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Abstract

McDiarmid and Reed (2008) showed that the maximum degree ∆n of a random labeled
planar graph with n vertices satisfies with high probability

c1 logn < ∆n < c2 logn

for suitable constants 0 < c1 < c2. In this paper we determine the precise limiting
behavior of ∆n, showing that with high probability

|∆n − c logn| = O(log logn)

for a constant c ≈ 2.52946 that we determine explicitly. The proof combines tools from
analytic combinatorics and Boltzmann sampling techniques.

1 Introduction

Let Gn be the family of labeled planar graphs with n vertices and let gn = |Gn|. By a random
planar graph of size n we mean a graph drawn from Gn with uniform probability 1/gn. Let
∆n be the random variable equal to the maximum vertex degree in a random planar graph
of size n. McDiarmid and Reed [22] showed that there exist constants 0 < c1 < c2 such that
with high probability1

c1 log n < ∆n < c2 log n.

These bounds were obtained by combinatorial arguments, using double counting and basic
properties of random planar graphs from [23].

The main goal of this paper is to determine exactly the asymptotics of the maximum
degree in random planar graphs. We obtain the precise limiting behavior of ∆n and show
that it is concentrated around c log n for a well-determined constant c.

Theorem 1.1. There exists a constant c > 0 such that w.h.p.

|∆n − c log n| = O(log log n). (1.1)

Moreover, as n→∞
E∆n = (1 + o(1))c log n. (1.2)

The constant c is defined analytically and is approximately c ≈ 2.52946. The same result
holds with the same constant for connected and for 2-connected planar graphs.

1We say that a graph property P holds with high probability (w.h.p.) if the probability that Gn ∈ P tends
to one as n → ∞.
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This model differs radically from the classical Erdős-Rényi model, where edges are drawn
independently. For analyzing constrained classes of graphs, such as triangle-free graphs,
or, more generally, graphs without forbidden subgraphs [29] or without induced forbidden
subgraphs [6], one has to resort to counting arguments. Particularly, for planar and other
related classes of graphs precise asymptotic estimates on the number of graphs are necessary.

The random planar graph model was introduced by Denise, Vasconcellos and Welsh [9]
in 1996, and since then it has been studied intensively. One of the first results in this area is
that a random planar graph of size n has at least 3n/2 edges w.h.p. This was improved over
the years showing that w.h.p. the number of edges is in the interval (1.85n, 2.44n). It required
the use of advanced tools from analytic combinatorics [20] to show finally that the number of
edges is asymptotically normally distributed and strongly concentrated around 2.21n.

A graph of size n with m edges has average degree 2m/n. Thus, the average degree in a
random planar graph is very close to 4.42. What can be said about the distribution of the
vertex degrees? A basic result from [23] is that w.h.p. for every integer k > 0 there are linearly
many vertices of degree k. This indicates the possibility of a discrete limit law for vertex
degrees: if we show that the expected number of vertices of degree k is asymptotically pkn
for some quantity pk, then the probability that a random vertex has degree k is, up to lower
order terms in n, equal to pk. The existence of such a limit distribution has been established
independently in [12] and [27]. The exact solution is quite involved: several pages are needed
to write down the explicit expression for the probability generating function

∑
k≥1 pkw

k, but
the values pk are computable.

One of the results from [12] is an asymptotic estimate on the tail of the distribution.
Particularly, it was shown that, as k →∞

pk = (1 + o(1)) c · k−1/2qk, (1.3)

where c > 0 and q ≈ 0.67 are constants that were determined. Note that this quantity
becomes Θ(1/n) when k is of order log n. Hence, this suggests that the expected number of
vertices of that degree is O(1), and that this is the right order of magnitude for the maximum
degree ∆n. More precisely, let Xn,k denote the number of vertices of degree k in a random
random planar graph of size n and let

Yn,k =
∑

ℓ>k

Xn,k

denote the number of vertices of degree larger than k. Clearly, we have

∆n > k ⇐⇒ Yn,k > 0

and consequently
Pr [∆n > k] = Pr [Yn,k > 0] ≤ EYn,k.

Suppose now that the estimate (1.3) is valid for any 0 < k < n. This would then imply
that EYn,k is o(1) when k = (1 + o(1)) log n/ log(q−1). Thus, we would expect that, w.h.p.,

∆n ∼
log n

log(1/q)
.

