

k2ρk

[
m′(ρk)

m(ρk)

]1/2
, b =

3− k

3k3
(kρk)

(k−1)/k

ρk

[
m′(ρk)

m(ρk)

]
.

Recall that B̄µ(z) = B̄λ(z), Cµ(z) = Cλ(z) if λ is obtained from µ by adding a
part 1 and µ ⊢ k. If λ ⊢ (k+1) has no part of size 1, then B̄λ(z) = Cλ(z) = 0.
In particular, the functions B̄1k(z) = B̄1k+1(z) and C1k(z) = C1k+1(z) hold in
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the context of k-trees. Therefore, in view of eq. (16), it follows that B1k+1(z)
have the same radius of convergence ρk (which is a square-root singularity).

Step 2: For any k ≥ 2 and µ ̸= (1k), B̄µ(z) and Cµ(z) are analytic at
z = ρk.

Let τµ be the unique dominant singularity of B̄µ(z) for µ ̸= (1k). Since
the number of black-rooted trees that are fixed by the permutation of type
µ ̸= (1k) is less than or equal to those fixed by the identity permutation, i.e.,
[zn]B̄µ(z) ≤ [zn]B̄1k(z) it follows that τµ ≥ ρk. Therefore it remains to prove
τµ ̸= ρk. If µ has exactly j parts of size 1, where 0 < j < k, then we have

B̄µ(z) = zCµ(z)
j
∏
i ̸=1

Cµi(zi) and Cµ(z) = exp(B̄µ(z)) exp

[ ∞∑
m=2

B̄µm(zm)

m

]
(17)

which lead to

B̄µ(z) = z
∏
i ̸=1

Cµi(zi) exp(jB̄µ(z)) exp

[
j

∞∑
m=2

B̄µm(zm)

m

]
. (18)

By setting B̄µ(z) = y, it follows that (τµ, B̄µ(τµ)) is the unique solution of

M(z, y) = z
∏
i ̸=1

Cµi(zi) exp(jy) exp

[
j

∞∑
m=2

B̄µm(zm)

m

]
= y,

My(z, y) = jz
∏
i ̸=1

Cµi(zi) exp(jy) exp

[
j

∞∑
m=2

B̄µm(zm)

m

]
= 1,

consequently B̄µ(τµ) = 1/j. Recall that B̄1k(ρk) = 1/k, thus, we have kB̄1k(ρk) =
jB̄µ(τµ) = 1. If τµ = ρk, then kB̄1k(ρk) > jB̄µ(ρk) = 1, which contradicts the
relation kB̄1k(ρk) = 1. Therefore we can conclude that ρk < τµ and from
eq. (17), eq. (18), Cµ(z) also has dominant singularity τµ. If µ has no part of
size 1, then B̄µ(z) is a product of Cµi(zi) where i ≥ 2 and µi has part of size
1. Consequently we have τµ > min{τµi : i ∈ µ} > ρk. Now we can conclude
for any k ≥ 2 and µ ̸= (1k), ρk < τµ, namely B̄µ(z) and Cµ(z) are analytic
at z = ρk. Furthermore, we observe that the dominant singularity of Bλ(z) is
determined by Cλ(z) where λ has at least one part of size 1. It follows that
Bλ(z) is also analytic at z = ρk for any λ ̸= (1k+1).

Step 3: The coefficient for the term (ρk − z)1/2 in the singular expansion
of U(z) is zero and the coefficient for (ρk − z)3/2 is positive.

Since B1k+1(z) = zC1k(z)
k+1 has a square-root singularity at z = ρk and

Bλ for any λ ̸= (1k+1) is analytic at ρk, the dominant term in the singular
expansion of U(z) comes from

B1k+1(z)

z1k+1

+
C1k(z)

z1k
− C1k(z)B̄1k(z)

z1k
=

−kzC1k(z)
k+1

(k + 1)!
+

C1k(z)

k!
.
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All the other terms are all analytic at z = ρk. Together with the singular expan-
sion of C1k(z) shown in eq. (16), we can calculate the coefficient for the term
(ρk−z)1/2 in the singular expansion of U(z), which is −kρk

(k+1)!

(
k+1
1

)
a

kρk
+ a

k! = 0.

Similarly the coefficient for the term (ρk − z)3/2 in the singular expansion of
U(z) is

−kρk
(k − 1)!

a(b(kρk)
− 1

k +
k − 1

3!
a2)(kρk)

− k−2
k =

2
√
2

k!

