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Abstract

We show that asymptotically almost surely a tree with m edges decomposes the
complete bipartite graph K2m,2m, a result connected to a conjecture of Graham and
Häggkvist. The result also implies that asymptotically almost surely a tree with m
edges decomposes the complete graph with O(m2) edges. An ingredient of the proof
consists in showing that the bipartition classes of the base tree of a random tree have
roughly equal size.

MSC2010: 05C51, 05C80

1 Introduction

Given two graphs H and G we say that H decomposes G if G is the edge–disjoint union of
isomorphic copies of H. The following is a well–known conjecture of Ringel.

Conjecture 1 (Ringel [17]) Every tree with m edges decomposes the complete graph K2m+1.

The conjecture has been verified by a number of particular classes of trees, see the
dynamic survey of Gallian [9]. By using the polynomial method, the conjecture was verified
by Kézdy [12] for the more general class of so–called stunted trees. As mentioned by the
author, this class is still small among the set of all trees.

The following bipartite version of the conjecture was formulated by Graham and Häggkvist.
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Conjecture 2 (Graham and Häggkvist [10]) Every tree with m edges decomposes the
complete bipartite graph Km,m.

Again the conjecture has been verified by a number of cases; see e.g. [14]. Approximate
versions of the two conjectures have been also proved. Häggkvist [10] proved that every tree
with m edges and at least (m+ 1)/2 leaves decomposes K2m,2m. The authors of [15] proved
that every tree with m edges is a subtree of a tree with m′ < 2m edges which decomposes
Km′,m′ and K2m′+1. It is also known that every tree with m edges and radius r decomposes
Km′ and Km′′,m′′ where m′ ≤ 32(2r + 4)m2 + 1 (Kézdy and Snevily [13]) and m′′ ≤ rm
[14]. However, to our knowledge, there are no results stating that every tree with m edges
decomposes Kcm+1 or Kcm,cm for some absolute constant c of reasonable size. The purpose
of this paper is to show such a result for almost all trees.

Let T denote the class of (unlabelled) trees and let Tm be the class of trees with m
edges. By a random tree with m edges we mean a tree chosen from Tm with the uniform
distribution. We say that a random tree satisfies a property P asymptotically almost surely
(a.a.s) if the probability that a random tree with m edges satisfies P tends to one with
m→∞. Our main result is the following theorem.

Theorem 1 Asymptotically almost surely a tree with m edges decomposes K2m,2m.

Robinson and Schwenk [18] proved that the average number of leaves in an (unlabelled)
random tree with m edges is asymptotically cm with c ≈ 0.438. Drmota and Gittenberger
[6] showed that the distribution of the number of leaves in a random tree with m edges is
asymptotically normal with variance c2m for some positive constant c2. Thus, asymptoti-
cally almost surely a random tree with m edges has more than 2m/5 leaves. When m = p
is a prime, it was proved in [3] that a tree with at least p/3 leaves decomposes K2p,2p,
thus providing a proof of Theorem 1 for primes. The primality of the number of edges is
related to an application of Alon’s Combinatorial Nullstellensatz. In fact a version of the
main result in Alon [2] is implicitly used in the proof, a result which may fail to hold for m
nonprime. In the present paper we use further properties of random trees and substitute
the polynomial method by a combinatorial argument due to Häggkvist [10] to prove our
main result.

We note an application of Theorem 1 to Ringel’s conjecture. Let g(m) be the smallest
integer n such that any tree with m edges decomposes the complete graph Kn. It was
shown by Yuster [20] that g(m) = O(m10) and the upper bound was reduced by Kézdy and
Snevily [13] to g(m) = O(m3). Since K2m,2m decomposes the complete graph K8m2+1 (see
Snevily [19]), Theorem 1 shows that g(m) = O(m2) asymptotically almost surely.

The paper is organized as follows. In Section 2 we give some additional properties of
random trees which will be used in the proof of the main result. Section 3 describes rainbow
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embeddings and cyclic decompositions and Section 4 contains the proof of Theorem 1. The
paper concludes with some final comments.

2 Bipartition classes of random trees

The recursive definition of a tree as a collection of subtrees hanging from a root usually
translates to functional equations for the generating functions counting parameters of the
trees. This is the case for the so–called additive parameters, for instance the number
of leaves: the total number of leaves of a tree is the sum of the leaves of each of the
subtrees hanging from a root. For such additive parameters the general results on generating
functions show that their probability distribution is asymptotically normal. For the degrees
of nodes in a random tree this is explicitly done by Drmota and Gitterberger. In particular
the following statement is a specialisation of [6, Theorem 2.1].

