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Abstract. We consider a random k-tree Gn,k that is uniformly selected from the class of
labelled k-trees with n + k vertices. Since 1-trees are just trees, it is well-known that Gn,1

(after scaling the distances by 1/(2
√
n)) converges to the Continuum Random Tree Te. Our

main result is that for k 6= 1, the random k-tree Gn,k, scaled by (k + 1)/(2
√
n), converges to

the Continuum Random Tree Te, too. In particular this shows that the diameter as well as the
typical distance of two vertices in a random k-tree Gn,k are of order

√
n.

1. Introduction and Main result

A k-tree is a generalization of a tree and can be defined recursively: a k-tree is either a complete
graph on k vertices (= a k-clique) or a graph obtained from a smaller k-tree by adjoining a new
vertex together with k edges connecting it to a k-clique of the smaller k-tree (and thus forming a
(k + 1)-clique), see Figure 2.1. In particular, a 1-tree is a usual tree. (Note that the parameter k
is always fixed.)

A k-tree is an interesting graph from an algorithmic point of view since many NP-hard prob-
lems on graphs have polynomial, in fact usually linear, dynamic programming algorithms when
restricted to k-trees and their subgraphs for fixed values of k [6, 40, 27]; subgraphs of k-trees are
called partial k-trees. Such NP-hard problems include maximum independent set size, minimal
dominating set size, chromatic number, Hamiltonian circuit, network reliability and minimum
vertex removal forbidden subgraph [5, 9]. Several graphs which are important in practice [32],
have been shown to be partial k-trees, among them are

(1) Trees/ Forests (partial 1-trees)
(2) Series parallel networks (partial 2-trees)
(3) Outplanar graphs (partial 2-trees)
(4) Halin graphs (partial 3-trees).

However, other interesting graph classes like planar graphs or bipartite graphs are not partial
k-trees. k-trees are also very interesting from a combinatorial point of view. For example, the
enumeration problem for k-trees has been studied in various ways, see [7, 34, 23, 13, 29, 30, 24,
25, 26]. The number of labelled k-trees has been determined by Beineke and Pippert [7], Moon
[34], Foata [23], Darrasse and Soria [13]; as usual a k-tree on n vertices is called labelled if the
integers from {1, 2, . . . , n} have been assigned to its vertices (one-to-one) and two labelled k-trees
are considered to be different if the corresponding edge sets are different. In order to analyze
k-trees, it turns out that it is convenient to consider the number of hedra instead of the number
of vertices as the size of a k-tree; we adopt the notions from [26]. A hedron is a (k + 1)-clique
in a k-tree, and by definition a k-tree with n hedra has n + k vertices. A front of a k-tree is a
k-clique. In what follows, we assume the k-trees are all labelled and a random k-tree with n hedra
is uniformly selected from the class of labelled k-trees with n hedra.

Darrasse and Soria [13] showed a Rayleigh limiting distribution for the expected distance be-
tween pairs of vertices in a random k-tree, as it is known for usual trees and, thus, for 1-trees.
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Inspired by this results, we expect that a random k-tree with n hedra, after scaling the distances
to the root by 1/

√
n, converges to the Continuum Random Tree multiplied by a scaling factor. For

k = 1 this is true by a result of Aldous. Actually Aldous has proved in a series of seminal papers
[2, 3, 4] that a critical Galton-Watson tree conditioned on its size has the Continuum Random
Tree (CRT) as its limiting object – and random 1-trees are a special case (with a Poisson offspring
distribution). The concept Continuum Random Tree was also introduced by Aldous [2, 3, 4] and
further developed by Duquesne and Le Gall [18, 19, 20].

Since Aldous’s pioneering work on the Galton-Watson trees, the CRT has been established as
the limiting object of a large variety of combinatorial structures [28, 38, 35, 36, 11, 31, 8, 12].
A key idea in the study of these combinatorial objects is to relate them to trees endowed with
additional structures by using an appropriate bijection. In the present case of k-trees, we encode
them as so-called k-front coding trees via a bijection due to Darrasse and Soria in [13], which
was originally used to enumerate k-trees and to recursively count the distance between any two
vertices in a random k-tree. Furthermore, in order to build a connection between the distance
of two vertices in a random k-tree and the distance of two vertices in a critical Galton-Watson
tree, we need to introduce the concept of a size-biased enriched tree. This is adapted from the
size-biased Galton-Watson tree which was introduced by Addario-Berry, Devroye and Janson in [1]
and was further generalized to the size-biased R-enriched trees by Panagiotou, Stufler and Weller
in [35, 36]. Our enriched tree is slightly different to the size-biased R-enriched tree and we use
their ideas in [38, 35] where an important step is to relate the distance between two vertices in a
random graph to the distance between two blocks in a random size-biased R-enriched tree.