(kρk)
− 1

k

3k2

[
m′(ρk)

m(ρk)

]3/2
which is positive. Now we have derived the singular expansion of U(z) at
z = ρk:

U(z) =U(ρk) +
2
√
2

k!

(kρk)
− 1

k

3k2

[
(ρk − z)m′(ρk)

m(ρk)

]3/2
(19)

+ c1(ρk − z) + c2(ρk − z)2 +O(ρk − z)5/2.

By applying the transfer theorem ([12, Theorem VI.3] or [9, Corollary 2.15]),
we get eq. (13) and the proof of the asymptotic expansion is complete.

Step 4: Asymptotic behavior of ρk as k → ∞.
We first show (4k)−1 ≤ ρk ≤ (ek)−1. Since [zn]B̄1k(z) > 0, [zn]T (z) > 0

and B̄1k(z) = T (m(z)) where m(z) = z + · · · has non-negative coefficients,
then we have [zn]B̄1k(z) ≥ [zn]T (z) which indicates the radius of convergence
for B̄1k(z) is at most that for T (z) which is (ek)−1. On the other hand, the
radius of convergence for B̄1k(z) is at least that for M(z) where M(z) =
z(1− kM(z))−1 and accordingly ρk ≥ (4k)−1.

It remains to consider the radius of convergence ρk in a more precise way.
If we set Ak(z) = kB̄1k(z/k) then Ak(z) satisfies the equation

Ak(z) = z exp(Ak(z)) exp

( ∞∑
m=2

Ak(z
m/km−1)

m

)
. (20)

By definition the radius of convergence of Ak(z) is given by αk = kρk. Fur-
thermore by (20) it follows that Ak+1(z) ≤c Ak(z), where ≤c means that the
inequality is satisfied for all coefficients. Of course this implies that αk+1 ≥ αk

and has, thus, a limit. By using the uniform estimate Ak(z) = z +O(Ak(z)−
z) = z +O(A1(z)− z)) = z +O(z2), the representation

αk = exp

(
−1−

∞∑
m=2

Ak(α
m
k /km−1)

m

)
,

and a simple boots-trapping procedure it follows that

αk = exp

(
−1− α2

k

2k
+O(k−2)

)
=

1

e
− 1

2e3k
+O

(
k−2

)
,

which proves the asymptotic expansion for ρk = αk/k. It is also easy to show
that m′(ρk) = 1 + O(k−1) which proves ρkm

′(ρk)/m(ρk) = 1 + O(k−1) as
k → ∞.
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⊓⊔
It is worthwhile to mention that the coefficients for the asymptotics of

[zn]B̄1k(z), [z
n]C1k(z) and [zn]U(z) are determined by m(z) and ρk where

the value of ρk can be computed by following Otter’s work on 1-trees [24].
More precisely, let Tn = [zn]B̄1k(z) and mn = [zn]m(z). Then by taking
the derivative of eq. (14), eq. (15) and equating the coefficients, we get the
recurrences for Tn and mn, namely

Tn =
k

n− 1

n−1∑
i=1

Tn−i

∑
m|i

mTm for n > 1 and T1 = 1.

mn =
k

n− 1

n−1∑
i=2

mn−i

∑
m|i,m ̸=i

mTm for n > 2 and m1 = 1,m2 = 0.

From these two recurrences we can compute the exact value of mn. Then the
value of ρk is obtained by solving numerically the equation m(z) = 1/(ek).
The series m(z) can be estimated by its first 20 terms in its expansion at z = 0
since the resulting error term is exponentially small. For k = 2, ρ2 is already
computed in [14] and turns out to be approximately 0.177.

7 Leaves of unlabeled k-trees

As we have explained in Section 5 unlabeled k-trees are in bijection with the
orbits of unlabeled k-coding tree under the action of Sk+1. In an unlabeled
k-coding tree we call a black node a leaf if only one of its colored neighbors
connects with other black nodes.

In the sequel we shall weight each black node by z and each leaf by w. Let
U(z, w) be the generating function for color-orbits of unlabeled k-coding trees,
then we have:

Theorem 4 Let Xn be the random variable associated with the number of
leaves of unlabeled k-coding trees, that is

P(Xn = r) =
[znwr]U(z, w)

[zn]U(z, 1)
.

