Degree distribution in random planar graphs
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Abstract

We prove that for each k£ > 0, the probability that a root vertex in a random planar graph
has degree k tends to a computable constant di, so that the expected number of vertices
of degree k is asymptotically dxn, and moreover that ), dx = 1. The proof uses the tools
developed by Giménez and Noy in their solution to the problem of the asymptotic enumeration
of planar graphs, and is based on a detailed analysis of the generating functions involved in
counting planar graphs. However, in order to keep track of the degree of the root, new
technical difficulties arise. We obtain explicit, although quite involved expressions, for the
coefficients in the singular expansions of the generating functions of interest, which allow us
to use transfer theorems in order to get an explicit expression for the probability generating
function p(w) = >, drw®. From this we can compute the dj, to any degree of accuracy, and
derive the asymptotic estimate dp ~ c - kil/qu for large values of k, where ¢ =~ 0.67 is a
constant defined analytically. This leads us to a conjecture on the expected maximum degree.

1 Introduction

In this paper all graphs are simple and labelled with labels {1,2,...,n}. As usual, a graph is
planar if it can be embedded in the plane without edge crossings. A planar graph together with
a particular embedding in the plane is called a map. There is a rich theory of counting maps,
and part of it is needed later. However, in this paper we consider planar graphs as combinatorial
objects, regardless of how many non-equivalent topological embeddings they may have.

Random planar graphs were introduced by Denise, Wasconcellos and Welsh [10], and since
then they have been widely studied. Let us first recall the probability model. Let G,, be the family
of (labelled) planar graphs with n vertices. A random planar graph R, is a graph drawn from G,
with the uniform distribution, that is, all planar graphs with n vertices have the same probability
of being chosen. As opposed to the classical Erdés-Rényi model, we cannot produce a random
planar graph by drawing edges independently. In fact, our analysis of random planar graphs relies
on exact and asymptotic counting.

Several natural parameters defined on R, have been studied, starting with the number of
edges, which is probably the most basic one. Partial results where obtained in [10, 17, 28, 8],
until it was shown by Giménez and Noy [19] that the number of edges in random planar graphs
obeys asymptotically a normal limit law with linear expectation and variance. The expectation is
asymptotically xkn, where k ~ 2.21326 is a well-defined analytic constant. This implies that the
average degree of the vertices is 2k ~ 4.42652.

McDiarmid, Steger and Welsh [25] showed that with high probability a planar graph has a
linear number of vertices of degree k, for each k > 1. Our main result is that for each k > 1, the
expected number of vertices of degree k is asymptotically din, for computable constants dj > 0.
This is equivalent to saying that the probability that a fixed vertex, say vertex 1, has degree k
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tends to a limit dj as n goes to infinity. In Theorem 6.13 we show that this limit exists and we
give an explicit expression for the probability generating function

p(w) = dyw”,

k>1

from which the coefficients dj can be computed to any degree of accuracy. Moreover, we show
that p(w) is indeed a probability generating function, that is, " dj = 1.

The proof is based on a detailed analysis of the generating functions involved in counting planar
graphs, as developed in [19], where the long standing problem of estimating the number of planar
graphs was solved. However, in this case we need to keep track of the degree of a root vertex, and
this makes the analysis considerably more difficult.

Here is a sketch of the paper. We start with some preliminaries, including the fact that for the
degree distribution it is enough to consider connected planar graphs, and that dy = 0. Then we
obtain the degree distribution in simpler families of planar graphs: outerplanar graphs (Section 3)
and series-parallel graphs (Section 4). We recall that a graph is series-parallel if it does not contain
the complete graph K, as a minor; equivalently, if it does not contain a subdivision of K. Since
both K5 and K3 3 contain a subdivision of K4, by Kuratowski’s theorem a series-parallel graph
is planar. An outerplanar graph is a planar graph that can be embedded in the plane so that all
vertices are incident to the outer face. They are characterized as those graphs not containing a
minor isomorphic to (or a subdivision of) either K4 or K3 3. These results are interesting on their
own and pave the way to the more complex analysis of general planar graphs. We remark that the
degree distribution in these simpler cases has been obtained independently in [5, 6] using different
techniques.

In Section 5 we compute the generating function of 3-connected maps taking into account the
degree of the root, which is an essential piece in proving the main result. We rely on a classical
bijection between rooted maps and rooted quadrangulations [9, 26], and again the main difficulty
is to keep track of the root degree.

The task is completed in Section 6, which contains the analysis for planar graphs. First we have
to obtain a closed form for the generating function B®(z,y, w) of rooted 2-connected planar graphs,
where x marks vertices, y edges, and w the degree of the root: the main problem we encounter
here is solving a differential equation involving algebraic functions and other functions defined
implicitly. The second step is to obtain singular expansions of the various generating functions
near their dominant singularities; this is particularly demanding, as the coefficients of the singular
expansions are rather complex expressions. Finally, using a technical lemma on singularity analysis
and composition of singular expansions, we are able to work out the asymptotics for the generating
function C*(z,y, w) of rooted connected planar graphs, and from this the probability generating
function can be computed exactly. We also compute the degree distribution for 3-connected and
2-connected planar graphs. Finally in Section 7 we show that there exists a computable degree
distribution for planar graphs with a given edge density or, equivalently, given average degree.

For each of the three families studied we obtain an explicit expression, of increasing complexity,
for the probability generating function p(w) = >, <, dpw® . Theorems 3.3, 4.5 and 6.13 give the
exact expressions in each case. We remark that the expression we obtain for p(w) in the planar
case is quite involved and needs several pages to write it down. However, the functions involved
are elementary and computations can be performed with the help of MAPLE.

The following table shows the approximate values of the probabilities dj for small values of k,
which are obtained by extracting coefficients in the power series p(w), and can be computed to
any degree of accuracy.

We also determine the asymptotic behaviour for large k, and the result we obtain in each case
is a geometric distribution modified by a suitable subexponential term. We perform the analysis
for connected and 2-connected graphs, and also for 3-connected graphs in the planar case. From
the shape of the estimate for the dj, in Section 8 we conjecture that the expected maximum degree
in random planar graphs is asymptotically logn/log(1/q). It has been shown that logn is the
right order of magnitude [24].



dy da ds dy ds de
Outerplanar 0.1365937 | 0.2875331 | 0.2428739 | 0.1550795 | 0.0874382 | 0.0460030
Series-Parallel 0.1102133 | 0.3563715 | 0.2233570 | 0.1257639 | 0.0717254 | 0.0421514
Planar 0.0367284 | 0.1625794 | 0.2354360 | 0.1867737 | 0.1295023 | 0.0861805
Planar 2-connected 0 0.1728434 | 0.2481213 | 0.1925340 | 0.1325252 | 0.0879779
Planar 3-connected 0 0 0.3274859 | 0.2432187 | 0.1594160 | 0.1010441

Table 1: Degree distribution for small degrees.

Table 2 contains a summary of the main results from sections 3, 4 and 6. It is worth noticing
that the shape of the asymptotic estimates for planar graphs agrees with the general pattern for
the degree distribution in several classes of maps, where maps are counted according to the number
of edges [22].

connected q 2-conn. q 3-conn. q
Outerplanar | ¢- k'/4e“VFgh | 0.3808138 | ¢- k¢ V21
Series-Parallel | c¢-k=3/2¢" 0.7504161 | ¢- k=3/2¢% | 0.7620402
Planar c- k2 0.6734506 | ¢k~ Y/2¢% | 0.6734506 | ¢- k= 1/2¢F | /7T —2

Table 2: Asymptotic estimates of dj, for large k. The constants ¢ resp. ¢’ and ¢ in each case are
defined analytically. The two approximate values in the last row are exactly the same constant.

As a final remark, let us mention that in a companion paper [12], we prove a central limit
theorem for the number of vertices of degree k in outerplanar and series-parallel graphs, together
with strong concentration results. It remains an open problem to show that this is also the case
for planar graphs. Our results in the present paper show that the degree distribution exists and
moreover can be computed explicitly.

2 Preliminaries

For background on generating functions associated to planar graphs, we refer to [19] and [7],
and to [27] for a less technical description. For background on singularity analysis of generating
functions, we refer to the [13] and to the forthcoming book by Flajolet and Sedgewick [14].

For each class of graphs under consideration, ¢, and b, denote, respectively, the number of
connected and 2-connected graphs on n vertices. For the three graphs classes under consideration,
outerplanar, series-parallel, and planar, we have both for ¢, and b,, estimates of the form

(1)

where ¢, @ and p are suitable constants [7, 19]. For outerplanar and series-parallel graphs we have
a = —5/2, whereas for planar graphs a = —7/2. A general methodology for graph enumeration
explaining these critical exponents has been developed in [20].

We introduce the exponential generating functions C'(z) = " ¢,2™/n! and B(x) = > byz™/nl.
Let Cf, be the exponential generating function (GF for short) for rooted connected graphs, where
the root bears no label and has degree k; that is, the coefficient [z"/n!]Cj(z) equals the number
of rooted connected graphs with n + 1 vertices, in which the root has no label and has degree k.

c-n”%p "l



Analogously we define By, for 2-connected graphs. Also, let

B*(z,w) = Z By (z)wk, C*(z,w) = Z Cr(x)w".

k>2 k>0

A basic property shared by the classes of outerplanar, series-parallel and planar graphs is that
a connected graph G is in the class if and only if the 2-connected components of G are also in the
class. As shown in [19], this implies the basic equation

O/(.I) — eB,(IC/(I))
between univariate GFs. If we introduce the degree of the root, then the equation becomes
C* (iE, U}) _ eB'(wC'(m),w). (2)

The reason is that only the 2-connected components containing the root vertex contribute to its
degree.
Our goal in each case is to estimate [z™]Cy(x), since the limit probability that a given fixed
vertex has degree k is equal to
n
di = lim ZIOE) 3)
n—oo [z7]C"(x)

Notice that in the denominator we have the coefficient of C’(x), corresponding to vertex rooted
graphs in which the root bears no label, in agreement with the definition of Cy(x).

A first observation is that the asymptotic degree distribution is the same for connected members
of a class than for all members in the class. Let G(z) be the GF for all members in the class, and
let Gi(x) be the GF of all rooted graphs in the class, where the root has degree k. Then we have

Glz)=e®@ Gulz) = Cp(x)e’@.

The first equation is standard, and in the second equation the factor Ci(x) corresponds to the
connected component containing the root, and the second factor to the remaining components.
The functions G(z) and C(z) have the same dominant singularity. Given the singular expansions
of G(z) and C(z) at the dominant singularity in each of the cases under consideration, it follows
that . .
G L G
n—oo [z7]G'(z)  n—oo [z7]C"(x)
Hence, in each case we only need to determine the degree distribution for connected graphs. A
more intuitive explanation is that the largest component in random planar graphs eats up almost
everything: the expected number of vertices not in the largest component is constant [23].