Theorem 2 The number Xm,1 of vertices of degree one in a random tree with m edges is
asymptotically normal, with expected value E(Xm,1) = cm+O(1) and variance Var(Xm,1) =
c1m+O(1) for some constants c, c1 which can be computed with arbitrary precision.

It had been already proved by Robinson and Schwenk [18] that the constant c in the
above theorem is c ≈ 0.438. Since the variance is linear in the expected value, there is
concentration of Xm,1 around its mean. In particular, for every ε > 0,

Pr(Xm,1) < (c− ε)m→ 0 (m→∞). (1)

Thus, a random tree with m edges has a.a.s. more than 2m/5 leaves, a fact which is good
enough for our present purposes.

We will use another property of a random tree T . For short we denote by bipartition
classes the vertex classes of the bipartition of a tree. We are interested in the size of
a bipartition class in the base tree of T (the tree obtained from T by deleting its leaves.)
Unfortunately this is not a parameter whose analysis can be explicitly found in the literature,
although the techniques to study it are well established. Our goal is to prove the following
theorem.

Theorem 3 The bipartition classes A,B of the base tree of a random tree with m edges
satisfy a.a.s.

||A| − |B|| ≤ εm,

for every fixed ε > 0.
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Before giving the proof of Theorem 3 let us recall some basic facts for the asymptotic
analysis of unlabelled trees (see e.g. Drmota [5] for details). The generating function

t(x) =
∑
m≥0

tmx
m+1

of the number tm of rooted unlabelled trees with m edges satisfies the functional equation

t(x) = x exp

∑
i≥1

1

i
t(xi)

 , (2)

obtained by describing an element of T as a node together with a multiset of elements of
T . It is known that the radius x0 of convergence of t(x) satisfies 0 < x0 < 1 and that t(x)
has a local representation of the form

t(x) = g(x)− h(x)

√
1− x

x0
, (3)

where g(x) and h(x) are analytic in a neighbourhood of x0 and satisfy g(x0) = 1 and
h(x0) > 0. Furthermore x0 is the only singularity on the radius of convergence |x| = x0 and
t(x) can be analytically continued to {x ∈ C : |x| < x0 + η} \ [x0,∞) for some η > 0. By
singularity analysis (see [8] or [5]) this leads to an asymptotic expansion for tm of the form

tm = c1m
−3/2x−m0

(
1 +O

(
1

m

))
with some constant c1 > 0.

The generating function t̃(x) of unrooted unlabelled trees is then given by

t̃(x) = t(x)− t(x)2

2
+
t(x2)

2
.

This follows from the fact that rooted trees are in bijection with the union of unrooted
trees and (unordered) pairs of different rooted trees (where the two roots are joint by an
additional edge to recover again a tree) see [16] or [5]. Since t(x0) = g(x0) = 1 the dominant
squareroot singularity cancels and one obtains a local representation of the form

t̃(x) = g̃(x) + h̃(x)

(
1− x

x0

)3/2

(where g̃(x) and h̃(x) are analytic in a neighbourhood of x0 and satisfy g̃(x0) > 0 and
h̃(x0) > 0) which leads to

t̃m ∼ c2m−5/2x−m0

(
1 +O

(
1

m

))
(4)
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for some constant c2 > 0.

We can take also into account the size of the base tree (or equivalently the number of
inner vertices.) Let

t(x, u) =
∑
m,k

tm,kx
m+1uk,

where tm,k denotes the number of rooted trees with m edges and k inner vertices (including
the root if the tree has at least one edge even if the root has degree one). Then we have

t(x, u) = xu exp

∑
i≥1

1

i
t(xi, ui)

− x(u− 1).

Note that it is necessary to include (formally) the root into the set of inner vertices in order
to have a recursive description. Next the corresponding generating function t̃(x, u) is given
by

t̃(x, u) = t(x, u)− x(u− 1)t(x, u)− t(x, u)2

2
+
t(x2, u2)

2
.

At this stage we have to disregard the root of those rooted trees as an inner vertex if the
root has degree one. This is done by substracting x(u− 1)t(x, u).

Next we distinguish between the bipartition classes A and B of the base tree. We have
to be careful since the distinction between A and B is not unique. Only in the rooted case
we can define A as the set of inner vertices with even distance to the root and B as the set
of inner vertices with odd distance to the root. More precisely, let

t(x,w0, w1) =
∑

m,k0,k1

tm,k0,k1x
m+1wk00 w

k1
1 ,

where tm,k0,k1 denotes the number of rooted trees with m edges and k0 inner vertices (in-
cluding the root if the tree has at least one edge even if the root has degree one) with even
distance to the root and k1 inner vertices with odd distance to the root. Then we have

t(x,w0, w1) = xw0 exp

∑
i≥1

1

i
t(xi, wi1, w

i
0)

− x(w0 − 1).