Then there exist positive constants µk and σ2
k such that E(Xn) = µk n+O(1),

Var(Xn) = σ2
k n+O(1), and that Xn satisfies a central limit theorem of type

Xn − E(Xn)√
Var(Xn)

−→N(0, 1).

Furthermore, we have, as k → ∞,

µk =
1

e
+O

(
1

k

)
and σ2

k =
1

e
− 2

e2
+O

(
1

k

)
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Remark 1 Note that for large k the mean value µkn + O(1) is quite close to
the mean value (1/e)n+O(1) in the labeled case, and the variance σ2

kn+O(1)
is quite close to the variance (1/e− 2/e2)n+O(1) in the labeled case.

We will prove Theorem 4 in the following way:

1. Derivation of the generating function U(z, w).
2. Form ≥ 2 and µ ̸= (1k), B̄1k(z

m, wm), B̄µ(z, w), Cµ(z, w) and C1k(z
m, wm)

are analytic if (z, w) is close to (ρk, 1).
3. The singular expansion of B̄1k(z, w) and C1k(z, w) for w close to 1 and z

close to ρk(w).
4. Reformulate as for the Step 4 in the proof of Theorem 3.
5. Asymptotic behaviors of µk and σ2

k as k → ∞.

Each step of the proof will be described below with more details explained.

Proof Step 1: Derivation of the generating function U(z, w).
Let B(z, w) be the generating function for color-orbits of black-rooted un-

labeled k-coding trees, let C(z, w) be the generating function for color-orbits
of color-rooted unlabeled k-coding trees and let E(z, w) be the generating
function for color-orbits of unlabeled k-coding trees rooted at an edge, then
according to the dissymmetry theorem and Cauchy-Frobenius theorem, we
have U(z, w) = B(z, w) + C(z, w)− E(z, w) where

B(z, w) =
∑

λ⊢k+1

Bλ(z, w)

zλ
, C(z, w) =

∑
µ⊢k

Cµ(z, w)

zµ
,

E(z, w) =
∑
µ⊢k

(B̄µ(z, w)− zw + z)Cµ(z, w) + z(w − 1)

zµ

Bλ(z, w) = z
∏
i

Cλi(zi, wi) + z(w − 1) (21)

B̄µ(z, w) = z
∏
i

Cµi(zi, wi) + z(w − 1) (22)

Cµ(z, w) = exp

[ ∞∑
m=1

B̄µm(zm, wm)

m

]
. (23)

Step 2: For m ≥ 2 and µ ̸= (1k), B̄1k(z
m, wm), B̄µ(z, w), Cµ(z, w) and

C1k(z
m, wm) are analytic if (z, w) is close to (ρk, 1).

For µ = (1k), from eq. (22) and (23), we obtain

B̄1k(z, w) = z exp

[
k

∞∑
m=1

B̄1k(z
m, wm)

m

]
+ z(w − 1). (24)

We first show for µ ̸= (1k) and m ≥ 2, B̄µ(z, w) and B̄1k(z
m, wm) are analytic

if (z, w) is close to (ρk, 1). For sufficiently small ϵ > 0, we consider |w| ≤ ρk

ρk+ϵ

and |z| ≤ ρk + ϵ, then for m ≥ 2,

|B̄µ(z, w)| ≤ B̄µ(|zw|, 1) ≤ B̄µ(ρk, 1) ≤ Kρk,

|B̄1k(z
m, wm)| ≤ B̄1k(|zw|m, 1) ≤ B̄1k(ρ

m
k , 1) ≤ Mρmk .
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The last inequality holds because B̄µ(z, 1) and B̄1k(z, 1) are convex for z ∈
[0, ρk] and z ∈ [0, ρ2k], respectively. This implies for µ ̸= (1k) and m ≥ 2,
B̄µ(z, w) and B̄1k(z

m, wm) are analytic if (z, w) is close to (ρk, 1). Analogous
to B̄1k(z, w), for m ≥ 2 and µ ̸= (1k), Cµ(z, w) and C1k(z

m, wm) are analytic
if (z, w) is close to (ρk, 1).

Step 3: The singular expansion of B̄1k(z, w) and C1k(z, w) for w close to
1 and z close to ρk(w).