Another observation is that dg = 0 and d; = p, where p is the constant appearing in the
estimate (1) for c,; as we are going to see, p is the radius of convergence of C(x). Indeed, there
are no vertices of degree zero in a connected graph, and the number of connected graphs in which
the root has degree one is n(n — 1)c,—1/nc, ~ p.

The general approach we use for computing the dj, is the following. Let f(x) = C’(x) and let
H(z) = eB"%) | where w is considered as a parameter. Let also p be the radius of convergence
of C(z), which is the same as that of f(z). According to (2) we have to estimate [z"]H(f(x)),
and this will depend on the behaviour of H(z) at z = f(p). In the outerplanar and series-parallel
cases, H(z) turns out be analytic at f(p), whereas in the planar case we have a critical composition
scheme, that is, the dominant singularity of H(z) is precisely f(p). This is a fundamental difference
and we have to use different tools accordingly. Another difference is that B*® is much more difficult
to determine for planar graphs.

Finally we comment on an asymptotic method that we apply several times. Suppose that
f(z) = 30,50 an2" is the power series representation of an analytic function and p > 0 is the



radius of convergence of f(z). We say that f(z) is analytic in a A-region if f(z) can be analytically
continued to a region of the form

A={zeC: |z <p+n, |arg(z—p)| > 6}, (4)

for some 7 >0 and 0 < 6 < 7.

If we know that |f(z)| < C |1 — z/p|~* for 2 € A, then it follows that |a,| < C" - p~"n®~1
for some C’ > 0 that depends on C,«,n, and 0; see [13]. In particular, if we know that f(z) is
analytic in a A-region and has a local representation of the form

f(z) = Ag + Ay Z% + A3 Z3 + O(ZY), (5)

where Z = /1 — z/p, then it follows that |f(z) — Ag — A2 Z? — A3Z3| < C - |1 — z/p|? for z € A.
As a consequence

3A;

ap = —=
4/

In fact, we focus mainly on the derivation of local expansions of the form (5). The analytic
continuation to a A-region is usually easy to establish. We either have explicit equations in known
functions or implicit equations where we can continue analytically with the help of the implicit
function theorem.

As a key example, we consider a function y = y(z) that has a power series representation
at zo = 0 and that satisfies an analytic functional equation ®(y,z) = 0. Suppose that we have
y(20) = yo (so that ®(yo, 20) = 0) and @, (yo, 20) # 0. Then the implicit function theorem implies
that y(z) can be extended analytically to a neighbourhood of z = zy. In particular it follows
that y(z) cannot be singular at z = zy. On the other hand if we know that there exists zp and
yo = y(z0) with

pfnn75/2 + O(pfnnfii).

®(yo,20) =0 and P, (yo,20) =0

and the conditions
(bz(yOa ZO) 7é 0 and (I)yy(yoa ZO) 7é Ov

then zq is a singularity of y(z) and there is a local expansion of the form

Y(2) =Yoo+ ViZ+Y1Z° + -+,

where Z = \/1—2/20, Yo = yo and Y1 = —+/2209P.(y0, 20)/Pyy (Yo, 20); see [11]. In our appli-
cations it is usually easy to show that ®,(y(z),z) # 0 for |z| < zp and z # zy. Hence, in this
situation z = zy is the only singularity on the boundary of the circle |z| < zp and y(z) can be
analytically continued to a A-region.

3 Outerplanar graphs

In this section C(x) and B(z) now denote the GFs of connected and 2-connected, respectively,
outerplanar graphs. We start by recalling some results from [7]. From the equivalence between
rooted 2-connected outerplanar graphs and polygon dissections where the vertices are labelled

1,2,...,n in clockwise order (see Section 5 in [7] for details), we have the explicit expression
B'(x) = 1+59:—\/81—6x+x2.

The radius of convergence of B(z) is 3 — 2/2, the smallest positive root of 1 — 6z 4+ 2> = 0. The
radius of convergence of C(z) is p = ¥(7), where ¥(u) = ue~5 ) and 7 is the unique positive
root of ¢’ (u) = 0. Notice that 7 satisfies 7B” (1) = 1. The approximate values are 7 & 0.17076 and
p ~ 0.13659. We also need the fact that ¢ is the functional inverse of zC’(z), so that T = pC’(p).

Let
_l+2—1—6x+ 22
N 4

D(z) (6)



and let Dy(r) = x(2D(x) — x)*~! (D}, is the ordinary GF for polygon dissections in which the
root vertex has degree k). Then we have

1
Bk:§Dk, k22, Blzx.

By summing a geometric series we have an explicit expression for B®, namely

rw? 2D(z) — x
2 1-(2D(z) —2)w’

B*(z,w) :wang(QD(w) —z)F k= w4 (7)
k=2

Our goal is to analyze B*(z,w) and C*(z,w) = exp(B*(zC’(z),w)). For this we need the
following technical lemma.

Lemma 3.1. Let f(x) = >, ~, anx™/n! denote the exponential generating function of a sequence
a, of non-negative real numbers and assume that f(x) has exactly one dominating square-root
singularity at x = p of the form

f(@) = g(x) = h(z)V/1 —z/p,

where g(x) and h(z) are analytic at x = p and f(x) has an analytic continuation to the region
{reC:|z|<p+e}\{z €R:z > p} for somee > 0. Further, let H(z, z) denote a function that
is analytic for |x| < p+e and |z| < f(p) + € such that H,(p, f(p)) # 0. Then the function

fu(z) =H(z, f(z))
has a power series expansion fu(x) = 5 bnx"/nl and the coefficients b, satisfy

i 2% = H.(p, f(p). (8)

n—00 (U,

Proof. From f(z) = g(z)—h(z)+/1 — x/p it follows from singularity analysis [14] that the sequence
an is given asymptotically by
n h
an (p) pfnn73/2.
n! 27

Since H is analytic at f(p), it has a Taylor series

H(x,z) = H(p, f(p)) + H=(p, f(p))(z = f(p)) + Ha(p, f(p))(x = p) + -

The function fp(z) has also a square-root singularity at @ = p with a singular expansion, obtained
by composing the analytic expansion of H(z,z) with the singular expansion of f(x), namely

fu (@) = H(p, £(p)) — Hx(p, f(p)h(p)y |1 - f +O(1 —x/p]).

Consequently, the coefficients b,, can be estimated as

b o SN
n! 2T P ’

and (8) follows. O

We are ready for obtaining the degree distribution of two-connected outerplanar graphs and
connected outerplanar graphs. Both results have been obtained independently in [5, 6], and our
respective results agree.



Theorem 3.2. Let d;. be the limit probability that a vertex of a two-connected outerplanar graph
has degree k. then

;; dpw® = _ié{i)w)z = ;;2(3 —2V2)(k — 1)(V2 — 1)Fu”

Moreover p(1) = 1, so that the dy, are indeed a probability distribution.
Proof. Since B*(z,1) = B'(z) and D(x) = 2B’(x) — « we can represent B*(z,w) as

rw?  4B'(z) — 3w
B* —_—
(@,w) =0+ = T B ) — 0w

Hence, by applying Lemma 3.1 with f(x) = B’(z) and

zw? 4z — 3x
2 1- (42 —3z)w

H(z,z) =aw+

we obtain

["]B®(z,w) 2(3 — 2v/2)w?

p(w) = lim =

noee [pMB/(z) (1 (V2 - 1w)?

Note that p = 3 — 2v/2 and that w is considered here as an additional (complex) parameter. [

Theorem 3.3. Let di be the limit probability that a vertex of a connected outerplanar graph has

degree k. then
0 pe
k B*(z,w
=Y dww* =p- 7 € @) (o) »
E>1
where B® is given by Equations (6) and (7).
Moreover p(1) = 1, so that the dy are indeed a probability distribution and we have asymptoti-

cally, as k — oo
dy, ~ clkl/‘*e”ﬂqk,
where ¢ = 0.667187, ¢y &~ 0.947130, and ¢ = 2D(7) — 7 ~ 0.3808138.

Proof. We have
S Chlm)wt = C* (s, w) = 80 @),

The radius of convergence 3 — 2v/2 of B(x) is larger than pC’(p) = 7 ~ 0.17076. Hence we can
apply the previous lemma with f(z) = 2C’(x) and H(z) = eP (*®) where w is considered as a
parameter. Then we have

0 ge . ™| C*® (x, w (x)
%63 (z,w) |l’:pc/(p) = lim % — nh_)ngo § p xn :E U) =p —1 E dkw
k>1 E>1

and the result follows.
For the second assertion let us note that B®(x,1) = B’(z). If we recall that pC’(p) = 7 and
TB"(1) =1, then

p(1) = pe? DB (r) = pC'(p)r ' = 1.
In order to get an aysmptotic expansion for dj we have to compute p(w) explicitly:

_,72D(r) —1)@D'(r) = Yw? (. 7(2D(7) — T)w?
P =P BD () — Ty ’ ( (- @D - T>w>) '




This is a function that is admissible in the sense of Hayman [21]. Hence, it follows that

p(ri)ry”

dy ~ PITk
AN CS)

where 7y, is given by the equation r4,p' (1) /p(r%) = k and b(w) = w?p" (w) /p(w) + wp' (w) /p(w) —
(wp’(w)/p(w))?. A standard calculation gives the asymptotic expansion for the coefficients dj,. O

With the help of the explicit expression for p(w) we obtain the values for small k shown in
Table 1.

4 Series-parallel graphs

In this section C(x) and B(z) now denote the GFs of connected and 2-connected, respectively,
series-parallel graphs. First we recall the necessary results from [7]. The radius of convergence of
B(z) is R = 0.1280038. The radius of convergence of C(x) is, as for outerplanar graphs, p = ¢ (7),
where ¥(u) = ue=B' (W and 7 is the unique positive root of ¥'(u) = 0. Again we have that ¢ is
the functional inverse of C’(z), so that 7 = pC’(p), and 7 satisfies 7B”(7) = 0. The approximate
values are 7 ~ 0.1279695 and p ~ 0.1102133.

In order to study 2-connected series-parallel graphs, we need to consider series-parallel net-
works, as in [7]. We recall that a network is a graph with two distinguished vertices, called
poles, such that the graph obtained by adding an edge between the two poles is 2-connected.
Let D(z,y,w) be the exponential GF of series-parallel networks, where x, y, w mark, respectively,
vertices, edges, and the degree of the first pole. Define S(z,y, w) analogously for series networks.
Then we have

D(%yﬂv) = (1 + yw)es(x»yaw) 1
S(x,y,w) = (D(x,y,w) — Sz, y,w)) 2D(x,y,1),

The first equation reflects the fact that a network is a parallel composition of series networks, and
the second one the fact that a series network is obtained by connecting a non-series network with
an arbitrary network (see [30] for details); the factor D(z,y, 1) appears because we only keep track
of the degree of the first pole.

Remark. For the results of the present section, we do not need to take into account the number
of edges and we could set y = 1 everywhere. However, in the case of planar graphs we do need the
GF according to all three variables and it is convenient to present already here the full development.
In the proof of the main result of this section, Theorem 4.5, we just set y = 1.