Note that this equation is not an equation for t(x,w0, w1) since the right hand side involves
t(x,w1, w0). However, by using another iteration we are led to the slightly more involved
equation

t(x,w0, w1) = xw0 exp

∑
i≥1

1

i

xiwi1 exp

∑
j≥1

1

j
t(xij , wij0 , w

ij
1 )

− xi(wi1 − 1)

−x(w0−1).
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Before we study unrooted trees let us discuss the case of rooted trees in more detail.
Recall that we are interested in the difference |A| − |B| which we can do by setting w0 = w
and w1 = w−1. Hence, if T (x,w) =

∑
m,` Tm,`x

m+1w` denotes the generating function,
where Tm,` denotes the number of rooted trees with m edges and |A| − |B| = ` (where ` is
some – possibly negative – integer and the root is contained in A even if the root has degree
one) then T (x,w) = t(x,w,w−1) and we have

T (x,w) = xw exp

∑
i≥1

1

i

xiw−i exp

∑
j≥1

1

j
T (xij , wij)

− xi(w−i − 1)

− x(w − 1).

As usual we denote by an = [xn] a(x) the n-th coefficient of a power series a(x) =
∑

n≥0 anx
n.

With the help of this notation it follows that

Ew|A|−|B| =
[xm+1]T (x,w)

[xm+1]T (x, 1)
,

where the expectation is taken over all trees with m edges. This magnitude can be de-
termined asymptotically if w is close to 1 with the help of standard singularity analysis
tools.

Lemma 1 Let A and B be the two bipartition classes in the base tree of a rooted unlabelled
tree with m edges. Then there exists η > 0 such that uniformly for complex w with |w−1| ≤ η
we have

Ew|A|−|B| = A(w)B(w)m
(

1 +O

(
1

m

))
(5)

for some analytic functions A(w) and B(w) that satisfy A(1) = B(1) = 1 and B′(1) = 0.

Proof. If we set w = 1 then the T (x, 1) = t(x) and we already know that t(x) has a
singular expansion of squareroot type, see (3). The idea is to show that we can obtain a
similar singular expansion for T (x,w) if w is close to 1:

T (x,w) = g(x,w)− h(x,w)

√
1− x

x0(w)
, (6)

and that there is an analytic continuation of T (x,w) for {x ∈ C : |x| < |x0(w)| + η} \
[x0(w),∞) for some η > 0. Of course, if we can verify these properties then standard
singularity analysis (see [5]) leads to

[xm+1]T (x,w) =
h(x0(w), w)

2
√
π

m−3/2x0(w)−m−1
(

1 +O

(
1

m

))
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and consequently to (5) with

A(w) =
h(x0(w), w)

h(x0(1), 1)
and B(w) =

x0
x0(w)

.

It remains then to check that x′0(1) = 0 which is equivalent to B′(1) = 0.

In order to prove (6) we just have to adapt the methods of [6] (see also [5]). Since
x0 < 1 it follows that T (xi, 1) = t(xi) is analytic for |x| < √x0 if i ≥ 2. Furthermore,
since ||A| − |B|| ≤ m, it follows that |T (xi, wi)| ≤ T (|xw|i, 1) = t(|xw|i), where w =
max{|w|, |w|−1}. Hence there exist η > 0 such that all functions T (xi, wi) with i ≥ 2 are
analytic for |x| < x0+η and |w−1| < η. Furthermore, since t(0) = 0 we also have the upper
bound T (xi, wi) = O(|xw|i) for i ≥ 2. Hence, we can assume that T (xi, wi) (for i ≥ 2) are
already known functions when we are searching for the solution y = T (x,w) of the equation

y = xw exp

(
xw−1 exp

y +
∑
j≥2

1

j
T (xj , wj)

− x(w−1 − 1)

+
∑
i≥2

1

i

xiw−i exp

∑
j≥1

1

j
T (xij , wij)

− xi(w−i − 1)

)
− x(w − 1)

= xw exp

(
xw−1 exp

y +
∑
j≥2

1

j
T (xj , wj)

− x(w−1 − 1)

+
∑
i≥2

1

i
T (xi, w−i)

)
− x(w − 1).

This can be rewritten as y = F (x, y, w), where F is a power series with non-negative
coefficients, namely by expanding the exponential function the potential negative terms on
the right hand side disappear. Hence, we can apply [5, Theorem 2.21] and obtain (6) locally
around (x,w) = (x0, 1). (Note that the property tm > 0 is sufficient to provide analytic
continuation as required, hence, this is automatically satisfied.)