Our main result establishes the convergence of a random k-tree to the CRT with respect to the
Gromov-Hausdorff metric.

Theorem 1. Let Gn,k be the class of vertex labelled k-trees with n hedra and denote by Gn,k a

random k-tree that is uniformly selected from the class Gn,k and by G
◦
n,k a random k-tree that is

rooted at a front. Then

mk

2
√
n
G
◦
n,k

(d)−−→ Te and
mk

2
√
n
Gn,k

(d)−−→ Te

with respect to the Gromov-Hausdorff metric, where mk = k + 1 for k 6= 1 and m1 = 1.

In particular this shows that the diameter as well as the typical distance of two vertices are of
order

√
n and they have the same limiting distribution as random trees.

The plan of the paper is as follows. In Section 2 we recall the combinatorial background for
k-trees, introduce the Boltzmann sampler – a method of generating efficiently a uniform random
combinatorial object, describe Darrasse and Soria’s algorithm on computing the distances between
two vertices in a k-tree, and present Aldous’s result on the convergence of critical Galton-Watson
trees to the CRT Te. In Section 3 we prove our main result – Theorem 1.

2. Combinatorics, Boltzmann Sampler and Continuum Random Tree

It was shown in [7, 34, 23, 13] that the number Lk(n) of k-trees having n hedra is given by

(2.1) Lk(n) =

(

n+ k

k

)

(kn+ 1)n−2

and, thus, asymptotically by Lk(n) ∼ nk(kn)n−2/k! as n→∞. Here we only review the generating
function approach in [13] to count Lk(n). The key ingredient to count the number Lk(n) in [13] is
a bijection between rooted k-trees and k-front coding trees rooted at a white node.

2.1. A bijection. A rooted k-tree is a k-tree rooted at a front (or equivalently a k-clique). A
k-front coding tree is a bipartite tree of black and white nodes which is rooted at a white node and
where every black node has precisely k successors. The bijection will be built in a way that black
nodes in k-front coding trees correspond to hedra in k-trees. Every black node also gets a label
which is equal to the label of one of the vertices of the corresponding hedron. A white node in a
k-front coding tree corresponds to a front of the k-trees and is labelled by the set {a1, a2, . . . , ak}
of labels of the corresponding front. A black node connects with a white node if the corresponding
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hedron contains the corresponding front and the label of the black node is just the label of the
vertex that is not contained in the front. Thus, if we start with the root front of the k-tree we can
recursively build up a corresponding k-front coding tree, see Figure 2.1.
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Figure 2.1. A 2-tree rooted at a front whose vertices are labelled by 1, 2 (left)
and the corresponding 2-front coding tree Cn,2 rooted at a white node labelled by
{1, 2} (middle); finally the derived tree Tn,2 consists just of the white root and of
all black nodes (right).

With the help of this correspondence, the problem of counting the k-trees with n hedra is
reduced to count the corresponding k-front coding trees with n black nodes. We use the notation
◦-rooted k-front coding trees if the white root node has a fixed label {a1, a2 . . . , ak}. We call it
reduced k-front coding trees (and denote it by ◦ − • k-front coding tree) if the root ◦ has precisely
one (black) child. Let Gk (resp. G◦k) be the class of k-trees (resp. ◦-rooted), let furthermore Ck be
the class of ◦-rooted k-front coding trees and Bk be the class of ◦ − • k-front coding trees. The
bijection we mentioned above establishes a relation G◦k ≃ Ck. Furthermore, every ◦-rooted k-front
coding tree can be identified as a set of ◦ − • k-front coding trees and every ◦ − • k-front coding
tree can be decomposed into a k-tuple of ◦-rooted k-front coding trees. Consequently, k-front
coding trees satisfy the following specification:

Ck = Set(Bk) and Bk = {•} ∗ Seqk(Ck).(2.2)

In terms of exponential generating functions (where the size is always the number of black nodes),
we thus get

Ck(x) = exp(Bk(x)) and Bk(x) = x · Ck(x)
k.(2.3)

In particular Bk(x) satisfies

Bk(x) = x exp(kBk(x)).(2.4)

By applying the Lagrange inversion formula on (2.4), we obtain that the number of ◦ − • k-front
coding trees with n black nodes where the root ◦ has a fixed label {a1, a2, . . . , ak}, is

bk(n) = n! [xn]Bk(x) = (n− 1)![xn−1] exp(knx) = (kn)n−1(2.5)

and the number of ◦-rooted k-front coding trees with n black nodes where the root ◦ has a fixed
label {a1, a2, . . . , ak} is

ck(n) = n! [xn]Ck(x) = (n− 1)![xn−1] exp((kn+ 1)x) = (kn+ 1)n−1.(2.6)

Since there are
(

n+k
k

)

ways to choose the root {a1, a2, . . . , ak}, the number of labelled k-trees
having n hedra that are rooted at a front is