Set E(x,y) = D(x,y,1), the GF for series-parallel networks without marking the degree of the
root, which satisfies (see [7]) the equation

oo (LT E@ )\ _ zE(@,y)*
& 1+y 1+ aE(z,y)

(9)
From the previous equations it follows that

log [ L D@y, w) _ 2B(z,y)D(z,y, w)
& 1+ yw 1+ zB(z,y)

(10)

Let now Bp(z,y) be the GF for 2-connected series-parallel graphs, where the root bears no
label and has degree k, and where y marks edges. Then we have the following relation.

Lemma 4.1.
OB*(z,y,w)
w—— ")

ow

= ayweSEvw)



Proof. We have wOB®(z,y,w)/0w = >, <, kBp(x,y)w*. The last summation enumerates rooted
2-connected graphs with a distinguished edge incident to the root, and of these there as many as
networks containing the edge between the poles (this corresponds to the term e (m’y’w)). The degree
of the root in a 2-connected graph corresponds to the degree of the first pole in the corresponding
network, hence the equation follows. O

From the previous equation it follows that

B*(z,y,w) = xy/es(””’y’w)dw. (11)

Our next task is to get rid of the integral and to express B® in terms of D. Recall that E(x,y) =
D(z,y,1).
Lemma 4.2. The generating function of rooted 2-connected series-parallel graphs is equal to

B*(z,y,w) = <D(x,y,w) - %D(x, Y, w) <1 + W)) .

Proof. We use the techniques developed in [19, 7] in order to integrate (11) in closed-form.

1+D D
S 1
dw = dw = log(1 4+ + d
/e w / 1+ yw w =y~ log( yw) / 1+yw w

Now we integrate by parts and

D oD
/ Tt gw dw =y log(1 + yw)D — /y‘l log(1 + yw)% dw.

For the last integral we change variables ¢ = D(x,y,w) and use the fact that log(l + yw) =
log(1+1t) —zEt/(1+ zE). We obtain

oD P
/log(l + yw)% dw = / log(1 +t)dt — xE
0

Now everything can be integrated in closed form and, after a sunple manlpulatlon, we obtain the
result as claimed. O

In order to prove the main results in this section we need the singular expansions of D(z,y)
and B(z,y) , for a fixed value of y, near the dominant singularity R(y).

Lemma 4.3. For |w| <1 and for fized y (sufficiently close to 1) the dominant singularity of the
functions E(xz,y), D(x,y,w), and B®(z,y,w) (considered as functions in x) is given by x = R(y),
where R(y) is an analytic function in y with R = R(1) ~ 0.1280038. Furthermore, we have the
following local expansion:

D(x,y,w) = DO(y,U}) +D1(y,'lU)X +D2(y7’UJ)X2 —+ .. ,
B.({L‘7y,w) = BO(Z/,U)) + Bl(y,w)X + Bg(y7w)X2 + e

where X = /1 —x/R(y).

The functions R(y), E;(y), D;j(y,w), and B;(y,w) are analytic in y resp. in w and satisfy the

relations
3 2
Eo(y)® (10 1+ Eo(y) _ Boly )> ’

Eo(y) —1 1T Ry)
1 —1/Eo(y) -
R(y) = oly) ’
B = - ( 2R(y) Eo(y)*(1 + R(y) Eo(y))* >1/2
(2R(y)Foly) + R)2Ee(y)? 2 + 2R(y)(1 + R Ee(m)) )



Do (y, w) = (1 + yw) exp (%Ddy,w)) 1,
Di(y,w) = — Do(y,w)E1(y)R(y)(Do(y, w) + 1)
’ (R(y)Eo(y)Do(% ) )(1+R( ) Eo(y))’
’ <1 +R< > (y)) ’
E1(y)R(y)* Doy, w)*
Bl ) = S R Bo )

Proof. Since E(x,y) satisfies Equation (9) it follows that the dominant singularity of E(x,y) is
of square-root type and there is an expansion of the form E(z,y) = Eo(y) + E1(y)X + O(X?),
with X = /1 —xz/R(y), and where R(y) and F;(y) are analytic in y; compare with [1, 11].
Furthermore, if we set

®.y.2) = (by)ew (1) —= 1
x,Y,2) = y)exp | - z
then R(y) and Ey(y) satisfy the two equations

(R(y),y, Eo(y)) =0 and  @-(R(y),y, Eo(y)) =0

and F4(y) is then given by

Ey(y) =

<2R< )‘I’z(R(y)’yan(y))y/Q
( (y)a Y, Eo(i‘/)) .

Next observe that for |w| < 1 the radius of convergence of the function z — D(z,y,w) is
surely > |R(y)|. However, D(x,y,w) satisfies Equation (10), which implies that the dominant
singularity of E(z,y) carries over to that of D(z,y,w). Thus, the mapping « — D(z,y,w) has
dominant singularity R(y) and it also follows that D(z,y,w) has a singular expansion of the form
D(z,y,w) = Do(y,w) + D1(y,w)X + O(X?). Hence, by Lemma 4.1 we also get an expansion
for B®*(x,y,w) of that form. Finally the relations for Dy, D1 and By, B; follow by comparing
coeflicients in the corresponding expansions. O

Theorem 4.4. Let di, be the limit probability that a vertex of a two-connected series-parallel graph

has degree k. then
=St = P
k>1 Bi(1,1)

Obviously, p(1) = 1, so that the dy are indeed a probability distribution. We have asymptoti-
cally, as k — oo,
dp ~c- k_3/2qka

where ¢ = 3.7340799 is a computable constant and
-1
g= ((1 +1/(R(1)Ey(1))) e Y/ A+RMEa(D) _ 1) ~ 0.7620402.

Proof. First observe that
2" B (1, w)
p(w) = e 1)

However, from the local expansion of B®(x, 1,w) that is given in Lemma 4.3 (and by the fact that
B*(z,1,w) can be analytically continued to a A-region; see Section 2) it follows that

") B* (2,1, w) = B;(\lfw) ~3/2p(1yn (1 +0 (i)) .

Hence, p(w) = By (1,w)/B1(1,1).
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Next observe that Lemma 4.3 provides Bi(1,w) only for |[w| < 1. However, it is easy to
continue B (1, w) analytically to a larger region and it is also possible to determine the dominant
singularity of By (1, w), from which we deduce an asymptotic relation for the coefficients of p(w) =
By(Lw)/Bi(1,1).

For this purpose first observe from Lemma 4.3 that Dy(y,w) satisfies a functional equation
which provides an analytic continuation of the mapping w +— Dy(y,w) to a region including
the unit disc. In addition, it follows that there exists a dominant singularity wo(y) and a local
expansion of the form

Do(y, w) = Doo(y) + Do1(y)W + Doa(y)W?2 +-- -,

where W = /1 — w/wp(y). Furthermore, if we set

R(y)Eo(y)

U(y,w, z) = (1 + yw) exp (H—R(y)Eo(y)Z) —z-1

then wo(y) and Dgo(y) satisfy the equations

U(y,wo(y), Doo(y)) =0 and  W.(y,wo(y), Doo(y)) = 0.
Hence

1 1 1 1 1
REey) ™4 W=y (1 - R<y>E0<y>> P (‘ T R<y>E0<y>) ~y

Finally, with the help of Lemma 4.3 it also follows that this local representation of Dy(y,w)
provides similar local representations for D, By, and Bj:

Doo(y) =

Di(y,w) = Dy _1(y)W ™ + Dio(y) + Dia(y)W +-- -,
Bo(y, w) = Boo(y) + Bo2(y)W? + Bos(y)W?> + - -,
Bi(y,w) = Bio(y) + Bui(y)W + Bra(y) W? + - -+,

where W = /1 —w/wp(y) is as above. Hence, all functions of interest Dy, Dy, By, By can be
analytically continued to a A-region, and the asymptotic relation for dj follows immediately.
Since wo(1) is the dominant singularity, we have ¢ = 1/wg(1). O

The next theorem provides the degree distribution in series-parallel graphs. This result has
been obtained independently in [6], and again our respective results agree.

Theorem 4.5. Let di be the limit probability that a vertex of a connected series-parallel graph
has degree k. then

. 9 peciw
p(’w) = dewk =p- 8? eB (@:1w) ’z:pC/(p) )
E>1

where B® is given by Lemma 4.2 and Equations (10) and (9).
Moreover p(1) = 1, so that the dy. are indeed a probability distribution. We have asymptotically,
as k — oo,
dk ~C- k_3/2qk,

where ¢ ~ 3.5952391 is a computable constant and
-1
q= ((1 +1/(rE(r,1))) e”YTEED 1) ~ 0.7504161.

Proof. The proof of the first statement is exactly the same as for Theorem 3.3. Again, we know
that pC’(p) = 7 & 0.127 is larger than the radius of convergence p ~ 0.110 of C(z), so that
Lemma 3.1 applies. The proof that p(1) =1 is also the same.
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Recall that 7 < R(1). Hence the dominant singularity = R(1) of the mapping  — B*(z, 1, w)
will have no influence to the analysis of p(w). Nevertheless, since

9 Bt _ 5 @1 OB (@ Lw)
ox Oz

we have to get some information on D(z,1,w) and its derivative dD(x,1,w)/0z with = 7.
Let us start with the analysis of the mapping w — D(7,1,w). Since D(z,y,w) satisfies
Equation (10) it follows that D(7,1,w) satisfies

D(r,1,w) = (1 + w) exp (TE(T, 1)D(r, Lw)) -

1+ 7E(T,1)

Hence there exists a dominant singularity w; and a singular expansion of the form
D(r,1,w) :50+51/V\V/+1~)2W2+--- ,

where W = m . Furthermore, if we set

TE(r, 1)z ) o

E(w, z) = (1+ w)exp <1+7'E(7'1)

then w; and 50 satisfy the equations
E(’u}l,jjo) =0 and Ez(wl,ﬁo) =0.

Consequently,

~ 1 1 1
0T TE(r,) M ( + TE(T,1)> exp( 1+TE(T,1)>

Next, by taking derivatives with respect to  in (10) we obtain the relation

oD(x,1,w) (14 D(x,1,w))D(x,1,w)(E(z,1) + zE,(z,1)

ox  (2E(z,1)D(x,1,w) — 1)(1 + zE(z,1))

oD (z,1,w
ox

Thus if we set © = 7 and insert the singular representation of D(r, 1, w), it follows that ) p—

has a corresponding singular representation too. By Lemma 4.2 we get the same property for

W |z=- and finally for
9 B*(z,1,w) ~ R 7 74 ~ A2
p~%€ 7 |x:7’ =Co+CiW+CoWe+---.
This implies the asymptotic relation for dy with ¢ = 1/wj. O

In this case, we obtain an expression for p(w) in terms of the functions E(x, 1) and D(x, 1, w)
and their derivatives. The derivatives can be computed using Equations (9) and (10) as in the
previous proof. Expanding p(w) in powers of w we obtain the approximate values for small &
shown in Table 1.