Finally, x′0(1) is given by x′0(1) = −Fw(x0, t(x0), 1)/Fx(x0, t(x0), 1). Thus, we only have
to check that Fw(x0, t(x0), 1) = 0. Recall that, from (3), we have t(x0) = 1 and that

exp

1 +
∑
i≥2

1

i
t(xi0)

 = exp

∑
i≥1

1

i
t(xi0)

 =
1

x0
.
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Consequently, if we represent F as F (x, y, w) = xweG(x,y,w) − x(w − 1) with

G(x, y, w) = xw−1 exp

y +
∑
j≥2

1

j
T (xj , wj)

− x(w−1 − 1) +
∑
i≥2

1

i
T (xi, w−i)

then we have

G(x0, 1, 1) = 1 +
∑
i≥2

1

i
t(xi0) = log

1

x0

and
Gw(x0, 1, 1) = −1 +

∑
j≥2

Tw(xj0, 1) + x0 −
∑
i≥2

Tw(xi0, 1) = −1 + x0

which gives
Fw(x0, 1, 1) = 1 +Gw(x0, 1, 1)− x0 = 0

as proposed. This completes the proof of the lemma. 2

Lemma 1 has two immediate consequences that can be deduced from the following
version of Hwang’s Quasi-Power-Theorem (see [5, Theorem 2.22] and [11] for the original
statement).

Lemma 2 Let Xn be a sequence of random variables with the property that

EwXn = A(w)B(w)λn
(

1 +O

(
1

φn

))
(7)

holds uniformly in a complex neighborhood of w = 1, where λn and φn are sequences of
positive real numbers with λn →∞ and φn →∞, and A(w) and B(w) are analytic functions
in this neighbourhood of w = 1 with A(1) = B(1) = 1. Then Xn satisfies a central limit
theorem of the form

1√
λn

(Xn − EXn)→ N
(
0, σ2

)
(8)

and we have
EXn = λnµ+O (1 + λn/φn)

and
VarXn = λnσ

2 +O
(

(1 + λn/φn)2
)
,

where µ = B′(1) and σ2 = B′′(1) + B′(1) − B′(1)2. Finally there exist positive constants
c1, c2, c3 such that

Pr (|Xn − EXn| ≥ ελn) ≤ c1e−c2ε
2λn (9)

uniformly for ε ≤ c3.
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In particular it follows (because of B′(1) = 0)

Pr (||A| − |B|| ≥ εm) ≤ Ce−cε2m

for some positive constants c and C and for sufficiently small ε > 0. Of course this is
precisely the statement that we want to prove for unlabelled trees.

Remark 1 It should be noted that the linear behaviour of the variance is sufficient to pro-
vide (with the help of Chebyshev’s inequality) a bound of the form

Pr (||A| − |B|| ≥ εm) ≤ Var(|A| − |B|)
ε2m2

=
σ2m+O(1)

ε2m2
= O

(
1

m

)
for every ε > 0.

Furthermore we note that the linear behaviour of the variance can be directly checked
with the help of the squareroot expansion (6). Actually since the mean value is bounded (due
to the property x′0(1) = 0) the variance and the second moment are almost the same:

Var(|A| − |B|) ≤ E(|A| − |B|)2 =
[xm+1]Tw(x, 1) + Tww(x, 1)

[xm+1]T (x, 1)
.

By using the property x′0(1) = 0 we have

Tw(x, 1) = gw(x, 1)− hw(x, 1)

√
1− x

x0
.

and

Tww(x, 1) = gww(x, 1)− hw(x, 1)

√
1− x

x0
− x′′0(1)x

x20

h(x, 1)

2
√

1− x
x0

.

so that (by another application of the singulartiy analysis) the linear behaviour of

E(|A| − |B|)2 = −(x′′0(1)/x0)m+O(1)

follows. Actually we will use this kind of approach for unrooted trees. 2

In a final step we deal with unrooted trees. As mentioned above it is not possible to
distinguish between the sets A and B in unrooted trees. This will be also reflected in the
combinatorial construction that we use. Namely if we use Otter’s bijection between rooted
trees and the union of unrooted trees and unordered pairs of different rooted trees then we
would obtain the generating function

t̃(x,w0, w1) = t(x,w0, w1)− x(w0 − 1)t(x,w1, w0)−
t(x,w0, w1)t(x,w1, w0)

2
+
t(x2, 1, 1)

2
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or the generating function

T̃ (x,w) = T (x,w)− x(w − 1)T (x,w−1)− T (x,w)T (x,w−1)

2
+
T (x2, 1)

2
.