(kn+ 1)Lk(n) =

(

n+ k

k

)

ck(n).(2.7)

In view of (2.6), the closed formula for Lk(n) (2.1) is proved. It follows from (2.4) that the
dominant singularity of Bk(x) is ρk = (ek)−1 and Bk(ρk) = k−1, see [13, 16] for details.
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Recall that the size of a k-front coding tree T , denoted by |T |, is the number of black nodes. Let
Cn,k be the class of k-front coding trees of size n such that the white root has label {1, 2, . . . , k},
then from (2.7) we find, the probability to uniformly choose a random rooted k-tree G◦

n,k is equal
to the probability to uniformly choose a k-front coding tree Cn,k from the class Cn,k.

Since Ck has a proper recursive specification (2.3), these random objects can be constructed (or
sampled) by a so-called Boltzmann sampler ΓCk(x).

2.2. Boltzmann Sampler. Boltzmann samplers provide a way to efficiently generate a combi-
natorial object at random. They were introduced by Duchon, Flajolet, Louchard and Schaeffer
[17] and were further developed by Flajolet, Fusy and Pivoteau [22]. Here we refer the readers to
their papers [17, 22] for a detailed description of the Boltzmann samplers. An important property
of Boltzmann samplers is that they generate objects of a given size n uniformly.

More precisely we will describe a Boltzmann sampler ΓCk(x) with parameter x = ρk = (ek)−1

(which is possible since λk = Bk(ρk) = k−1 <∞).

Lemma 2. The following recursive procedure ΓCk(ρk) terminates almost surely and draws a

random ◦-rooted k-front coding tree according to the Boltzmann distribution with parameter ρk, i.e.,
any ◦-rooted k-front coding tree of size n in the class Cn,k is drawn with probability ρnk/(n!Ck(ρk)).

ΓCk(ρk): x1 ← a white node ◦
m← Pois(λk)
for i := 1→ m

x2 ← a single black node •
merge x2 into x1 by adding an edge • − ◦
F ← an m-tuple (ΓCk(ρk), . . . ,ΓCk(ρk))
merge F into x1 by connecting x2 to the roots of F

x1 ← label the black nodes of x1 uniformly at random
return x1

Note that k-front coding trees satisfy the specification (2.3), but they do not represent the distance
relation in the k-trees. See Figure 2.1. Since we have fixed the label on the white root ◦, which is
{1, 2, . . . , k}, the labels on the black nodes of ΓCk(ρk) determine the corresponding labels on the
white nodes.

2.3. k-tree distance algorithm. For a random k-front coding tree Cn,k of size n, let Mn,k be
the corresponding k-tree under the bijection Cn,k 7→ Mn,k in subsection 2.1, then Mn,k is rooted at
a front {1, 2, . . . , k}. We use the notation (im, jk−m) to represent the sequence (i, . . . , i, j, . . . , j)
of length k that has m occurrences of i and (k − m) occurrences of j. Here we shall consider
the distances to the vertex 1 in a k-tree Mn,k. Darrasse and Soria [13] provided an algorithm
to calculate the distances to the vertex 1 in a k-tree Mn,k by marking the distances on the
corresponding k-front coding tree Cn,k, which is similar to the algorithm given by Proskurowski in
[37]. Note that every black node of the k-front coding tree is related to a vertex of the corresponding
k-tree via its label, and the vertices that label a white node of the k-front tree represent k vertices
that constitute a front of the corresponding k-tree. We will recall Darrasse and Soria’s algorithm.

Algorithm 1: Distances in a k-tree
Input: a k-front coding tree C and a sequence (ai)

k
i=1 = (0, 1k−1)

Output: an association table (vertex, distance)
p := min{ai}ki=1 + 1 and A = ∅

for all sons v of the root C do
A := A ∪ {(v, p)}
for i := 1→ k do
A← A∪ the recursive call on the i-th son of v and (a1, . . . , ai−1, p, ai+1, . . . , ak)

return A

If we implement this algorithm on the 2-front coding tree (middle) in Figure 2.1, we get a distance
table marked on every black node in Figure 2.2. The distance sequences on the white nodes help
us to recursively mark the distances on the black nodes.
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Figure 2.2. A 2-front coding tree (left) and the corresponding distance table on
every black node (right).