We set

F (y, z, w) = z exp

[
ky + k

∞∑
m=2

B̄1k(z
m, wm)

m

]
+ z(w − 1) (25)

which is analytic for (y, z, w) around (0, 0, 0) and we have F (y, 0, w) ≡ 0,
F (0, z, w) ̸≡ 0. Furthermore, the coefficients of F (y, z, w) are all non-negative.
Since B̄1k(z, w) is the unique solution of F (y, z, w) = y it can be expressed as

B̄1k(z, w) = α(z, w)− β(z, w)

[
1− z

ρk(w)

]1/2
,

where α(z, w), β(z, w), ρk(w) are analytic for |w − 1| ≤ ϵ, |z − ρk(w)| < ε,
| arg(z − ρk(w))| > ϕ (for some ϕ ∈ (0, π/2)) and ϵ, ε are sufficiently small.
Furthermore, β(ρk(w), w) ̸= 0 and B̄1k(ρk(w), w) = α(ρk(w), w) = k−1 +
(w − 1)ρk(w). Since B̄1k(z, w) = zC1k(z, w)

k + z(w − 1), C1k(z, w) has a
corresponding representation

C1k(z, w) = a(z, w) + b(z, w)

[
1− z

ρk(w)

]1/2
, (26)

where a(z, w), b(z, w) are analytic functions around (z, w) = (ρk, 1), b(ρk(w), w) ̸=
0, C1k(ρk(w), w) = a(ρk(w), w) = (kρk(w))

−1/k.
Step 4: Reformulate as for the Step 4 in the proof of Theorem 3.
For |w−1| ≤ ϵ, |z−ρk(w)| < ε, | arg(z−ρk(w))| > ϕ and ϵ, ε are sufficiently

small, U(z, w) has the expansion

U(z, w) = − kz

(k + 1)!
C1k(z, w)

k+1 +
1

k!
C1k(z, w) +H1(z, w)

where H1(z, w) is an analytic function around (z, w) = (ρk, 1). By substituting
C1k(z, w) by its singular expansion in eq. (26), U(z, w) can be expanded locally
around z = ρk(w), i.e.,

U(z, w) = g(z, w) +

[
−zak(z, w)

(k − 1)!
+

1

k!
+O(ρk(w)− z)

]
b(z, w)

[
1− z

ρk(w)

]1/2
,

Since−ρk(w)
ak(ρk(w),w)

(k−1)! + 1
k! = 0, together with the fact a(z, w) = a(ρk(w), w)+

O(ρk(w)− z) and b(ρk(w), w) ̸= 0, we can conclude

U(z, w) = g(z, w) + f(z, w)

[
1− z

ρk(w)

]3/2
(27)
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where f(ρk, 1) ̸= 0 from Section 6 and therefore f(ρk(w), w) ̸= 0 for |w−1| ≤ ϵ.
By applying [9, Theorem 2.25] to eq. (27), there is a central limit theorem for
(Xn − E(Xn))/(σk

√
n). More precisely there exist µk and σ2

k with E(Xn) =
µk n + O(1) and Var(Xn) = σ2

k n + O(1). By applying Lemma 4 of [11] it
actually follows that σ2

k > 0 and Xn satisfies a central limit theorem as stated.
Step 5: Asymptotic behaviors of µk and σ2

k as k → ∞.
In order to compute µk and σ2

k we proceed similarly to the proof of Theo-
rem 1. We just have to replace F (y, z, w) = z exp(ky)+ z(w− 1) by F (y, z, w)
given in (25). Furthermore we have y0 = 1/k, z0 = 1/(ek) + O(k−2), and
w0 = 1. From this and the approximation B1k(z, w) = zw + O(z2/k) (for
z → 0 and w close to 1) we obtain (for (y, z, w) = (y0, z0, w0)) Fy = 1,
Fyy = k, Fw = 1/(ke) +O(k−2), Fz = e+O(k−1), Fww = 1/(k2e2) +O(k−3),
Fyw = 1/(ke2) + O(k−2), Fzw = 1 + O(k−1), Fyz = ke + O(1), and Fzz =
2 + O(k−2). From this it directly follows that µk = 1/e + O(k−1) and σ2

k =
1/e− 2/e2 +O(k−1).

We just present the details for the Fz. The other cases can be handled in
the same way. By (25) we have

Fz = exp

[
ky + k

∞∑
m=2

B̄1k(z
m, wm)

m

]
+ (w − 1)

+ kz exp

[
ky + k

∞∑
m=2

B̄1k(z
m, wm)

m

] ∞∑
m=2

B̄1k,z(z
m, wm)zm−1

and consequently for (y, z, w) = (y0, z0, w0)

Fz =
y0
z0

+ ky0

∞∑
m=2

B̄1k,z(z
m
0 , 1)zm−1

0 .