Remark. We have d; = p. Also, there is an easy relation between d; and ds, namely
dg = d1 (2:‘{),

where kn is asymptotically the expected number of edges in series-parallel graphs. This is shown
in [25, Thm. 4.10] for planar graphs, phrased in terms of the average degree; the only property
required is that subdividing an edge preserves planarity, which is also true in the case of series-
parallel graphs (but not for outerplanar graphs). The value of k = 1.61673 was determined in [7]
and one can check that the relation holds.

12



5 Quadrangulations and 3-connected planar graphs

From now on and for the rest of the paper, all generating functions are associated to planar graphs.
The goal of this section is to find the generating function of 3-connected planar graphs according
to the degree of the root. This is an essential ingredient in the next section.

First we work out the problem for simple quadrangulations, which are in bijection with 3-
connected maps. In order to do that we must revisit the classical work of Brown and Tutte [9] on
2-connected (non-separable) maps. Finally, using the fact that a 3-connected planar graph has a
unique embedding in the sphere, we finish the job.

5.1 Simple quadrangulations

A rooted quadrangulation is a planar map where every face is a quadrangle, and with a distinguished
directed edge of the external face, which is called the root edge of the quadrangulation. The root
vertex of the quadrangulation is the tail of the root edge. A diagonal is an internal path of
length 2 joining two opposite vertices of the external face. A quadrangulation is simple if it has
no diagonal, every cycle of length 4 other than the external one defines a face, and it is not the
trivial map reduced to a single quadrangle. In Section 5 of [26] it is shown how to count simple
quadrangulations. Here we extend this result to count them also according to the degree of the
root vertex.

A quadrangulation is bipartite and connected, so if we fix the colour of the root vertex there is
a unique way of 2-colouring the vertices. We call the two colours black and white, and we assume
that the root is black. Diagonals are called black or white according to the colour of the external
vertices they join.

Let F(x,y,w) be the GF of rooted quadrangulations, where the variables z, y and w mark,
respectively, the number of black vertices minus one, the number of white vertices minus one, and
the degree of the root vertex minus one. Generating functions for maps are always ordinary, since
maps are unlabelled objects.

The generating functions Fl, Fg and Fy are associated, respectively, to quadrangulations
with no diagonal, to those with at least one black diagonal (at the root vertex), and to those with
at least one white diagonal (not at the root vertex). By planarity only one of the two kinds of
diagonals can appear in a quadrangulation; it follows that

F(m,y,w) :FN(x?y7w)+FB(xay7w)+FW(xayaw)'

A quadrangulation with a diagonal can be decomposed into two quadrangulations, by considering
the maps to the left and to the right of this diagonal. This gives rise to the equations

F(z,y,w
FB(l‘vyaw) = (FN<x7va) +Fw(l‘7y,w)) %7

Fiv (@, 9,0) = (Fy (2, ) + F(a, g, w)) 2221,

In the second case, only one of the two quadrangulations contribute to the degree of the root
vertex; this is the reason why the term F(x,y,1) appears. The x and the y in the denominators
appear because the three vertices of the diagonal are common to the two quadrangulations. Since
we are considering vertices minus one, we only need to correct the colour that appears twice at
the diagonal. Incidentally, no term w appears in the equations for the same reason.

Let us write F' = F(z,y,w) and F(1) = F(z,y,1). From the previous equations we deduce
that

F
F = FN+FB+FW:(FN+FB)(1+;),
F(1
F = FN+FB+FW(FN+FW)(1+?(J))7
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so that

1 1
F+FN=(FN+FB)+(FN+Fw)=F< E+ ),

and finally

1 1
Fy=F + —-1]. 12
(1 +4 1+20 ) ()

Now we proceed to count simple quadrangulations. We use the following combinatorial de-
composition of quadrangulations with no diagonals in terms of simple quadrangulations: all quad-
rangulations with no diagonals, with the only exception of the trivial one, can be decomposed
uniquely into a simple quadrangulation ¢ and as many quadrangulations as internal faces ¢ has
(replace every internal face of ¢ by its corresponding quadrangulation).

Let

Q(l', Y, ’UJ) = Z qi,j,kxlijk
i3,k

be the GF of simple quadrangulations, where x, y and w have the same meaning as for F. We
notice that this GF is called Q% in [26]. We translate the combinatorial decomposition of simple
quadrangulations into generating functions as follows.

k i+j—1—k
i F 1
Fy(z,y,w) —ayw = Z i k'Y’ () (())

= 3w () () (#6) -
Be( )

where we are using the fact that a quadrangulation counted by g¢; ;1 has ¢+ j + 2 vertices, i4+j—1
internal faces, and k of them are incident to the root vertex.

At this point we change variables as X = F(1)/y, Y = F(1)/z and W = F/F(1). Then
Equations (12) and (13) can be rewritten as

Ty - B 1 1
Pw(DQ(XaKW)FNsz}F<1+F+1+F(1) 1) — TYyw,
z Y
Qxyw) =xyw (—— + 1) _pp (14)
= 1+WY 1+ X v

The last equation would be an explicit expression of @ in terms of X, Y, W if it were not for the
term F(1)w = F(z,y,1)w. In [26] it is shown that

RS

Fl)= ——— 1
(1) (1+R+S)%’ (15)
where R = R(X,Y) and S(X,Y) are algebraic functions defined by
R=X(S+1)?  S=Y(R+1)7>2 (16)

Hence it remains only to obtain an expression for w = w(X,Y, W) in order to obtain an explicit
expression for ). This is done in the next subsection.
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5.2 Rooted non-separable planar maps

In [9] the authors studied the generating function h(x,y, w) of rooted non-separable planar maps
where z, y and w count, respectively the number of vertices minus one, the number of faces minus
one, and the valency (number of edges) of the external face. We notice that the variable z is used
instead of w in [9]. There is a bijection between rooted quadrangulations and non-separable rooted
planar maps: black and white vertices in the quadrangulation correspond, respectively, to faces
and vertices of the map; quadrangles become edges; and the root vertex becomes the external face,
and its degree becomes its valency. As a consequence h(y,z,w) = wF(z,y,w), where the extra
factor w appears because in F' we are counting the degree of the root vertex minus one. It follows
that Equation (3.9) from [9] becomes

(1 —w)(1 —yw)wF = —w?F? 4+ (—2w + wF(1))wF + zw?(z(1 —w) + F(1)).

By dividing both sides by F(1)? and rewriting in terms of X = F(1)/y, Y = F(1)/z and W =
F/F(1), we obtain

1 w P 1\ w? (1
(1—w) (F(l)_X>wW:_w w +(1—Y)w W+Y<X(1_w)+1>’
(1—w)(X —wF1)wW  w?(—XYW2+ XYW - XW+1-w+X
XF(1) B XY ’
Y(1—w)(X —wF)W = wF(1)(~XYW? + XYW — XW + 1 — w + X). (17)

Observe that this is a quadratic equation in w. Solving for w in (17) and using (15) and (16) we
get (the plus sign is because T'® has positive coefficients in coming Theorem 5.1)

—wl(R7 S7 W) + (R—W+ 1) ’wg(R, S, W)
w = , (18)
20+ 1)2(SW +R?*+2R+1)

where wi (R, S, W) and ws(R, S, W) are polynomials given by

w; =— RSW? + W (1 + 48 + 3RS? + 55 + R*> + 2R + 25° + 3R*S + TRS) (19)
+(R+1)*(R+25+1+5%),

wy =R*S*W? — 2WRS(2R*S + 6RS + 28 + 3RS? +55% + R* + 2R +4S +1)  (20)
+(R+1)*(R+2S+1+ 5%

The reason we choose to write w as a function of (R, S, W) instead of (X,Y, W) will become clear
later on.

Thus, together with Equations (14) and (15), we have finally obtained an explicit expression
for the generating function Q(X,Y, W) of simple quadrangulations in terms of W and algebraic
functions R(X,Y) and S(X,Y).

5.3 3-connected planar graphs

Let T*(z, z,w) be the GF of 3-connected planar graphs, where one edge is taken as the root and
given a direction, and where x counts vertices, z counts edges, and w counts the degree of the tail
of the root edge. Now we relate T* to the GF Q(X,Y, W) of simple quadrangulations.

By the bijection between simple quadrangulations and 3-connected planar maps, and using
Euler’s relation, the GF zwQ(zz, z,w) counts rooted 3-connected planar maps, where z marks
edges (we have added an extra term w to correct the ‘minus one’ in the definition of Q).

According to Whitney’s theorem 3-connected planar graphs have a unique embedding in the
sphere. As noticed in [3], the are two ways of rooting an embedding of a directed edge-rooted
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graph in order to get a rooted map, since there are two ways of choosing the root face adjacent to
the root edge. It follows that

T*(z,z,w) = %Q(azz,z,w). (21)

Theorem 5.1. The generating function of directed edge-rooted 3-connected planar graphs, where
x, z,w mark, respectively, vertices, edges, and the degree of the root vertex, is equal to

2222002 1 1 (u+1)2 (—wl(um,w) +(u—w+1) wg(u,v,w))

2 1+wz+1+xz_ 2w(vw +u? 4+ 2u+ 1)1 +u+v)3

)

(22)

where u and v are algebraic functions defined by

u=xz(1+v)? v=2z(1+u)? (23)
and wi (u, v, w) and ws(u, v, w) are given by (19) and (20) replacing R, S, W by u, v, w, respectively.
Proof. Combine Equation (21), together with Equations (14), (15), and (18). O

When we set w = 1 in Equation (22) we recover the GF of edge-rooted 3-connected planar
graphs without taking into account the degree of the root vertex.

6 Planar graphs

This section is divided into three parts. First we obtain an explicit expression for B®(x,y,w),
the generating function of rooted 2-connected planar graphs taking into account the degree of the
root. Secondly, we compute singular expansions at dominant singularities for several generating
functions. And finally we obtain the asymptotic degree distribution in random planar graphs.

6.1 2-connected planar graphs

Let B*(z,y,w), the generating function of rooted 2-connected planar graphs taking into account
the degree of the root. As for series series-parallel graphs we have to work with networks.

Let T*(x, z,w) be the GF for directed edge-rooted 3-connected planar maps as in the previous
section. As in Section 4, we denote by D(x,y,w) and S(x,y, w), respectively, the GFs of (planar)
networks and series networks, with the same meaning for the variables z,y and w.

Lemma 6.1. We have
D(z,y,w) = (1+yw)exp <S(x7y,w) + %T' (m,E(ac,y)7 D(;v,y,w))) -1
z*D(z,y,w) E(z,y)
S(z,y,w) = zE(z,y)(D(z,y,w) — S(z,y,w)),

where E(x,y) = D(x,y,1) is the GF for planar networks (without marking the degree of the root).