2.4. Gromov-Hausdorff convergence and the CRT. Let e = (et)0≤t≤1 denote the Brownian

excursion of duration one. Then this (random) continuous function e induces a pseudo-metric on
the interval [0, 1] by

de(u, v) = e(u) + e(v)− 2 inf
u≤s≤v

e(s)

for u ≤ v. This defines a metric on the quotient Te = [0, 1]/ ∼ where u ∼ v if and only if
de(u, v) = 0. The corresponding random pointed metric space (Te, de, r0(Te)), where r0(Te) is the
equivalence class of the origin, is the Continuum Random Tree (CRT). We will simply use Te to
denote the CRT. (Recall that the isometry classes of (pointed) compact metric spaces K•, where
a pointed space is a triple (X, d, r), where (X, d) is a metric space and r ∈ X is a distinguished
element, constitute a Polish space with respect to the (pointed) Gromov-Hausdorff metric dGH.
We refer the readers to [10, 21] for a full description of this metric.)

Let Tn be a Galton-Watson tree conditioned on having n vertices, Tn is critical if the offspring
distribution ξ of Tn satisfies E(ξ) = 1. Tn is aperiodic if gcd{j : P(ξ = j) > 0} = 1, see [15]. The
convergence of Tn (properly scaled) to Te is due to Aldous [4].

Theorem 3. Let Tn be a Galton-Watson tree conditioned on having n vertices, where the offspring

distribution ξ of Tn is aperiodic, critical and has finite variance Var ξ = σ2. As n tends to infinity,

Tn with edges rescaled to length σ/(2
√
n) converges in distribution to the CRT, i.e.,

σ

2
√
n
Tn

(d)−−→ Te in the metric space (K•, dGH).(2.8)

The Galton-Watson tree conditioned on having n vertices is also called the conditioned Galton-

Watson tree. The conditioned Galton-Watson trees are essentially the same as the random simply

generated trees, see [14, 15].

3. Proof of the Main result

Let Cn,k denote the the random k-front coding tree that is generated by the Boltzmann sampler
ΓCk(ρk) having exactly n black nodes. Furthermore let Mn,k be the corresponding random k-tree
under the bijection Cn,k 7→ Mn,k. Finally let T

◦
n,k be the reduced tree obtained from Cn,k by

replacing every edge • − ◦ − • that passes a non-root white node, by an edge • − • and removing
all the white-node leaves, see Figure 2.1 for an example.

From the construction of the Boltzmann sampler ΓCk(ρk), it is clear that T
◦
n,k is a Galton-

Watson tree conditioned on having exactly n black nodes where the offspring ξ1 of the white root
node is Poisson distributed with parameter k−1 whereas the offspring ξ of every black node is
Poisson distributed with parameter kλk = kBk(ρk) = 1, that is, the probability that a black node



6 MICHAEL DRMOTA AND EMMA YU JIN
1

has m offsprings in T
◦
n,k is

P(ξ = m) = exp(−kλk) ·
(kλk)

m

m!
=

exp(−1)
m!

and E ξ = 1.(3.1)

We can modify the tree T
◦
n,k into a conditioned critical Galton-Watson tree Tn,k by replacing the

offspring of the white root also by a Poisson distribution with parameter 1.
For any two black nodes x, y in Cn,k, we set dCn,k

(x, y) = distT◦

n,k
(x, y), where dist denotes the

usual graph theoretical distance. For the case k 6= 1, the distance dCn,k
(x, y) of two black nodes

x, y in Cn,k is different to the distance distMn,k
(x, y) of x, y in the original k-tree Mn,k. In order to

represent the distances distMn,k
(x, y) for any two nodes x, y in the tree Cn,k, we need to decompose

Cn,k into blocks according to the distance table from Algorithm 1. We implement the Algorithm
1 on the random tree Cn,k to have every black node marked with a distance and every white node
marked with a distance sequence. For this random tree Cn,k, denote by Ci,n,k a subtree of Cn,k

that we call block of type i:

(1) C1,n,k is rooted at the root and is induced by the root and all the black nodes that are in
distance one to the vertex 1.

(2) Ci,n,k, i ≥ 2, is rooted at a white node with distance sequence ((i − 1)k) and is induced
by this node and all its black descendents that have distance i to the vertex 1.

By construction, there is only one subtree C1,n,k in Cn,k, but there could be many subtrees Ci,n,k

of Cn,k for i 6= 1, see Figure 3.1. For any two black nodes x, y in Cn,k, let δCn,k
(x, y) = a− 1 where

a is the minimal number of blocks necessary to cover the path connecting x and y. In particular if
x, y are in the same block of Cn,k, then δCn,k

(x, y) = 0. The following lemma will show, for any two
black nodes x, y, the distance distMn,k

(x, y) is almost the same as the block-distance δCn,k
(x, y).
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1
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Figure 3.1. A decomposition of a random 2-front coding tree Cn,2 into blocks
Ci,n,2 (left) where the pair (a, b) of integers represents the distance sequence on
the root of a block. A spine (right) consists of selected good nodes in Cn,2.

Lemma 4. Let Cn,k denote the tree corresponding to the Boltzmann sampler ΓCk(ρk) conditioned
on having n black nodes, let Mn,k be the corresponding k-tree under the bijection Cn,k 7→ Mn,k.