The problem with these expressions is that we (have to) lose track of the distribution of
|A| − |B|. Actually the term T (2)(x,w) = 1

2T (x,w)T (x,w−1) − 1
2T (x2, 1) (that encodes

unordered pairs of different rooted trees that are linked by an additional edge) takes only
care of the absolute value ||A| − |B|| in the following way. The number of resulting trees
with m edges and with ||A| − |B|| = ` (where ` ≥ 0) is given by

[xm+1w`]T (2)(x,w) + [xm+1w−`]T (2)(x,w).

The reason is that every possible unordered pair is counted twice as ordered pairs, one with
|A| − |B| = ` and one with |A| − |B| = −`. The factor 1

2 discounts this overcounting to the
right value, however, the symmetrized distribution of |A| − |B| persists.

This means that the Laurent series

fm(w) =
[xm+1] T̃ (x,w)

[xm+1] T̃ (x, 1)

encodes the distribution of the absolute value ||A| − |B|| of the form

Pr(||A| − |B|| = `) = [w`] fm(w) + [w−`] fm(w). (10)

Unfortunately we cannot prove something like a central limit theorem for |A| − |B| but
it is still possible to keep track of the second moment.

Lemma 3 Let A and B denote the two bipartition classes in unrooted unlabelled trees with
m edges. Then

E(|A| − |B|)2 = O(m)

Proof. We first note that

E(|A| − |B|)2 =
∑
`>0

Pr(||A| − |B|| = `) `2

=
∑
`>0

(
[w`] fm(w) + [w−`] fm(w)

)
`2

=
∑
`∈Z

[w`] fm(w) `2

=
[xm+1] (T̃w(x, 1) + T̃ww(x, 1))

[xm+1] T̃ (x, 1)
.
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Furthermore, by using (6) and the property that x′0(1) = 0 we have

T̃w(x, 1) = Tw(x, 1)− xT (x, 1)

= (gw(x, 1)− xg(x, 1))− (hw(x, 1)− xh(x, 1))

√
1− x

x0

and

T̃ww(x, 1) = Tww(x, 1)(1− T (x, 1)) + 2xTw(x, 1) + T (x, 1)Tw(x, 1)

= −x
′′
0(1)x

x20

h(x, 1)(1− g(x, 1))

2
√

1− x
x0

+ g2(x)− h2(x)

√
1− x

x0

for some functions g2, h2 that are analytic at x0. Now we use that property that g(x0, 1) =
t(x0) = 1 so that we also have

−x
′′
0(1)x

x20

h(x, 1)(1− g(x, 1))

2
√

1− x
x0

= g3(x)− h3(x)

√
1− x

x0

for some functions g2, h2 that are analytic at x0. Summing up we have

T̃w(x, 1) + T̃ww(x, 1)) = g3(x)− h3(x)

√
1− x

x0

(for some functions g3, h3 that are analytic at x0) and by singularity analysis it follows that

[xm+1] (T̃w(x, 1) + T̃ww(x, 1)) = c3m
−3/2x−m0

(
1 +O

(
1

m

))
for some constant c3 ≥ 0. Since the asymptotic expansion of t̃m = [xm+1] T̃ (x, 1) is given
by (4) we finally obtain E(|A| − |B|)2 = O(m) as proposed. 2

As in Remark 1 this property implies

Pr(||A| − |B|| ≥ εm) = O

(
1

ε2m

)
for every ε > 0 and, thus, completes the proof of Theorem 3.

3 Rainbow embeddings

The general approach to show that a tree T decomposes a complete graph or a complete
bipartite graph consists in showing that T cyclically decompose the corresponding graphs,
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namely, that the decomposition is given by the orbit of a tree by a cyclic authomorphism
group of the graph. We next recall the basic principle behind this approach in slightly
different terminology.

A rainbow embedding of a graph H into an oriented arc–colored graph X is an injective
homomorphism f of some orientation ~H of H in X such that no two arcs of f( ~H) have the
same color.

Let X = Cay(G,S) be a Cayley digraph of an abelian group G with respect to an
antisymmetric subset S ⊂ G (that is, S ∩ −S = ∅). We consider X as an arc–colored
oriented graph, by giving to each arc (x, x+ s), x ∈ G, s ∈ S, the color s. Suppose that H
admits a rainbow embedding f in X. For each a ∈ G the translation x → x + a, x ∈ G,
is an automorphism of X which preserves the colors and has no fixed points. Therefore,
each translation sends f( ~H) to an isomorphic copy which is edge–disjoint from it. Thus the
sets of translations for all a ∈ G give rise to n := |G| edge–disjoint copies of ~H in X. By
ignoring orientations and colors, we thus have n edge disjoint copies of H in the underlying
graph of X. The same is true if the values of a are restricted to a subgroup (or even a
subset) of G. The term cyclic decomposition refers to the situation where the values of a
are restricted to a cyclic subgroup of G.