Proof. The proof is a variant of the equations developed by Walsh [30], taking into account the
degree of the first pole in a network. The main point is the substitution of variables in T®: an
edge is substituted by an ordinary planar network (this accounts for the term E(z,y)), except if
it is incident with the first pole, in which case it is substituted by a planar network marking the
degree, hence the term D(x,y,w) (it is divided by E(x,y) in order avoid overcounting of ordinary
edges). O

As in Lemma 4.1, and for the same reason, we have

OB®(x,y,w)

e PR DL Gl
E>1
) 1 . D(z,y,w)
= Tyw exp (S(%Zhw) + IQD(Ly’w)T (‘T’E(x’y)’ E(z,y) )) '
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Lemma 6.2. The generating function of rooted 2-connected planar graphs is equal to

zED D 1+ D 1 [P Tz E,t/E)
B* —z(D- 1+ 2 ) ) - —=T*,E,D/E)+— | —=" g (24
(@,y,w) x( 1+xE( * 2)) xD (2, B, D/ >+a:/0 t dt, (24)

where for simplicity we let D = D(z,y,w) and E = E(xz,y).
Proof. We start as in the proof of Lemma 4.2.

1+ D oD
/ 1 J—:yw dw =y log(1 + yw) +y ' log(1 + yw)D — /y_1 log(1 + yw)a—w dw.

For the last integral we change variables t = D(z,y,w) and use the fact that
2ED

1 (]
log(1 + yw) = log(1 + D) — 0128 J?QDT (x,E,D/E).

We obtain

D D
1 Tz, E,t/E
/ tdt—i——? Mdt.
0 = Jo

D
/log(l—l-yw)ggdw—/o log(1 +t)dt — ,

1+aF

On the right-hand side, all the integrals except the last one are elementary. Now we use

. 1+D
B (:c,y,w):xy/1+yw

and after a simple manipulations the result follows. O

In order to get a full expression for B®(z,y,w), it remains to compute the integral in the
formula of the previous lemma.

Lemma 6.3. Let T*(x, z,w) be the GF of 3-connected planar graphs as before. Then

/w T(z, z,t) g — _x2(23xw2 — 2wz — 222%w + (2 + 2x2) log(1 + wz))
0

t 414 x2)
uvx w(2u® + (6v + 6)u? + (6v — vw + 14v + 6)u + 40> + 100? + 8v + 2)
2(14+u+wv)3 dv(v+1)2

(1+uw)(1+u+ 20+ 0?)(2u® + (4v + 5)u? + (3v% + 8v + 4)u + 20 + 5v% + 4v + 1)
duv?(v + 1)2
VQ(2u? + (4v + 5)u? + (3v% — vw + 8v + 4)u + 5v? + 20% + 4v + 1)
duv?(v + 1)2
(1 +u)?*(1 +u+v)*log(Q1)
202(1 4 v)?
(u + 2u? + u — 203 — 4v% — 20) (1 + u + v)3 1og(Q2)
+ 202(1 + v)2u ) ’

+

where the expressions Q, Q1 and Q2 are given by

Q = v*v*w? — 2uvw(u?(2v + 1) + u(3v? + 6v + 2) + 2v° + 5v® + 4v + 1)
+ (1wt (v+1)%)?

Q= !

20wo + (ut D220 + D +u(v+2) 1 (v +1)?)
+u+1)(u4v+1)vV/Q + (u+1)22u%(w + 1) + u(v® + 3v 4+ 2) + v* + 30 + 3v + 1)

—wuv + u?(2v — 1) + u(3v? + 6v + 2) + 20% + 502 + 4o + 1 — /Q
2v(u? +u(v+2) + (v+1)2)

(—uvw(u? + u(v +2) + 20° + 3v + 1)

Q2 =
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Proof. We use Equation (22) to integrate T*(z,z,w)/w. Notice that neither u nor v have any
dependence on w. We have used Maple to obtain a primitive, to which we have added the
appropriate constant ¢(x, z) to ensure that the resulting expression evaluates to 0 when w = 0.
A key point in the previous derivation is that, by expressing w(X,Y, W) (see Equation (17)) in
terms of R, S instead of X,Y (see Equation (18)), we obtain a quadratic polynomial wo(R, S, W)
in terms of W inside the square root of T*(x, z,w) in Equation (22). Otherwise, we would have
obtained a cubic polynomial inside the square root, and the integration would have been much
harder. O

Combining Lemmas 6.2 and 6.3 we can produce an explicit (although quite long) expression
for B®*(z,y,w) in terms of D(z,y,w), E(z,y), and the algebraic functions u(z,y), v(x,y). This
is needed in the next section for computing the singular expansion of B®(x,y,w) at its dominant
singularity.

6.2 Singular expansions

In this section we find singular expansions of T*(z, z, w), D(z,y, w) and B*(z,y,w) at their dom-
inant singularities. As we show here, these singularities do not depend on w and were found in [3]
and [19]. However the coefficients of the singular expansions do depend on w, and our task is to
compute them exactly in each case.

What is needed in the next section is the singular expansion for B®, but to compute it we first
need the singular expansions of u, v, T® and D (for v and v compare also with [4] and [3]).

Lemma 6.4. Let u = u(x,2z) and v = v(x,z) be the solutions of the system of equations u =
22(14+v)? and v = 2(1 +u)?. Let r(z) be explicitly given by

_ to(2)
") = 0+ ()R (25)

e} ==37\ g3

Furthermore, let T(x) be the inverse function of r(z) and let ug(x) = Uo(7(x)) which is also the
solution of the equation

where

(14 u)(3u —1)3
16u '

Then, for x sufficiently close to the positive real axis the function u(zx,z) and v(z,z) have a
dominant singularity at z = 7(x) and have local expansions of the form

u(z, 2) = up(x) +ur(2)Z + uz(2) 2% + uz(x) 2> + O(Z*),
v(x, 2) = vo(x) + v1(2)Z + va () Z2 4 v3(2) Z3 + O(Z*),

where Z = /1 — z/7(x). The functions u;(x) and v;(x) are also analytic and can be explicitly
given in terms of u = ug(x). In particular we have

14+u
uo(z) =u vo() = 52—

ur(@) = —/2u(u+ 1) o) = -ZAH D)

(4 u)(Tu+1) _ 2u(3+5u)
ug(x) = EEEE I va(x) = T EEDE
us() = — (14 u)(67u? + 50u + 11)u vs(z) = — V2u(1 4+ u)(79u? + 42u 4 7)
’ 4(1+ 3u)?V2u? + 2u ’ A1+ 3u)2(3u — 1)y/u(l +u)
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Similarly, for z sufficiently close to the real azis the functions u = u(x, z) and v = v(z, z) have
a dominant singularity x = r(z) and there is also a local expansion of the form

u(z, 2) = T (2) + 1 (2) X + U2(2) X2 + O(X3),

v(z,2) = o(2) + 01(2) X + 02(2) X2 + O(X?),
where X = /1 —x/r(z). The functions w;(z) and v;(z) are analytic and can be explicitly given
in terms of uw = ug(z). In particular, we have

~ ~ ~ 1+u
uo(z) =u Uo(z) = 1

i (o) = 20VIHE 52 = - AIVTHT
ST i N e B N T
- 2(1+w)u(2u+1) o Au(but +4u+1)

B = =y %) = G T30y
_ (10w + 1@ +5u+ D)Vi+a o 4u(2u+1)(11a* +5u+ 1)V1+u

Proof. Since u(z, z) satisfies the functional equation u = zz(1 + 2(1 + u)?)?, it follows that for
any fixed real and positive z the function x — wu(x,z) has a square-root singularity at r(z) that
satisfies the equations

O(r(z),z,u) =0 and D,(r(z),z,u) =0,

where ®(z,2,u) = u — x2(1+ 2(1 4+ u)?)%. Now a short calculation gives the explicit formula (25)
for r(z). By continuity we obtain the same kind of representation if z is complex but sufficiently
close to the positive real axis.

We proceed in the same way if z is fixed and z is considered as the variable. Then 7(x),
the functional inverse of r(z), is the singularity of the mapping z — wu(x, z). Furthermore, the
coefficients uj(z) etc. can be easily calculated. The derivations for v(z, z) are completely of the
same kind. 0

Lemma 6.5. Suppose that x and w are sufficiently close to the positive real axis and that |w| < 1.
Then the dominant singularity z = 7(x) of T*(x,z,w) does not depend on w. The singular
expansion at T(x) is

T.(Jf, Z, ’LU) = TO(I7 U)) + TQ(J:) U))Z2 + T3(J?, w)Z3 + 0(24)3 (26)
where Z = /1 — z/7(x), and the expressions for the T; are given in the appendiz.

Proof. Suppose for a moment that all variables x, z, w are non-negative real numbers and let us
look at the expression (22) for T*. The algebraic functions u(z,z) and v(x,z) are always non-
negative and, since the factor w in the denominator cancels with a corresponding factor in the
numerator, the only possible source of singularities are: a) those coming from « and v, or b) the
vanishing of ws(u, v, w) inside the square root.

We can discard source b) as follows. For fixed u,v > 0, let wa(w) = wa(u,v,w). We can check
that

wo (1) = (1 + 2u + u? + 20 + v? + uv — uv?)?,
wh(w) = —2uv ((6 — w)uv + 1 + 2u+ u® + 4v + 50° + 2v° + 3uv? + 2u’v) .

In particular wo(1) > 0 and wh(w) < 0 for w € [0,1], thus it follows that wa(w) > 0 in
w € [0,1]. Hence the singularities come from source a) and do not depend on w.

Following Lemma 6.4 (see also [4] and [3]), we have that z = 7(z) is the radius of convergence
of u(z, z), as a function of z. Now by using the expansions of u(z, z) and v(z, z) from Lemma 6.4
we obtain (26).

Finally, by continuity all properties are also valid if z and w are sufficiently close to the real
axis, thus completing the proof. O
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Similarly we get an alternate representation expanding in the variable x.

Lemma 6.6. Suppose that z and w are sufficiently close to the positive real axis and that |w| < 1.
Then the dominant singularity x = r(z) of T*(x,z,w) does not depend on w. The singular
expansion at r(z) is

T*(x,z,w) = To(z,w) + To(z,w) X? + Ty(z,w) X3 + O(X?), (27)

where X = /1 —x/r(z). Furthermore we have

(r(z),w)H(r(z),z) — To,x(r(z), z)r(z),
T3(r(2), w)H(r(2),2)*?,

T3(Z7 w)
where H(x,z) is a non-zero analytic function with Z? = H(x,2z)X?>.

Proof. We could repeat the proof of Lemma 6.5. However, we present an alternate approach that
uses the results of Lemma 6.5 and a kind of singularity transfer.

By applying the Weierstrass preparation theorem it follows that there is a non-zero analytic
function with Z2? = H(x,z)X?. Furthermore, by using the representation z = r(z)(1 — X?) and
Taylor expansion we have

H(z,2) = H(r(2),2) — Hy(r(2), 2)r(2) X? + O(X*4),
Tj(z,w) = Tj(r(2), w) = Tja(r(2), w)r(z) X> + O(X*).

Hence, Lemma (6.5) directly gives proves the result. In fact, H can be computed explicitly and is
equal to H(z,7(x)) = (1 + 3u)/2u. O

The next result is Proposition 6.3 from [12], and is needed in order to guarantee that singular
expansions of the desired kind exist.