Then for any two black nodes x, y in Mn,k,

distMn,k
(x, y) = δCn,k

(x, y) + i where i ∈ {0, 1, 2, 3}.(3.2)

Proof. If x, y are in the same block, i.e., δCn,k
(x, y) = 0. If both of them are in a block C1,n,k, then

distMn,k
(x, y) ≤ distMn,k

(x, 1) + distMn,k
(y, 1) = 2 = δCn,k

(x, y) + 2. If both of them are in a block

Ci+1,n,k for some i ≥ 1, recall that the root of Ci+1,n,k is a white node with distance sequence (ik).
Suppose the root of Ci+1,n,k has label {a1, a2, . . . , ak}, then for x ∈ Ci+1,n,k, there exists an integer
p such that distMn,k

(ap, x) = 1. Otherwise if for all m ≤ k, distMn,k
(am, x) > 1. It follows that

distMn,k
(x, 1) > i + 1, which contradicts with the fact x ∈ Ci+1,n,k. Similarly, there is an integer

q such that distMn,k
(aq, y) = 1. Consequently distMn,k

(x, y) ≤ distMn,k
(ap, x) + distMn,k

(aq, y) +
distMn,k

(aq, ap) = 3, which implies (3.2).
If x, y are not in the same block, let b be the lowest common parent of x and y in Cn,k, then b is

either a black node or b is the white root. If b is a black node, let a1 (resp. b1) be the second black
node on the path b−◦− a1− · · ·− ◦− x (resp. b−◦− b1− · · ·− ◦− y) in Cn,k. If b is the root, let
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a1 (resp. b1) be its black child on the path b− a1− · · · − ◦− x (resp. b− b1− · · · − ◦− y) in Cn,k.
Then one of the minimal paths connecting x and y in Mn,k must pass node b if b is a black node,
and must pass one of the vertices from {1, 2, . . . , k} if b is the root. This is true because the k-tree
corresponding to the subtree of Cn,k rooted at a1 and the k-tree corresponding to the subtree of
Cn,k rooted at b1 are completely disjoint in Mn,k. Without loss of generality, we assume b is a
black node. Then our previous discussion implies distMn,k

(x, y) = distMn,k
(x, b) + distMn,k

(y, b).
Suppose x ∈ Ci+1,n,k, there must exist a black node v1 on the path b− ◦− a1 − · · · − ◦ − x, such
that distMn,k

(x, v1) = 1 and v1 ∈ Ci,n,k. For the node v1, there exists a black node v2 on the path
such that v2 ∈ Ci−1,n,k and distMn,k

(x, v2) = 2. We continue this process until we reach a black
node vt such that vt and b are in the same block. Similarly, we can find a sequence of black nodes
w1, . . . , ws from different blocks such that ws and b are in the same block and distMn,k

(y, ws) = s.
It follows that

distMn,k
(x, b) + distMn,k

(y, b) = δCn,k
(x, b) + δCn,k

(y, b) + distMn,k
(vt, ws)

= δCn,k
(x, y) + distMn,k

(vt, ws).

Since vt and ws are in the same block, we have distMn,k
(vt, ws) ≤ 3 and the proof is complete. �

Lemma 4 allows us to transfer the distance distMn,k
(x, y) of two vertices x, y in a random

k-tree Mn,k to the distance δCn,k
(x, y) of two blocks in a random tree Cn,k. In order to prove

the convergence of Mn,k to the CRT Te, it is sufficient to prove that the difference between
mkδCn,k

(x, y) and distTn,k
(x, y) is small with high probability where Tn,k is the above conditioned

critical Galton-Watson tree and mk is a constant. For this purpose we consider the spine of a
size-biased enriched tree, which was adapted from the size-biased Galton-Watson tree in [1]. This
idea has been used in studying the scaling limit of random graphs from subcritical graph classes
[35] and was further generalized to the random R-enriched trees [39].

In fact, the block-distance δCn,k
(v, 1) to the vertex 1 in the random tree Cn,k is not related to

the depth of v in Cn,k. It turns out that we have to choose a good black node νi from a block
Ci,n,k of the random tree Cn,k, such that they form a spine ν1, . . . , νm so that δCn,k

(νi, 1) increases
as the depth of νi on this spine increases, see Fig 3.1 and 3.2.

We call a black node v in a k-front coding tree good if one of its white children has distance
sequence (ik) for some integer i ≥ 1. Let Ck denote the random k-front coding tree that is
generated by the above Boltzmann sampler so that Cn,k = (Ck : |Ck| = n). In the same way, let
Bi,k be a block of Ck which equals Ci,n,k if we condition Ck on size n. The next Lemma 5 will
enable us to construct a size-biased enriched tree.