Since B1k,z(z, 1) = 1 +O(z/k) as z → 0 it follows that

∞∑
m=2

B̄1k,z(z
m
0 , 1)zm−1

0 =
1

ek
+O(k−2).

Summing up this implies
Fz = e+O(k−1)

as proposed.
⊓⊔

8 The degree distribution of unlabeled k-trees

We again refer to the unlabeled k-coding trees and consider here the degree
distribution. Clearly every black node in the k-coding tree has degree k + 1.
So we concentrate on the degree distribution of colored nodes. If an unlabeled
k-coding tree has n black nodes, then it has kn + 1 colored nodes. As in the
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labeled case we change the statistics slightly by measuring the size according
to the number of colored nodes. Formally the variable x (instead of z) takes
care of the number of colored nodes. Now let Ũ(x) = xU(xk) be the generating
function for color-orbits of unlabeled k-coding trees, let B̃(x) be the generating
function for color-orbits of black-rooted unlabeled k-coding trees, let C̃(x)
be the generating function for color-orbits of color-rooted unlabeled k-coding
trees and let Ẽ(x) be the generating function for color-orbits of unlabeled k-
coding trees rooted at an edge, then we have similarly to the above: Ũ(x) =
B̃(x) + C̃(x)− Ẽ(x) where

B̃(x) =
∑

λ⊢k+1

B̃λ(x)

zλ

C̃(x) =
∑
µ⊢k

C̃µ(x)

zµ

Ẽ(x) =
∑
µ⊢k

¯̃Bµ(x)C̃µ(x)

zµ

B̃λ(x) =
∏
i

C̃λi(xi)

¯̃Bµ(x) =
∏
i

C̃µi(xi)

C̃µ(x) = x exp

[ ∞∑
m=1

¯̃Bµm(xm)

m

]
.

In completely the same way as in Section 6, we can find the singular ex-
pansion of Ũ(x) given by

Ũ(x) = Ũ(γk) + c̄1(γk − x) + r(γk − x)3/2 + c̄2(γk − x)2 +O((γk − x)5/2)

for some positive constant r and some constants c̄1, c̄2. Furthermore ¯̃B1k(γk) =
1/k. As in the labeled case there are similar expansions at x = γke

2πiℓ/k,
ℓ = 1, 2, . . . , k − 1.

Now we give each colored node of degree di with weight ui. Let u =
(u1, · · · , uM ), m = (m1, · · · ,mM ) where mi ≥ 0 and d = (d1, · · · , dM ) where
di > 0, then the coefficient of xkn+1um in the generating function U (d)(x,u)
is the number of unlabeled k-coding trees on n black nodes and there are mi

colored nodes out of kn + 1 total colored nodes having degree di for every i,
1 ≤ i ≤ M . Then we have

Theorem 5 Let Yn,d = (Y
(1)
n,d1

, · · · , Y (M)
n,dM

) be the random vector of the num-
ber of colored nodes in an unlabeled k-tree that have degrees (d1, · · · , dM ), that
is,

P(Yn,d = m) =
[xkn+1um]U (d)(x,u)

[xkn+1]U (d)(x,1)
.

Then there exist an M -dimensional vector M̃ and a M ×M positive semidefi-
nite matrix S̃ such that E(Yn,d) = M̃kn+O(1) and Cov(Yn,d) = S̃kn+O(1).
Furthermore Yn,d satisfies a central limit theorem of the form

Yn,d − E(Yn,d)√
kn

−→N(0, S̃).
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Remark 2 The case of trees, that is, the case k = 1, has been discussed in [26,
10]. There it was proved that the number of vertices Yn,d of degree d satisfy
E (Yn,d) = µ̃dn + O(1) and Var (Yn,d) = σ̃2

dn + O(1), where µ̃d and σ̃2
d are

asymptotically given by

µ̃d ∼ σ̃2
d ∼ Cρd1,

as d → ∞, where C ≈ 6.380045 (and ρ1 = 0.338219). A similar result holds
for k-trees. The corresponding constants µ̃k,d, σ̃

2
k,d are asymptotically given

by

µ̃k,d ∼ σ̃2
k,d ∼ Cρdk

for fixed k and d → ∞. The proof is very similar to that given in [26,10] but
quite technical. So we do not present the details.