Theorem 6.7. Suppose that F(x,y,u) has a local representation of the form

3/2
Flay) = sl o) + ) (1= - ) (29)

with functions g(x,y,u), h(x,y,u), r(z,u) that are analytic around (xo,yo,uo) and satisfy

9y(z0, Yo, uo) # 1, (2o, y0,u0) #0, r(zo,up) #0, 72(20,u0) # g2(Zo, Yo, uo).
Furthermore, suppose that y = y(z,u) is a solution of the functional equation

y=F(z,y,u)
with y(xo,uo) = yo- Then y(x,u) has a local representation of the form
N7
y(z,u) = g1(x,u) + hi(z,u) (1 — ) , (29)
p(u)

where g1(x,u), hi(z,u) and p(u) are analytic at (xo,uo) and satisfy hy(xg,ug) # 0 and p(ug) = xo.

Lemma 6.8. Suppose that y and w are sufficiently close to the positive real axis and that |w| < 1.
Then the dominant singularity x = R(y) of D(z,y,w) does not depend on w. The singular
expansion at R(y) is

D(z,y,w) = Do(y, w) + D2(y, w)X* + Ds(y, w)X* + O(X"), (30)

where X = /1 —x/R(y), and the expressions for the D; are given in the appendiz.
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Proof. We use the system of equations from Lemma 6.1. If we set w = 1 and substitute S(z,y,1) =
rE(x,y)?/(1 + xE(z,y)) then we get a single equation for E(z,y) = D(z,y,1):

rE(z,y)? 1
L+ aBE(r,y)  22E(x,y)

E(z,y) = (1+y)exp ( T°(z, E(z,y), 1)) —1. (31)

Now we use the singular expansion from Lemma 6.6 and Theorem 6.7 (which is Proposition 6.3
of [12]) to conclude that E(z,y) has an expansion of the form

E(z,y) = Eo(y) + E2(y)X* + Es(y) X® + O(X*). (32)

Finally we reconsider Lemma 6.1 and after substituting S(z,y,w) = zE(z,y)D(z,y,w)/(1 +
xE(x,y)) we get a corresponding (single) equation for D(z,y,w):

zE(z,y)D(z,y, w) 1 . D(z,y,w)
Diauw) = 1+ oy (EEREEER + e (n e Tt ) ) - 1
(33)
Now a second application of Lemma 6.6 and Theorem 6.7 yields the result. Note that the singu-
larity does not depend on w. O

Lemma 6.9. Suppose that y and w are sufficiently close to the positive real axis and that |w| < 1.
Then the dominant singularity x = R(y) of B*(x,y,w) does not depend on w, and is the same as
for D(z,y,w). The singular expansion at R(y) is

B'(.’L‘, Y, ’U)) = BO(ya ’LU) + B2(y7 w)X2 + BS(y7 w)X3 + O(X4)’ (34)
where X = /1 — x/R(y), and the expressions for the B; are given in the appendiz.
Proof. We just have to use the representation of B®(z,y,w) that is given in Lemma 6.2 and
Lemma 6.3 and the singular expansion of D(z,y,w) from Lemma 6.8. O

6.3 Degree distribution for planar graphs

We start with the degree distribution in 3-connected graphs, both for edge-rooted and vertex-
rooted graphs.

Theorem 6.10. Let d;. be the limit probability that a vertex of a three-connected planar graph has
degree k, and let ey, be the limit probability that the tail root vertex of an edge-rooted (where the
edge is oriented) three-connected planar graph has degree k. Then

T5(r, w)

k_ L3\,

Zekw B T3(Ta 1) ’

where Ty (x,w) is given in the appendiz and v = r(1) = (7v/7 — 17)/32 is eaplicitly given by (25).
Obviously the ey are indeed a probability distribution. We have asymptotically, as k — oo,

€ ~ C: kl/zqu

where ¢ ~ 0.9313492 is a computable constant and ¢ = 1/(ug + 1) = /7 — 2, and where ug =
u(r) = (V7-1)/3.
Moreover, we have
di, = a% ~ ca- k_l/qu,
where
(Buop — 1)(Bug + 1)(uo +1)  V7+7
(N 2

is the asymptotic value of the expected average degree in 3-connected planar graphs.
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We remark that the degree distribution in 3-connected planar maps counted according to the
number of edges was obtained in [2]. The asymptotic estimates have the same shape as our dy,
but the corresponding value of ¢ is equal to 1/2.

Proof. The proof uses first the singular expansion (27). The representation

Z ekwk _ T3(7", w)
1 Tg(’l“, 1)

follows in completely the same way as the proof of Theorem 4.4, using now Lemma 6.5, with the
difference that now the dominant term is the coefficient of Z3.

In order to characterize the dominant singularity of 75(1,w) and to determine the singular
behaviour we observe that the explicit representation for T3 contains in the denominator a (dom-
inating) singular term of the form (—w + u + 1)3/2. Hence, it follows that ug + 1 is the dominant
singularity and we also get the proposed asymptotic relation for ey.

For the proof of the second part of the statement, let ¢,, ;, be the number of vertex-rooted graphs
with n vertices and with degree of the root equal to k, and let s, be the analogous quantity
for edge-rooted graphs. Let also t, = >, t,, and s, = Y, Sp k. Since a vertex-rooted graph
with a root of degree k is counted k times as an oriented-edge-rooted graph, we have s, = kt,
(a similar argument is used in [22]). Notice that ex =lim s, /s, and dy = lim#¢, /t,.

Using the quasi-powers theorems as in [19], one shows that the expected number of edges p,
in 3-connected planar graphs is asymptotically u, ~ xn, where k = —7/(1)/7(1), and 7(z) is as
in Lemma 6.4. Clearly s, = 2unt,/n.

Finally 2u,, /n is asymptotic to the expected average degree o = 2k. Summing up, we obtain

kdk = xeL.
A simple calculation gives the value of « as claimed. O

Theorem 6.11. Let di be the limit probability that a vertex of a two-connected planar graph has
degree k. Then

where Bs(y,w) is given in the appendiz.
Obviously, p(1) = 1, so that the dj, are indeed a probability distribution and we have asymptot-
ically, as k — o0,
dk ~ Ck—l/qu7

where ¢ =~ 3.0826285 is a computable constant and

1 (to — 1)(to + 6) !
— —1) ~0.6734506
e (1—toeXp(6t%+2Oto+6 ’

and to = t(1) = 0.6263717 is a computable constant given in the appendiz.

Proof. The representation of p(w) follows from (34).

Now, in order to characterize the dominant singularity of Bs(1, w) and to determine the singular
behaviour we first observe that the right hand side of the equation for Dy contains a singular term
of the form (Do (t —1)+1t)3/2 that dominates the right hand side. Hence, by applying Theorem 6.7
it follows that Dy(1,w) has dominant singularity w3, where Dg(1,w3) = t/(1 —t) and we have a
local singular representation of the form

Dy(1,w) = Doo + DoaW? + DosW? + -+ |

where W = /1 —w/ws and Doy = t/(1 —t). The fact that the coefficient of W vanishes is due
to the shape of the equation satisfied by Dg(1,w) (see the appendix).
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We now insert this expansion into the representation for Ds. Observe that S has an expansion
of the form

S = SoW?2 4+ SsW3 4 -

with Sy # 0. Thus we have VS =/ SgW—!—O(W%. Furthermore, we get expansions for Ss 1, S22,
Sa 3, and Ss 4. However, we observe that S 3(1,ws) = 0 whereas Sz 1(1,ws3) # 0, S22(1, ws) # 0,
and S2.4(1,w3) # 0. Consequently we can represent Do (1,w) as

- 1 ~ _ o
Dy (1,w) = DQ’_IW + Do g+ DogW + + Do W? + -+ |

where 51,71 #0.
In completely the same way it follows that D3(1,w) has a local expansion of the form

~ 1 ~ 1 - I
D3(1,w) = D3, _3==++D3 _1= + D39+ D3 W +---,
w3 w

where 53,,3 # 0, and the coefficient of W2 vanishes identically.
These type of singular expansions carry over to B3(1,w), and we get

_ 1 ~ o
Bs(1,w) :Bg’_1W+B3’O+B3’1W+'“ ) (35)

where §37,1 = (0. We stress the fact that the coefficients of W3 and W2 vanish as a consequence
of non trivial cancellations. Hence, we obtain the proposed asymptotic relation for the dy. O

The following is the analogous of Lemma 3.1. The difference now is that we are composing
two singular expansions and, moreover, they are of type 3/2.

Lemma 6.12. Let f(xz) =", <, anx™/n! denote the exponential generating function of a sequence
an of non-negative real numbers and suppose that f(x) has exactly one dominating singularity at
x = p of the form

f(@) = fo+ X*+ X%+ O(X"),
where X = /1 —x/p, and has an analytic continuation to the region {x € C: |z| < p+e}\{x €

R : z > p} for some € > 0. Further, let H(z,z,w) denote a function that has a dominant
singularity at z = f(p) > 0 of the form

H(z,2z,w) = ho(z,w) + ho(z,w)Z? + hy(x,w)Z> + O(Z*),

where w is considered as a parameter, Z = /1 — z/f(p), the functions h;(x,w) are analytic in x,
and H(zx,z,w) has an analytic continuation in a suitable region.

Then the function
fu(z) = H(z, f(z),w)

has a power series expansion fr(x) =Y <obnz™/n! and the coefficients b, satisfy

im bi = 7h2(p7w) hg(p’fw) (fZ)S/Q
n1*>00 an fo + 7 7 . 56)

Proof. The proof is similar to that of Lemma 8 and is based on composing the singular expansion
of H(z,z,w) with that of f(x). Indeed, near x = p, and taking into account that f(p) = fo, we
have

3/2
fu(x) = ho(x,w) + ho(z, w) (—W) + hs(z,w) (—W) + ..
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Now note that = = p — pX?2. Thus, if we expand and extract the coefficient of X3 and applying
transfer theorems, we have

Qn f3 nfo/prn
n! I'(-3/2)
and 52
b 1 ha(p,w) f3 ( f2> —5/2
— o~ — + hs(p,w) | =5 n=o2pm,
! rvwm( o e (g v
so that the result follows. O

Theorem 6.13. Let di be the probability that a vertex of a connected planar graph has degree k.
Then

p(w) = dewk = —eB‘)(l’w)_B"(l’l)Bg(l,w)
k>1
_poanlt+Ba(l,1)

Bo(l,’w)
e BS(L 1)

B3(1,'U]),

where Bj(y,w), j =0,2,3, are given in the appendiz.
Moreover, p(1) =1, so that the dy are indeed a probability distribution and we have asymptot-
ically, as k — oo,
dk ~ Ck,fl/qu’

where ¢ &= 3.0175067 is a computable constant and q is as in Theorem 6.11.