Lemma 5. Suppose that i ≥ 1 and let ξk,i be the random variable counting the number of good

black nodes v in a block Bi,k of type i in Ck. Then E ξk,i = 1.

Proof. The offspring η of the white root in Ck is Poisson distributed with parameter k−1 and the
offspring of every black node in Ck is distributed as the sum of k independent and identically
distributed random variables η1, η2, . . . , ηk where each ηi is a copy of η. The distance sequence on
every white node of Ck determines if his children (black nodes) are good or not. We first compute
E ξk,1. The white root of B1,k has distance sequence (0, 1k−1) and all his children are good black
nodes. So the first generation has E(η) = k−1 expected number of good black nodes. Assume µ1

is a good black node in the first generation, µ1 has k white-node children in Ck, among which
(k−1) have distance sequence (0, 1k−1) and they have 1−k−1 expected number of good black-node
children in Ck. By repeating this process on these good black-node children, we get

E(ξk,1) =
1

k
+

k − 1

k

(

1

k
+

k − 1

k

1

k
+ · · ·

)

=
1

k

∞
∑

i=0

(

k − 1

k

)i

= 1.

For i 6= 1, we can compute E(ξk,i) by repeating the same procedure as that for E(ξk,1), namely
the expected number E(ξk,i) of good black nodes in a block Bi,k is equal to the expected number
of good black nodes in its sub-block rooted at a black node ω1, multiplied by k−1, where ω1 is
the first good black node on its path to the root of block Bi,k, from which it follows the expected
number of good descendents of ω1 is k. This implies E(ξk,i) = k−1 · k = 1. �
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Figure 3.2. A 2-front coding tree C2 with good nodes drawn in big • (left) and
a size-biased enriched tree Ĉ

(3)
2 with a spine consisting of selected good nodes

drawn in big � (right).

We will next define a size-biased enriched tree Ĉ
(m)
k from a random k-front coding tree Ck.

This construction comes from [1], which is a truncated version of the infinite size-biased Galton-

Watson tree introduced by Lyons, Pemantle and Peres [33]. Let ξ̂k,i be a random variable with
the size-biased distribution

P(ξ̂k,i = q) = q P(ξk,i = q).(3.3)

The expected value E(ξk,i) = 1 in Lemma 5 guarantees that ξ̂k,i is a probability distribution on
N

+ = {1, 2, . . .}.
The size-biased enriched tree Ĉ

(m)
k is now defined as follows. It starts with a mutant block B1,k

which is rooted at a usual root (that has distance sequence (0, 1k−1)) and contains good nodes.

We now choose one of these good nodes (which number is distributed according to ξ̂k,1) and call it
heir (and also mutant). The block B2,k that is rooted at the child with distance sequence (1k) of
this heir will be the next mutant block, where we again assume that it has at least one good node.
All other blocks that are adjacent to B1,k are normal. We again choose one of the good nodes of

the mutant block B2,k (which number is distributed according to ξ̂k,2) and proceed inductively to
choose mutant blocks and heirs till Bm,k. All other blocks stay normal. We denote the heir in the

m-th mutant block Bm,k by h. The path from the root to h is called spine of Ĉ
(m)
k , see Figure 3.2.

The probability that a given mutant block contains q good nodes and one of them is chosen as

heir is, see (3.3), q−1
P(ξ̂k,i = q) = P(ξk,i = q). For any given random k-front coding tree T , let

Tα denote the tree T with a fixed spine α of block-depth m. Then the probability

P(Ĉ
(m)
k = Tα, with α as spine) = P(Ck = T ).(3.4)

This shows, once the spine is fixed, that the probability that the size biased tree Ĉ
(m)
k equals Tα

is the same as the probability of generating T . In fact, (3.4) is true for any spine α, see Eq.(3.2)
in [1]. We will need (3.4) to build a connection between mkδCn,k

(x, y) and dCn,k
(x, y) with high

probability in Lemma 6.

Lemma 6. Let Cn,k be the class of rooted k-front coding trees of size n such that the white root

has label {1, 2, . . . , k} and Cn,k ∈ Cn,k is uniformly selected at random. Let mk = k + 1 for k ≥ 2
and m1 = 1. Then for all s > 1 and 0 < ǫ < 1/2 with 2ǫs > 1, we have for all black nodes x, y in
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Cn,k such that x is an ancestor of y, that one of these two properties

δCn,k
(x, y) ≥ logs(n) and |dCn,k

(x, y)−mkδCn,k
(x, y)| ≤ δCn,k

(x, y)1/2+ǫ,(3.5)

δCn,k
(x, y) < logs(n) and dCn,k

(x, y) ≤ logs+2(n)(3.6)

holds with high probability.