We will use the above approach with the Cayley graph X = Cay(Zm × Z4,Zm × {1}).
We note that the underlying graph of X is isomorphic to K2m,2m. The strategy of the
proof is to show first that the base tree T0 of a random tree with m edges admits a rainbow
embedding f into X in such a way that f(T0) ⊂ Zm×{1, 2}. This can actually be achieved
greedily as shown in the proof of next lemma.

Lemma 4 Let m be a positive integer. Let T be a tree with n < 3m/5 edges and bipartition
classes A,B. If ||A| − |B|| ≤ m/10 then there is a rainbow embedding f of T into X =
Cay(Zm × Z4,Zm × {1}) such that f(V (T )) ⊂ (Zm × {1}) ∪ (Zm × {2}).

Proof. We may assume that |B| ≥ |A|. Let x be an endvertex of T in B (there
is at least one such endvertex since |B| ≥ |A|.) Suppose that f is a rainbow embedding
T ′ = T − x such that f(V (T ′)) ⊂ Zm × {1, 2}. Denote by A′ = f(V (T ′)) ∩ (Zm × {1}),
B′ = f(V (T ′)) ∩ (Zm × {2}). We may assume that f sends the vertex y of T ′ adjacent to
x in T to A′, say f(y) = (ay, 1).

Let C ′ ⊂ Zm × {1} be the set of colors not used by the rainbow embedding f . Since

|C ′| > m− n ≥ 2m/5 = 3m/10 +m/10 > |V (T ′)|/2 + ||B′| − |A′|| ≥ |B′|,

there is (z, 1) ∈ C ′ such that (ay + z, 2) 6∈ B′. Therefore one can extend f to a rainbow
embedding of T by defining f(x) = (ay + z, 2): the new leaf is colored by the unused color
(z, 1) and the embedding is rainbow. Since the statement of the lemma trivially holds for
n = 1, it also holds for every n < 3m/5. 2
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4 Completing the decomposition

The second step involves a proper embedding of the leaves of T . For this we use the following
result, which is a specialisation of Häggkvist [10, Corolary 2.8].

Theorem 4 (Häggkvist,[10]) Let G be a d–regular bipartite graph with bipartition A =
{a1, . . . , an} and B. Let C = (cij) be an n×n matrix with nonnegative integer entries such
that, for each i = 1, . . . , n, we have∑

k

cik =
∑
k

cki = d. (11)

Then there is an edge–coloring of G with n colors such that, for each pair i, j ∈ {1, 2, . . . n},
the vertex ai is incident with cij edges of color j and every vertex in B is incident with at
most one edge of color j. 2

Under its assumptions, the above theorem ensures that G admits an edge decomposition
into n forests (each one identified by one color class of the edge–coloring) such that the
centers of the stars of each copy belong to the same bipartition class and the degrees of
the stars in the i–th forest are the entries of the i–th row of the matrix C. In particular,
if C is a circulant matrix (each row is a cyclic shift of the preceding one), then G admits a
decomposition into n isomorphic copies of a forest.

The next Lemma isolates the application Theorem 4 for our decomposition purposes.

Lemma 5 Let T be a tree with m edges. If the base tree T0 of T admits a rainbow embedding
f in X = Cay(Zm × Z4,Zm × {1}) such that f(V (T0)) ⊂ (Zm × {1}) ∪ (Zm × {2}) then T
decomposes K2m,2m.

Proof. For a subgraph H of X and an element (i, j) ∈ Zm × Z4 we shall denote by
H + (i, j) the image of H by the automorphism φi,j : (x, y)→ (x+ i, y + j) of X given by
the translation (i, j).

Denote by S ⊂ Zm × {1} the set of colors used by the rainbow embedding f of the
base tree T0. As described in the beginning of Section 3, the set of translations of f(T0) by
elements of Zm×Z4 is an edge–decomposition of the Cayley graph Cay(Zm×Z4, S×{1}).

Let A0 and B0 denote the bipartition classes of T0 so that f(A0) ⊂ Zm × {1} and
f(B0) ⊂ Zm × {2}. For each (i, 2) ∈ f(B0) denote by di the number of endvertices of T
adjacent to that vertex of f(T0), and define di = 0 whenever (i, 2) 6∈ f(B0).