We will prove Theorem 5 in the following way:

1. Derivation of the generating function U (d)(x,u).

2. For µ ̸= (1k) and m ≥ 2, B̄
(d)
µ (x,u) and B̄

(d)

1k
(xm,um) are analytic if (x,u)

is close to (γk,1).

3. The singular expansion of B̄
(d)

1k
(x,u) and C

(d)

1k
(x,u) around (x,u) = (γk,1).

4. Reformulate as for the Step 4 in the proof of Theorem 3.

Each step of the proof will be described below with more details explained.

Proof Step 1: Derivation of the generating function U (d)(x,u).

Let C(d)(x,u) be the generating function for color-orbits of colored-rooted
trees that have each colored node of degree di weighted by ui. Let P

(d)(x,u) be
the generating function for the trees whose root is only connected with the root
of a color-orbit of color-rooted unlabeled k-coding tree, so that C(d)(x,1) =
P (d)(x,1). Let B(d)(x,u) be the generating function for color-orbits of black-
rooted unlabeled k-coding trees that have each node of degree di weighted
by ui. E

(d)(x,u) be the generating function for color-orbits of unlabeled k-
coding trees rooted at an edge that have each node of degree di weighted by ui.
Here we introduce P (d)(x,u) to distinguish the case that the colored root has

degree di for some 1 ≤ i ≤ M . Let Z(Sp, B̄
(d)
µ (x,u)) represent the generating

function for the forest consisting of exactly k reduced black-rooted unlabeled
k-coding trees:

Z(Sp, B̄
(d)
µ (x,u)) = Z(Sp, B̄

(d)
µ (x,u), B̄

(d)
µ2 (x2,u2), · · · , B̄(d)

µp (xp,up))

=
∑
λ⊢p

1

zλ
B̄(d)

µ (x,u)λ1B̄
(d)
µ2 (x2,u2)λ2 · · · B̄(d)

µp (xp,up)λp

where λ = (1λ1 2λ2 · · · pλp). Then the generating function U (d)(x,u) for unla-
beled k-trees with colored nodes of degree d is given by U (d)(x,u) = B(d)(x,u)+
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C(d)(x,u)− E(d)(x,u) where

B(d)(x,u) =
∑

λ⊢k+1

B
(d)
λ (x,u)

zλ
, C(d)(x,u) =

∑
µ⊢k

C
(d)
µ (x,u)

zµ
,

E(d)(x,u) =
∑
µ⊢k

B̄
(d)
µ (x,u)P

(d)
µ (x,u)

zµ
,

B
(d)
λ (x,u) =

∏
i

P
(d)
λi (xi,ui), B̄(d)

µ (x,u) =
∏
i

P
(d)
µi (xi,ui), (28)

C(d)
µ (x,u) = x exp

[ ∞∑
m=1

B̄
(d)
µm (xm,um)

m

]
+

M∑
j=1

x(uj − 1)Z(Sdj , B̄
(d)
µ (x,u)),

(29)

P (d)
µ (x,u) = x exp

[ ∞∑
m=1

B̄
(d)
µm (xm,um)

m

]
+

M∑
j=1

x(uj − 1)Z(Sdj−1, B̄
(d)
µ (x,u)).

(30)

Step 2: For µ ̸= (1k) and m ≥ 2, B̄
(d)
µ (x,u) and B̄

(d)

1k
(xm,um) are analytic

if (x,u) is close to (γk,1).

The dominant singularity for B̄
(d)

1k
(x,1) is γk. As before, for µ ̸= (1k),

B̄
(d)
µ (x,u) and for m ≥ 2, B̄

(d)

1k
(xm,um) are analytic if (x,u) is close to (γk,1).

Step 3: The singular expansion of B̄
(d)

1k
(x,u) and C

(d)

1k
(x,u) around (x,u) =

(γk,1).
Next we consider

S(x, y,u) =

(
xey exp

( ∞∑
m=2

B̄
(d)

1k
(xm,um)

m

)

+
M∑
j=1

x(uj − 1)Z(Sdj−1, y, B̄
(d)

1k
(x2,u2), · · · , B̄(d)

1k
(xdj−1,udj−1))

)k

.