Proof. Suppose the opposite of (3.5) is true, that is, there exist black nodes x, y in Ck such that
x is an ancestor of y and they satisfy

δCk
(x, y) ≥ logs(|Ck|) and |dCk

(x, y)−mkδCk
(x, y)| > δCk

(x, y)1/2+ǫ.(3.7)

We will denote by F1 the set of triples (Ck, x, y) (with x, y in Ck) that satisfy (3.7). Thus we just
have to show that P((Ck, x, y) ∈ F1

∣

∣|Ck| = n) = o(1) as n tends to infinity.
Recall that Cn,k is the set of k-front coding trees generated by the Boltzmann sampler ΓCk(ρk)

with n black nodes. Thus, from Lemma 2 it follows that

P(Cn,k) = P(|ΓCk(ρk)| = n) =
ck(n)ρ

n
k

n!Ck(ρk)
=

(kn+ 1)n−1

n! exp(k−1)

(

1

ek

)n

∼ exp(−k−1)

k
√
2π

n−3/2 as n→∞.

We apply (3.4) on the random k-front coding tree Cn,k with a spine that connects x to y. The
block-depth of this spine is at least logs n by assumption (3.7), which leads to

P((Ck, x, y) ∈ F1

∣

∣|Ck| = n) ≤ P(Cn,k)
−1

n−1
∑

m=logs n

P((Ĉ
(m)
k , x, y) ∈ F1 and |Ĉ(m)

k | = n)

=
k
√
2π

exp(−k−1)
n3/2

n−1
∑

m=logs n

P((Ĉ
(m)
k , x, y) ∈ F1 and |Ĉ(m)

k | = n).(3.8)

Here the length of the spine in Ĉ
(m)
k is distributed as the sum of m independent random variables

ζ1,k, ζ2,k, . . . , ζm,k where each ζi,k is distributed as the length of the path from the selected good
node in some block Bi,k to the root of this block. We have for k ≥ 2,

P(ζi,k = t) =
1

k
·
(

1− 1

k

)t−2

where i 6= 1, t ≥ 2

P(ζ1,k = t) =
1

k
·
(

1− 1

k

)t−1

where t ≥ 1.

(We just have to extend the proof idea of Lemma 5.) For the case k = 1, every ζi,1 is distributed
with probability P(ζi,1 = 1) = 1. As an immediate consequence, ζi,k has finite exponential
moments for every i, k and E(ζi,k) = k + 1, E(ζ1,k) = k for k ≥ 2, i 6= 1. For the case k = 1
we have E(ζi,1) = 1 for every i. We set mk = k + 1 for k ≥ 2 and m1 = 1. Furthermore, the
assumption in (3.7) implies

P((Ĉ
(m)
k , x, y) ∈ F1 and |Ĉ(m)

k | = n) ≤ P(|
m
∑

i=1

ζi,k −m ·mk| > m1/2+ǫ).(3.9)

By applying the deviation inequality (see [1, 35, 36]) on the random variables ζ1,k, ζ2,k, . . . , ζm,k,
we get for some positive constant c1,

P(|
m
∑

i=1

ζi,k −m ·mk| > m1/2+ǫ) ≤ 2 exp(−c1(logn)2sǫ) = o(n−5/2).

Together with (3.8) and (3.9), we can conclude that P((Ck, x, y) ∈ F1

∣

∣|Ck| = n) = o(1).
Now we turn to suppose the opposite of (3.6) is true, i.e., there exist black nodes x, y in Ck

such that x is an ancestor of y. They satisfy

δCk
(x, y) < logs(|Ck|) and dCk

(x, y) > logs+2(|Ck|).(3.10)

We use the notation F2 to represent the set of triples (Ck, x, y) (with x, y in Ck) that satisfy (3.10).
Again from (3.8) and from the deviation inequality, we obtain for some positive constant c2,
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P((Ck, x, y) ∈ F2

∣

∣|Ck| = n) ≤ k
√
2π

exp(−k−1)
n3/2

logs n
∑

m=1

P((Ĉ
(m)
k , x, y) ∈ F2 and

∣

∣Ĉ
(m)
k | = n)

≤ k
√
2π

exp(−k−1)
n3/2

logs n
∑

m=1

P(

m
∑

i=1

ζi,k > logs+2 n)

= O(n3/2)(logs n) exp(−c2 log2s+4(n)) = o (1)

and the proof is complete. �

Now we are ready to prove our main result.