Proof. The degree distribution is encoded in the function

C.(.’I},w) = Z Ck(x, 1)’wk = eB‘(afC,(x)717w),
k>1

where the generating function xC’(x) of connected rooted planar graphs satisfies the equation
zC'(z) = reB’ (@0 (@)1
From Lemma 6.9 we get the local expansions
B @) — Bo(lw) (1 4 By (1,w) X2 + Bs(1,w)X® + O(X*)),
where X = /1 — 2/R. Thus, we first get an expansion for C'(z)

R RBs(1,1)

@ =R a Y T T B e

X3 +0(XY),

where X = /1 —x/p and p is the radius of convergence of C’(z) (compare with [19]). Note
also that R = pePo(»1) Thus, we can apply Lemma 6.12 with H(z,z,w) = zeB(=1w) and
f(z) = zC’(x). We have

R _ RBs(1,1)
1+ By(1,1) fs = (14 By(1,1))5/2

fo=R, f2=
and
ho(p,w) = pe 1) ho(p,w) = peP ) By(1,w), ha(p,w) = peP ) By (1, w).
We can express the probability generating function p(w) as

lim [z C*® (z, w) '
n—oo  [z"]zC'(z)
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Consequently, we have

3/2
p(w) _ _h2(paw) + h3(p7w> (_f?)

fo f3 fo

_ _eBO(l,w)—Bo(lvl)Bz(l’ w)

Bo(1,w)—Bo(1,1) 1 T By(1,1)

e By(1,1)

Bg(l,’w).

The singular expansion for Ba(1,w) turns out to be of the form
By (1,w) = Ez,o + ]-L~32,1f/[7 + e

Hence the expansion (35) for B3(1,w) gives the leading part in the asymptotic expansion for p(w).
It follows that p(w) has the same dominant singularity as for 2-connected graphs and we obtain the
asymptotic estimate for the dj as claimed, with a different multiplicative constant. This concludes
the proof of the main result. O

7 Degree distribution according to edge density

In this section we show that there exists a computable degree distribution for planar graphs with
a given edge density or, equivalently, given average degree.

In [19] we showed that, for p in the open interval (1,3), the number of planar graphs with n
vertices and |un| is asymptotically

9n,|un] ~ C(M) 77’747(#)“”!’ (37)

where ¢(u) and y(p) are computable analytic functions of p. The proof was based on the fact for
each p € (1,3), there exists a value y = y(u) such that the generating function G(x,y) captures

the asymptotic behaviour of g, | ., - The exact equation connecting p and y is

Py
ply) " (38)

where p(y) is the radius of convergence G(z,y) as a function of . More precisely, the idea behind
the proof is to weight a planar graph with m edges by y™. If g,,, denotes the number of planar
graphs with n vertices and m edges, then the bivariate generating function

xn m .,L.'VL
G y) =D gnm —y™ =D 0nly)
m,n ’ n>1 ’

can be considered as the generating function of the weighted numbers g, (y) = >, gnmy™ of
planar graphs of size n. In addition this weighted model induces a modified probability model.
Instead of the uniform distribution the probability of a planar graph of size n is now given by
Y™/ gn(y), where m denotes the number of edges. It follows from the singular expansion [19]

G(z,y) = Go(y) + G2(»)Y? + Ga(y)Y ' + G5(y) Y + O(Y"),
where Y = /1 — x/p(y), that g,(y) is asymptotically given by

gn(y) ~ g(y)n~"p(y)""n!

with g(y) = G5(y)/T'(=5/2). If y = 1 we recover the asymptotic formula for the number of planar
graphs of size n. However, since g, (y) is a power series in x with coefficients gy, it is possible to
compute these numbers by a Cauchy integral:

1 dy

Gnm = 75— In(Y) —-
nm 21i yl=r n ym+1
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Suppose that m = pn. Then due to the asymptotic structure of g, (y) the essential part of the
integrand behaves like a power:

—m

9n@)y™™ ~ g(y)n” "0l (y*p(y)) ™" = g(y)n"/*n! exp (—n log(y*p(y))) -

Hence, the integral can be approximated with the help of a saddle point method, where the saddle
point equation % log(y*p(y)) = 0 is precisely (38). This leads directly to (37); see [19] for details.
Informally, one has to append just a saddle point integral at the very end of the calculations.

We can use exactly the same approach for the degree distribution. We consider the weighted
number of rooted planar graphs of size n, where the root has degree k. For fixed y, the correspond-
ing generating function G*(z,y,w) has the property that the radius of convergence of G*(x,y, w)
does not depend on w and is, thus, given by p(y). The asymptotic equivalent for g? (y,w) contains
the factor p(y)™ and consequently it is possible to read off the coefficient of y™ with the help of
a saddle point method as above. Note that we have computed in the appendix the coefficients of
the singular expansion of B(z,y,w) as a function not only of w but also of y. Hence, Theorem
6.13 extends directly to the following.

Theorem 7.1. Let € (1,3) and let d,, i, be the probability that a vertex of a connected planar
graph with edge density u has degree k. Let y be the unique positive solution of (38). Then

Zd” pwh = ,eBo(y,w)*Bo(y’l)Bz(va)
k>1

(ww)—Bo(y.1) L+ B2y, 1)

+ e
BS(Z/, 1)

B3(y7 ’LU),

where Bj(y,w), j =0,2,3 is given in the appendiz.

The probabilities d,, , can be computed explicitly using the expressions for the B(y,w) given
in the appendix. As an illustration in Figure 1 we present a cumulative plot for £ = 1,...,10.
Each curve gives the probability that a vertex has degree at most k. The abscissa is the value of
u € (1,3), while the ordinate gives the probability. The bottom curve corresponds to k = 1 and
the top curve to k < 10. The vertical line is the value k ~ 2.21 such that xkn is the asymptotic
expected number of edges in planar graphs [19]; since the number of edges is strongly concentrated
around kn, the probabilities in these abscissa correspond to the cumulating values in the third
line of Table 1, namely 0.0367284,0.1993078,0.4347438,0.6215175,0.7510198, 0.8372003, . . .
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0.8 4
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0.4 o

0.2 -

0.0 T T T

Figure 1: Cumulative degree distribution for connected planar graphs with pn edges, u € (1,3)
and k=1,...,10.



Figure 2 shows the data for 2-connected and 3-connected planar graphs. Notice that in a
2-connected graph the degrees are at least 2, in a 3-connected graph they are at least 3, and a
3-connected graph has at least 3n/2 edges. The main abscissa for 2-connected graphs is equal to
2.26 (see [3]), and for 3-connected graphs is equal to (7 ++/7)/4 ~ 2.41 (see Theorem 6.10).
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Figure 2: Cumulative degree distribution for 2-connected planar graphs with un edges, u € (1,3)
and k = 2,...,10 (left); and 3-connected planar graphs with un edges, p € (3/2,3) and k =
3,...,10 (right).

8 Concluding remarks

Fusy [15] has designed a very efficient algorithm for generating random planar graphs uniformly
at random. He has performed extensive experiments on the degree distribution on planar graphs
with 10000 vertices and his experimental results, which he has very kindly shared with us, fit very
well with the constants in Table 1.

On the other hand, McDiarmid and Reed [24] have recently shown that the maximum degree
in random planar graphs is of order ©(logn). From the asymptotic results in Theorem 6.13 we
are led to conjecture that if A, denotes the maximum degree in random planar graphs, then the

expected value is asymptotically ,
ogn
B8 s1/g)

where ¢ is as in Theorem 6.11. We remark that an analogous result for planar maps counted
according to the number of edges is proved in [16], where moreover a limit law for the maximum
degree is derived.

Intuitively the reason for this conjecture is the following. Let d,, ;, denote the probability that
a random vertex in a random planar graph of size n has degree k. Since d,, ; — di as n — oo,
we can expect that the estimate d,, ; ~ ck=1/2¢* from Theorem 6.13 holds for n,k — oo (if k is
not too large compared to n).! Furthermore, let Y, , denote the random variable that counts the
number of vertices in a random planar graph of size n of degree > k. Then

EYip=nY dog = n%k*/?qk. (39)
>k q

By definition, Y;, , > 0 if and only if A, > k. Hence the expected value of A,, is given by

EA, =Y P{A, >k} =) P{Y,; >0}

k>0 k>0
Since Y, ;; takes values on the non-negative integers we have

P{Yn’k > 0} < min{l, EYn,k}.

1Since we have access to the bivariate generating function of the numbers dy, 1gn, this step can be made rigorous.
However, in order to make the argument more transparent we omit the technical details.
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Set ko = (logn)/(log(1/q)), that is, ng® = 1. Then (39) provides
ST PV > 03 < Y EY =0k ),
k>ko k>ko

which implies an upper bound for E A,, of the form

logn

A corresponding lower bound could possibly be obtained by applying the so-called second moment
method, saying that

Usually, lower bounds that can be derived by this method meet the corresponding upper bounds.
However, it is not obvious how to get information on the behaviour of the second moment E Yn% -
One possible approach might be to describe the joint degree distribution of double rooted planar
graphs but it is not clear whether the corresponding counting problem is feasible for general planar
graphs.
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Appendix

The coefficients T;(x, w)

Let u stand for u(z, 7(x)), which is the solution of

(1+u)(3u —1)3
16u '

The coefficients T;(z,w) of the singular expansion of T'(z, z,w) in Lemma 6.5 are given by

(3u — 1)%w Py
T = - - 1—w)VP
0@ w) =~ B + 20— 1 F ) Dot \gugp 1 )
Ta(e,w) = (Bu—1)Pw Poo P
2T 82044(3u2 + 2u — 1+ w)2(u+ 1)2ud \ Qu+1)2 /P

~ (3u—1)Swy/2u(u+ 1)(3u + 1) 2 2 s
Ts(z,w) = — 373248(u 1 1)t ((3u— 1)*w —9u _10u_1+W>

where
P=(u+1—w)(—3u—1)>%w+ 81u® 4+ 99u* + 19u + 1)

and

Py = (27u? 4 6u + 1)w? + (=126u® — 150u? — 26u — 2)w + 81u* + 180w + 118u® + 20u + 1
Py o = (1458u® + 3807u* + 900u® + 114u? — 6u — 1)w+
(6561u" + 20898u8 + 8532u’® — 7281u* — 1635u® — 132u? + 30u + 3)w’+
(—3645u® — 30942u” — 46494u°® — 13230u° + 7536u* + 1590u” — 18u? — 42u — 3)w+
13122u° 4 47385u® + 61560u” + 30708u’ — 228u® — 4530u* — 872u® 4 36u” + 18u + 1
Pyy = (—54u* — 45u® + 57u? — 15u + 1w+
(—243u® + 27u® + 1278u* + 858u® — 111u? + 35u — 4)w+
(1944u™ 4 6507u’ + 5553u° — 576u* — 1530u> + 15u? — 15u + 6)w?+
(—1215u® — 6561u” — 11439u® — 7005u° + 231u* + 1229u® + 75u® — 15u — 4)w
+ 1458u° 4 6561u® 4 11376u" + 8988u’ + 2388u’ — 794u* — 512u® — 36u® + 10u + 1
Py = —(3u — 1)3w® + (162u* + 135u® — 27u® — 3u — 3)w?
+ (810 + 243u* + 270u® + 138u? + 33u + 3)w + —81u° — 261u* — 298u> — 138u* — 21u — 1

The coefficients D;(y, w)

We proceed to give the coefficients D;(y, w) of the singular expansion of D(z,y,w) in Lemma 6.8.
Let t = t(y), for y € (0,00), be the unique solution in (0,1) of
(1 —2t) t2(1 —t)(18 + 36t + 5t2)
B Sl 7 Y _
(1I+30(1—1) 2(3+ 1) (1 + 2t)(1 + 3t)2

Then, Dy(y,w) is the solution of

1+D0=(1—|—yw)exp <\/§(D0(t_1)+t)_

4(3t +1)(Do + 1)
_ Di(t* — 12t + 20t — 9) 4 Do(2t* + 6% — 6t + 10t — 12) +-t* + 6t° + 9t2)
4(t+3)(Do+1)(3t+1) ’
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where S is given by
S = (Dot — D + t)(Dg(t — 1)® +t(t + 3)?).