Choose a subset S1 ⊂ Zm × {1} \ S with cardinality m1 =
∑

i∈Zm di and consider the

subgraph ~G1 of Cay(Zm×Z4, S1×{1}) induced by (Zm×{2})∪(Zm×{3}). The underlying
graph G1 of ~G1 is a m1–regular bipartite graph.
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Consider the circulant (m×m) matrix C with entries indexed by the elements in Zm×Zm
where the first column is defined as c0,i = di. The rowsums and columnsums of C are all
equal to

∑
i∈Zm di = m1. Thus the matrix C satisfies the hypothesis of Theorem 4. Hence,

the bipartite graph G1 admits a decomposition

G1 = F0 ⊕ F1 ⊕ · · · ⊕ Fm−1,

where each Fj is a forest of stars in which the degree of the vertex (i, 2) is cj,i. We observe
that, since C is a circulant matrix, (f(T0) + (i, 0)) ⊕ Fi gives an isomorphic copy of the
subtree T1 ⊂ T obtained from T by removing the end vertices in the bipartition class which
contains B0. Moreover, for each (i, j) ∈ Zm×Z4, the subgraph (f(T0)+(i, j))⊕ (Fi+(0, j))
is also isomorphic to T1. For different (i, j) and (i′, j′) the corresponding pair of trees are
edge–disjoint because they arise from different translations of T0 and of Fi and the colors of
the colors of f(T0) and of Fi do not overlap. Moreover, the set of these trees for for all (i, j)
cover all the edges of Cay(Zm×Z4, (S ∪S1)×{1}). Therefore, this set of trees decomposes
Cay(Zm × Z4, (S ∪ S1)× {1}).

In order to obtain a decomposition of X by the whole of T it only remains to embed
the endvertices of the tree which belong to the bipartition class which contains B0 (which
are adjacent to vertices in A0.) This is done in the same way as for the endvertices in
the bipartition class which contains A0 with the obvious modifications. The number of
these remaining endvertices is m − |S| − |S1|. By setting S2 = Zm \ (S ∪ S1), we can
obtain as before a decomposition of the underlying bipartite graph G2 of the subgraph of
Cay(Zm × Z4, S2 × {1}) induced by (Zm × {0}) ∪ (Zm × {1}) of the form

G2 = F ′0 ⊕ F ′1 ⊕ · · · ⊕ F ′m−1,

in such a way that (f(T0) + (i, j))⊕ ((F ′i ⊕ Fi) + (0, j)) is isomorphic to T for each (i, j) ∈
Zm×Z4, and the set of all these copies of T decomposes Cay(Zm×Z4,Zm×{1}), a directed
graph whose underlying graph is isomorphic to K2m,2m. This completes the proof. 2

The placement of the tree T in the above Lemma is illustrated in Figure 4.

The proof of Theorem 1 follows now directly from Lemma 4 and Lemma 5 and the
results on random trees from Section 2.

Proof of Theorem 1. By Theorem 2 and the remarks following it a random tree
with m edges has a.a.s. more than 2m/5 leaves and, by Theorem 3, the cardinalities of the
bipartition classes of the base tree of T differ less than m/10 in absolute value a.a.s. By
Lemma 4, the base tree of T admits a.a.s. a rainbow embedding in Cay(Zm×Z4,Zm×{1})
in such a way that the image of the embedding sits in Zm × {1, 2}. In that case, Lemma 5
ensures that the tree T decomposes K2m,2m. 2
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The base tree is placed rainbowly

0 1 2 3 0

The leaves (forest of stars) are placed using Lemma 5

Figure 1: An illustration of the procedure in Lemma 5

5 Final comments

As mentioned in the Introduction, Theorem 1 follows from results in [3] when m is a prime.
Actually the conclusion there is stronger, as it follows from these results that almost every
tree with a prime number p of edges admits a rainbow embedding in Cay(Zp×Z4,Zp×{1}).
In other words, almost every tree with p edges decomposes cyclically the complete bipartite
graph K2p,2p. Although it seems quite unlikely to us that the methods provide a result
concerning the decomposition of Km,m by almost all trees of m edges, the technique used
in [3] seems to be close to show that almost all trees with m edges decompose cyclically
K2m,2m.

The solution of the following problem, which may have its own interest, would provide
the desired result:

Problem 1 Let V(a1, . . . , ak) denote the Vandermonde matrix 1 a1 a21 · · · ak−11
...

...

1 ak a2k · · · ak−1k

 .

Its permanent is

perV(a1, . . . , ak) =
∑

σ∈Sym(k)

ak−1σ(1)a
k−2
σ(2) · · · a

0
σ(k).

Is it true that every sequence a1, . . . , ak, k < m, of m–th roots of unity (repetitions allowed)
contains a subsequence ai1 , . . . , ait of length t ≥ k/2 such that PerV(ai1 , . . . , ait) 6= 0?
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We note that the answer to the above question is obviously negative when the permanent
is replaced by its close relative the determinant. A positive answer to the above problem
would be relevant to prove the following proposition which is enough to show that almost
every tree with m edges decomposes cyclically K2m,2m by replacing Lemma 5 in the proof
of Theorem 1.