Since S(0, y,u) ≡ 0, S(x, 0,u) ̸≡ 0 and all coefficients of S(x, y,1) are real

and positive, then y(x,u) = B̄
(d)

1k
(x,u) is the unique solution of the functional

equation S(x, y,u) = y. Furthermore, (x, y) = (γk, 1/k) is the only solution of
S(x, y,1) = 0 and Sy(x, y,1) = 1 with Sx(γk, 1/k,1) ̸= 0, Syy(γk, 1/k,1) ̸= 0.

Consequently, B̄
(d)

1k
(x,u) can be represented as

B̄
(d)

1k
(x,u) = g(x,u)− h(x,u)

[
1− x

γk(u)

]1/2
(31)

which holds locally around (x,u) = (γk,1) and h(γk(u),u) ̸= 0. In view of

B̄
(d)

1k
(x,u) = P

(d)

1k
(x,u)k, P

(d)

1k
(x,u) also has the expansion of square root
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type, i.e.,

P
(d)

1k
(x,u) = s(x,u)− t(x,u)

[
1− x

γk(u)

]1/2
(32)

where t(γk(u),u) ̸= 0. From eq. (29) and eq. (30), we have

C(d)
µ (x,u) = P (d)

µ (x,u) +
M∑
j=1

x(uj − 1)
[
Z(Sdj , B̄

(d)
µ (x,u))− Z(Sdj−1, B̄

(d)
µ (x,u))

]
.

Step 4: Reformulate as for the Step 4 in the proof of Theorem 3.

Based on Step 3, we shall next compute the dominant term in the singular
expansion of U (d)(x,u).

For simplicity we will omit variables (x,u) and degree d.

U(x,u) =
P k+1
1k

(k + 1)!
+

C1k

k!
−

P k+1
1k

k!
+M1

=
P k+1
1k

(k + 1)!
+

1

k!
(1− P k

1k)P1k +
1

k!
(C1k − P1k) +M1

= −
kP k+1

1k

(k + 1)!
+

P1k

k!
+

1

k!

M∑
j=1

x(uj − 1)
[
Z(Sdj , B̄1k)− Z(Sdj−1, B̄1k)

]
+M1

where M1 is an analytic function around (x,u) = (γk,1). It is now convenient

to write U(x,u) = f(x,u) + h̄(x,u)
[
1− x

γk(u)

]1/2
. Then by substituting P1k ,

B̄1k with its representation in eq. (32) and eq. (31), we obtain

h̄(x,u) =
sk t

(k − 1)!
− t

k!

+
h

k!

M∑
j=1

x(uj − 1)
[
Z ′(Sdj−1, g,X2, · · · , Xdj−1)− Z ′(Sdj , g,X2, · · · , Xdj )

]
where Xi are analytic functions around (x,u) = (γk,1) and Z ′ is the deriva-
tive w.r.t. the first variable of Z(Sk, x1, · · · , xk), namely Z ′(Sk, x1, · · · , xk) =
Z(Sk−1, x1, · · · , xk−1). Furthermore, by replacing s, t by g = sk and h =
ksk−1t, we can further simplify h̄(x,u), that is

h̄(x,u) =
h

k!

g − 1
k

g1−
1
k

+
h

k!

M∑
j=1

x(uj − 1)
[
Z ′(Sdj−1, g,X2, · · · , Xdj−1)− Z ′(Sdj , g,X2, · · · , Xdj )

]
.
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Now we use the fact that y = g(γk(u),u) and x = γk(u) is the solution of
S(x, y,u) = y and Sy(x, y,u) = 1, which yields

g(γk(u),u) =
1

k
+ g(γk(u),u)

k−1
k

M∑
j=1

x(uj − 1)

×
[
Z(Sdj−1, g,X2, · · · , Xdj−1)− Z ′(Sdj−1, g,X2, · · · , Xdj−1)

]
and consequently h̄(γk(u),u) ≡ 0 and U(x,u) has a local expansion around
(x,u) = (γk,1) of the form

U(x,u) = w(x,u) + r(x,u)

[
1− x

γk(u)

]3/2
. (33)

where r(γk(u),u) ̸= 0 since r(γk,1) = r ̸= 0 and w(x,u), r(x,u) are ana-
lytic function around (x,u) = (γk,1). Thus a central limit theorem follows.
More precisely by setting A(u) = log γk(1) − log γk(u), µ2 = (Auj (1))1≤j≤M

and Σ2 = (Auiuj (1) + δi,jAuj (1))1≤j≤M then E(Yn,d) = µ2 (kn) + O(1) and
Cov(Yn,d) = Σ2 (kn) +O(1).

⊓⊔
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