The remaining coefficients Ds(y, w), D3(y, w) are given in terms of Dy and ¢,

4(Dg 4 1)2(t — 1)(S2.1 + S2.2V/'S)
(175 + 237t4 + 11553 + 25272 + 1808t + 400)(Sa,3 + So2.4V/S)

Dy =

So1 = —D3(t — 1)*(t + 3)(11#° + 102t* + 4111 + 5882 + 352 + 72)
— Dot(t — 1)(t + 3) (227 + 231¢° + 1059¢> + 2277¢* + 2995¢° + 3272¢% + 2000t + 432)
—12(t + 3)3(11¢° + 85¢* + 2523 4 108% — 48t — 24)
Sao = Do(t — 1)(11t" + 124¢° + 582> + 968t* — 977> — 4828t% — 4112t — 984)
+t(t + 3)%(11¢° + 85¢* + 252t + 108t — 48t — 24)
So3 = —(t+3)(Dot — Do + t)(DE(t — 1)* + 2D (t — 1)(t* — t* + 5t — 1) + (t> — 3t — 14)
Sg.4 = D2(t* + 2t — 9)(t — 1)> 4 Do(2t* — 12t> 4+ 80t — 6) + t(t> — 3t 4 50)

24(t+3)(Do + 1)2(t — D2(t + )85/ (S3.2 — S3.3(Dot — Dy + £)V/S)
° 35/2(Dot — Do + t)(S3.4V/S — (t + 3)(Dot — Do + )Ss )

B =3t(1+ ) (17t + 237t* + 1155t3 + 2527t + 1808t + 400)
S3.1 = —5t° + 6t* + 135¢% + 6641% + 592t + 144
S3.9 = D3(81t" +135¢1° — 8287 — 180t + 1982¢7 + 1090° — 5196t
+ 2108t + 2425t% — 1617t* — 256t + 256)
+ DZ(243t"" 4 1313¢1° 4+ 1681¢° — 51¢® — 52697 — 7325¢° 4 2571¢°
+10271t* 4 1846t — 3888t% — 1392t)
+ Do (243t + 222110 4 81357 + 15609% + 12953t — 3929t° — 12627t°
— 13293t* — 7680t — 1632t2)
+ 81t 4+ 1043t1° + 5626t + 16806t> 4 30165t7 4 30663t° 4 13344t> 4+ 1008t* — 4323
S35 = Do(81t% 4 378t + 63t5 — 1044¢> + 1087t — 646t> — 687> 4 512t + 256)
+ 81t% 4 800t" + 32265 + 7128¢° + 8781t* + 4320t° + 384t — 144t
Ss4 = D2(t* —12t% + 20t — 9) + Do(2t* — 12t* + 80t — 6) + t* — 3t? + 50¢
Sa5 = Da(t* — 413 + 612 — 4t + 1) + Do(2t* — 4¢3 4 122 — 12t +2) +t* — 3t? — 14t

The coefficients B;(y, w)

Consider the singular expansion of the solution to the integral of Theorem 6.3,

/ M dt = Iy(z,w) + (2, w) 2% + Is(z, w)Z3 + O(Z%)
0

and define I; ;(y, w) as the coefficients of the singular expansion of I; Z% in terms of X = /1 — x/R(y),
when replacing w by D(x,y,w)/E(x,y,w). That is,

Ii(wi)Zi’w:D/E = Ii,O(y7 w) + Ii,2(y7w)X2 + Ii,S(y7w)X3 + O<X4)

These coeflicients I; ; are given by

31



Too = %(4(& C )+ 1) log(t) +8(3t — 1)(t +1)* log(t + 1)

+8(3t* + 6t — 1)log(2) —2(t — 1)*(3t + 1)log(A) — 2(3t* +6t> — 1)log(B)
+(t=1)(Do(t®? =32 +3t — 1) + > + 4> + t + 2)V'S
t—1
— ——(D3(t° — 2¢° + t* — 44 + 11¢* — 10t + 3)
t+3
+ Do (2t° + 8> — 10t* — 32t> + 46t% — 8t — 6) + t° + 10> + 34t + 44¢> + 21¢° + 18t))

loo = (3 42112)55 -1 (4(3t4 — 483 + 6t* — 1) log(2) + 2(3t* + 6t> — 1) log(t)+
4(3t* 4+ 6t* — 1) log(t + 1) + (=3t* + 8t — 6t% + 1) log(3A4) + (—3t* — 8> — 6t> + 1) log(B)
Dy(t —1)*(RooV'S + Ro1) — %(30,4\/34- R0,5)>
(t+3) (RO,ﬁ\/§ + 30,3)

(3t + 1)t2(t — 1)(Ro 0V/S + Ro.1)(D38%2 + Dya®/? Ry 5)

fos = - 512(t + 3)t265/2(Ro 6v/S + Ro 3)
o (t—1)%Ry 0 (R2,1\/§+ Rz,z)
>3 3072B15(t + 1)(Do + 1)
(t+ 1)2(1 + 20)203/2(3t + 1)(t — 1) ((t +3)2Ry 1 VS — Rm)
I2s = 166535/2(1 + Dy)
, V3(t - 1)633,/02 (R3,0\/§ — R3.1(Dot — Do + t))
3,3 =

2304+/3t + 1t533/2(t + 1)3/2(Dot — Do + t)

where the expressions A, B, and polynomials R; ; are given by

A= Do(5t% =3t —t — 1) + 5t + 6t> + 5t + (3t + 1)V/'S
B=Do(t® =32 +3t — 1) + 1>+ 22 + 5t + (t — 1)V/'S
Roo = 3D3(t —1)* — Do(7t — 3) — t(t + 3)
Ro1 =3D3(t — 1)* — D2(t — 1)(3t3 — > 4 25t — 3)
+ Dot (t? + 8t% + 21t — 14) + (t + 3)%t>
Roo = 128t(3t 4 1)(t — 1)(1 + 2t)%(t + 3)%(t + 1)?
Rosz=D2(t—1)* +2Dg(t — 1) (> + 12 + 3t — 1) +t* + 43 + 7> + 2t +2
Roa = 3D3(t — 1)5(51¢% + 1081¢7 + 8422t% 4- 319141 + 59639t" + 42461t> + 7584t% — 2832t — 864)
— D2(t — 1)3(153t'° + 3204t° 4 29055t% + 1467107 + 432951t°
+ 717528t° 4 561457t* 4- 208750¢> 4- 47040t + 13248t + 2592)
— Do(t + 3)2t(408t'° + 6177% + 34003t% + 92097t + 1225235
+ 126075t° 4 145777t* + 82707t3 — 1543t — 15088t — 3312)
3t(t — 1)(t + 3)%(2t* + 3t3 — 2% + 3t + 2)(400 + 1808t + 2527¢% + 1155¢> + 237¢* + 17¢°)
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Ros = 3Dg(t — 1)7(51¢% + 1081¢7 + 8422¢% 4 319141 + 59639t* + 42461¢> + 7584t% — 2832t — 864)
+2D3(t — 1)4(249t1° + 3333t + 2241715 + 105245t7 + 3396755+
664087t5 + 513315t* + 127943t> — 6936t — 1152t + 1296)
— D2t(t — 1)%(357t'2 + 7089t 4 5863710 + 273500t + 828314¢% + 1886278t" + 363878615
+ 5441836t° + 4731121t + 1945329t + 179665t> — 96240t — 20304)
— 2Dt (t + 3)*(51t'% + 849t'" + 6580¢'° + 33465t° 4 115887t + 253743t" + 285517t
+ 148083t + 130634t* + 1413803 + 59715t + 4944t — 1200)
+3t2(t — 1)(¢ + 3)3(2t* + 3t — 2t2 + 3t + 2)(400 + 1808t + 2527t + 1155t + 237* 4 171°)
Rog = Do(t —1)* +t* +t+2
Roo = 3(3t + 1)(t + 1)(=5¢t° + 6t* + 135¢> + 664> + 592t + 144)
Ro1 = D3 (3t — 12t + 7t + 2) + Do (6t> — 3t* +t) + 3> + 9¢2
Roo = Dj(3t7 — 47t° — 18t* 4 21¢® 4 164t* — 105t — 18)
+ D2(9t" + 36t5 — 195 — 168t* — 165t + 292t% + 15¢)
+ Do(9t™ + 72t5 + 19015 + 156t* — 63t — 108t2) + 3t7 + 3615 + 162> 4 324t* + 24313
Rso = DZ(t* — 2t + 2t — 1) + Do(2t* 4 4¢3 — 2% — 4t) + t* + 61> + 9t?
Rsy = D2(t° — 3t* + 2t 4+ 2t% — 3t + 1) + Do(2t° + 6t* — 23 — 61%) +° + 9t* 4 2743 + 274>

Finally, we write the coefficients B;(y,w) in Lemma 6.9 in terms of the I; ;, D;, the radius of
convergence R = R(y), and y and ¢.

1£ﬁ(“%®@f+w—U—&%@+mm—wu+W—u%@m_nu+m

+ 2log(A)(t — 1)3(3t + 1) + 2log(B)(3t* + 241> + 6t* — 1)
+\f(t—1)(D0(t3—3t2+3t—1)+t3_8t2+t—2)
Do (Do

By =

— 5 (Dolt = DS+ 2t —9) +2(t — 1)) (t* + 60t +3) + (£ +3)2(t — 1)(t* — 8> +t — 2)t))
RDy(Do(R?*EZ + RFEs) — 2(1 + REy))
B —(Too+Toa+ 1T
2 = 2(1 1 REo)? + R( 0,0+ o2+ I22)
R?EyDy
log(1 + Dg) — log(1 -—2
- (10g(1+ Do) = tog(1 -+ ) - T
R2Dq (2D3E3R + 2D5Ey + E3Dy)

1
Q(E()R + 1)2 + RD3(10g(1 + yw) — log(DO + 1)) + E(

) (1+ Dy — D2)R

B = Ins+ Iz 3+ I33)
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