Proposition 1 Let a1, . . . , ak be a sequence of elements (repetitions allowed) in the cyclic
group Zm. If the answer to Problem 1 is positive, then for every pair of subsets C,D ⊂ Zm
with |C| ≥ |D| + k there are distinct elements c1, . . . , ck ∈ C such that the sums a1 +
c1, . . . , ak + ck are pairwise distinct and none belongs to D.

Proof. We identify the cyclic group Zm with the multiplicative subgroup of the m–th
roots of unity in the field C of complex numbers. Thus, if ω = e2πi/m, the elements of the
sequence are ωa1 , . . . , ωak . Consider the following polynomial in C[X1, . . . , Xk]:

P = V (X1, . . . , Xk)V (ωa1X1, . . . , ω
a1Xk)

k∏
i=1

∏
d∈D

(ωaiXi − ωd),

where

V (z1, . . . , zk) =
∏

1≤i<j≤k
(zi − zj) =

∑
σ∈Sym(k)

(−1)sign(σ)zk−1σ(1)z
k−2
σ(2) · · · z

0
σ(k),

denotes the Vandermonde determinant. By the positive answer to Problem 1, we may
assume that PerV (a1, . . . , at) 6= 0 for some t ≥ k/4.

The polynomial V (X1, . . . , Xk)V (ωa1X1, . . . , ω
a1Xk) has a term

Xk−1
1 Xk−1

2 · · ·Xk−1
t X

2(k−t−1)
t+1 X

2(k−t−2)
t+2 · · ·X2

k−1X
0
k (12)

of maximum degree with coefficient

PerV(a1, . . . , at)ω
∑k−t
i=1 at+i2(k−t−i) 6= 0.

Indeed, suppose that the product ofXk−1
σ(1)X

k−2
σ(2) · · ·X

0
σ(k) from the expansion of V (X1, . . . , Xk)

and ωaτ1Xk−1
τ(1)ω

aτ2Xk−2
τ(2) · · ·ω

aτkX0
τ(k) gives rise to the monomial (12). Then the powers of

Xi for i = t + 1, . . . , k in (12) require that σ(k) = τ(k) = k, σ(k − 1) = τ(k − 1) =
k − 1, . . . , σ(t + 1) = τ(t + 1) = k − t − 1. On the other hand, the powers of Xi for
i = 1, . . . , t require that the restrictions of σ and τ to {1, 2, . . . , t} are mutually reverse:
σ(i) + τ(i) = t+ 1. This provides the stated value of the coefficient (for the appearance of
the term PerV(a1, . . . , at) a detailed computation can be found in [4].)
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Thus the polynomial P has a term

X
(k−1)+|D|
1 X

(k−1)+|D|
2 · · ·X(k−1)+|D|

t X
2(k−t−1)+|D|
t+1 · · ·X |D|k

of maximum degree with nonzero coefficient.

Therefore, since 2(k− t−1) < k−1 and |C| ≥ k+ |D|, it follows from the Combinatorial
Nullstellensatz that there are elements c1, . . . , ck ∈ C such that P (ωc1 , . . . , ωck) 6= 0.

In particular, as V (ωc1 , . . . , ωck) 6= 0, the elements c1, . . . , ck are pairwise distinct. More-
over, since V (ωa1+c1 , . . . , ωak+ck) 6= 0 the sums a1 + c1, . . . , ak + ck are pairwise distinct.
Finally, since

∏k
i=1

∏
d∈D(ωai+ci − ωd) 6= 0, none of the sums belong to D. This completes

the proof. 2

In order to prove Theorem 1 we can now use Lemma 4 and Proposition 1 to conclude
that a.a.s. every tree admits a rainbow embedding in the directed Cayley graph X defined
in section 3. In one step, by Lemma 4, the base tree T0 of T can be rainbowly embedded
in X, because the number of leaves of T is a.a.s. at least 2m/5, by using some set D of
colors. In the second step the leaves of T can be rainbowly embedded in X as in the proof
of Lemma 5 by using Proposition 1 instead of Theorem 4: we have k = m − |D| leaves to
allocate and we can choose C = Zm × {1}. By extending the rainbow embedding of the
base tree with the appropriate assignment of the end vertices to the values c1, . . . , ck, none
of the colors of the leaves belong to the set D of colors used by the embedding of the base
tree T0.
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[10] R. L. Häggkvist, Decompositions of Complete Bipartite Graphs, Surveys in Combina-
torics, Johannes Siemons Ed., Cambridge University Press (1989) 115–146.
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[12] A.E. Kézdy. ρ–valuations for some stunted trees. Discrete Math. 306 (21) (2006) 2786–
2789.
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