Proof of Theorem 1. It follows from Lemma 6 that with high probability

|dCn,k
(x, y)−mkδCn,k

(x, y)| ≤ δCn,k
(x, y)1/2+ǫ + logs+2(n)

holds for all black nodes x, y where x is an ancestor of y in the random k-front coding tree Cn,k.
For any two black nodes µ, ν in Cn,k, let α be the lowest common ancestor of µ and ν (α could be
the white root of Cn,k), then

|dCn,k
(µ, ν)−mkδCn,k

(µ, ν)| ≤ δCn,k
(µ, α)1/2+ǫ + δCn,k

(ν, α)1/2+ǫ + 2 logs+2(n)

≤ 2D(Cn,k)
1/2+ǫ + 2 logs+2(n)

where D(Cn,k) is the diameter of random tree Cn,k. We divide both sides of this inequality by
√
n

and obtain
∣

∣

∣

∣

dCn,k
(µ, ν)√
n

− mkδCn,k
(µ, ν)√
n

∣

∣

∣

∣

≤ 2D(Cn,k)
1/2+ǫ

√
n

+
2 logs+2(n)√

n
.(3.11)

Recall that Tn,k contains the white root and all the black nodes of Cn,k. Tn,k is a critical con-
ditioned Galton-Watson tree. The only difference between Cn,k and Tn,k is that the offspring of
the white root in Cn,k is Poisson distributed with parameter k−1, while the offspring of the white
root in Tn,k is Poisson distributed with parameter 1. If both black nodes µ, ν are contained in
a random k-front coding tree Cn,k, then they must be in the random tree Tn,k, which indicates
dCn,k

(µ, ν) = distTn,k
(µ, ν) and D(Cn,k) ≤ D(Tn,k). Consequently, (3.11) rewrites to

∣

∣

∣

∣

distTn,k
(µ, ν)√
n

− mkδCn,k
(µ, ν)√
n

∣

∣

∣

∣

≤ 2D(Tn,k)
1/2+ǫ

√
n

+
2 logs+2(n)√

n
.

The diameter D(Tn,k) of a random tree Tn,k is less than the height H(Tn,k) of Tn,k multiplied by
2. By applying the tails for the height of Tn,k, see Theorem 1.2 in [1] and left-tail upper bounds
for the height in [1], we obtain for the Gromov-Hausdorff distance

dGH

(

Tn,k√
n
,
mkCn,k√

n

)

≤ max
µ,ν

∣

∣

∣

∣

distTn,k
(µ, ν)√
n

− mkδCn,k
(µ, ν)√
n

∣

∣

∣

∣

p−→ 0.

Namely, for any fixed ε, the probability of the event dGH(
Tn,k√

n
,
mkCn,k√

n
) ≤ ε converges to 1 as n

tend to infinity.
Since the variance of the offspring distribution in the random tree Tn,k is 1, it follows from

Theorem 3 that Tn,k/(2
√
n)

(d)−−→ Te. Hence we get mkCn,k/(2
√
n)

(d)−−→ Te and consequently with
the help of Lemma 4, we have

mkMn,k

2
√
n

(d)−−→ Te.

Let Gn,k be the class of k-trees with n hedra, let Gn,k be the random k-tree that is uniformly selected
from the class Gn,k. Let G◦

n,k be the random k-tree Gn,k rooted at a front. Then the probability
to uniformly choose Gn,k from the class Gn,k is equal to the probability to uniformly choose Cn,k
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from the class Cn,k, namely the rooting and labeling process will not affect the probability space.
This indicates,

mkGn,k

2
√
n

(d)−−→ Te and
mkG

◦
n,k

2
√
n

(d)−−→ Te

where mk = k + 1 for k 6= 1 and m1 = 1. �
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[22] P. Flajolet, É. Fusy and C. Pivoteau, Boltzmann sampling of unlabelled structures, In Proceedings of the Ninth
Workshop on Algorithm Engineering and Experiments and the Fourth Workshop on Analytic Algorithmics and
Combinatorics, 201-211. SIAM, Philadelphia, PA, 2007.

[23] D. Foata, Enumerating k-trees, Discrete Mathematics, 1: 181-186 (1971).
[24] T. Fowler, I. Gessel, G. Labelle, and P. Leroux, The specification of 2-trees, Advance in Applied Mathematics,
28: 145-168 (2002).

[25] A. Gainer-Dewar, Γ-species and the enumeration of k-trees, The Electronic Journal of Combinatorics, 19(4):
P45 (2012).

[26] I. M. Gessel and A. Gainer-Dewar, Counting unlabeled k-trees, Journal of Combinatorial Theory A, 126:
177-193 (2014).

[27] M. Grötschel and G.O.H. Katona, Building Bridges: between Mathematics and Computer Science, Bolyai
Society Mathematical Studies 19, Springer-Verlag (2008).

[28] B. Haas and G. Miermont, Scaling limits of Markov branching trees with applications to Galton-Watson and

random unordered trees, The Annals of Probability, 40(6): 2299-2706 (2012).
[29] F. Harary and E. M. Palmer, On acyclic simplicial complexes, Mathematika, 15: 115-122 (1968).
[30] F. Harary and E. M. Palmer, Graphical enumeration, Academic Press, New York-London (1973).



12 MICHAEL DRMOTA AND EMMA YU JIN
1
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