The aim of this work is to confirm this intuitive argument. Moreover, such a result has been
proved recently using complex analytic methods by Drmota, Giménez and Noy [13] (with
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a different value of q) for series-parallel graphs, an important subclass of planar graphs. It
was previously conjectured by Bernasconi, Panagiotou and Steger in [2], where the authors
prove strong concentration results for the number of vertices of degree up to (c − ǫ) log n,
where c = 1/ log(1/q). The results in [2] are obtained using so-called Boltzmann samplers, a
framework that reduces the study of vertex degrees to properties of sequences of independent
and identically distributed random variables.

In this paper we combine both methods, complex analytic and probabilistic, to prove
Theorem 1.1. As we will see, a combination of the two methods is in fact necessary to
achieve the desired goal. The upper bound is proved using the tail estimate (1.3) and the
first moment method. In fact, we perform a careful analysis of the singular structure of the
multivariate generating function G(x, y, w) of planar graphs rooted at a vertex, enumerated
according to the number vertices, the number of edges and the degree of the root. It turns
out that there is a computable critical value w0 > 1 such that bounding EYn,k amounts to
estimating the coefficients of G(x, 1, w0). This is achieved by first analyzing the corresponding
generating function B(x, y, w) for 2-connected planar graphs, that has the same critical value
w0 (this is why we get the same results for arbitrary and 2-connected planar graphs). The
equations defining B(x, y, w) and G(x, y, w) are very involved (see Section 2.6), and one
needs several technical results on the representation of the generating functions around their
singularities, in particular Corollary 3.4. We remark that the constant in Theorem 1.1 is
precisely c = 1/ log(w0).

In principle the lower bound could be proved in a similar way using the second moment
method, by rooting at a secondary vertex in addition to the root vertex, and working with
G(x, y, w, t), where t marks the degree of the secondary vertex. This is done in [13] for series-
parallel graphs, which is already very demanding. However, the technical difficulties with this
approach for planar graphs appear unsurmountable, since the equations defining G(x, y, w, t)
are just too complicated.

In order to obtain the lower bound we use a different approach: Boltzmann samplers.
They where introduced by Duchon, Flajolet, Louchard and Schaeffer [14] for the random
generation of combinatorial objects. The basic principle is to sample as follows according to
a control parameter. Let A be a class of combinatorial objects, let An be the set of objects of
size n, and let an = |An|. Let also A(x) =

∑
n≥0 anx

n be the (ordinary) generating function
of the class, and let x0 be a real number for which A(x0) is convergent. Then any object
α ∈ An is assigned the probability xn0/A(x0). Note that the objects generated fluctuate in
size, but all the objects of size n have the same probability. This framework has been applied
successfully since then, in particular in the efficient generation of random planar graphs [17],
and also to objects under the action of symmetries [4].

However, Boltzmann samplers have proved useful not only for random generation, but also
for the analysis of random combinatorial objects. This approach was started in [28] and later
pursued in [2, 3] and in [26, 27, 16]. In the present paper Boltzmann samplers also play a key
role. A crucial fact, proved independently using probabilistic [26] and analytic methods [21],
is that w.h.p. a connected random planar graph has a unique block (2-connected component)
of linear size, and the remaining blocks are of order at most n2/3. Thus a typical random
planar graph G can be thought of as a large block B together with small planar graphs
attached to its vertices. If we condition on the total size of G being n, the graphs attached to
B are drawn independently from the set of all connected planar graphs. Thus we recover the
power of independent samples and are able to use techniques closer to the classical theory of
random graphs. It is also worth noticing that for this approach to work we need the estimates
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produced when proving the upper bound with analytic methods (Lemma 4.3), and that the
probabilistic method does not seem to be able to provide a matching upper bound.

We find then ourselves in an unexpected (and satisfactory) situation: analytic methods
yield only the upper bound and probabilistic methods yield only the lower bound, with the
same multiplicative constant. This can be considered as the culmination of two parallel
and independent approaches for analyzing random planar graphs, one based on generating
functions and analytic methods [20, 11, 12, 13, 21, 7], the other one based on Boltzmann
samplers and concentration inequalities [28, 2, 3, 26, 27, 16].

It is worth remarking that not long ago the enumeration of planar graphs was considered
to be out of reach using the classical theory of generating functions. The breakthrough by
Giménez and Noy [20], who obtained a precise asymptotic estimate for the number of pla-
nar graphs, opened the way to the fine analysis of random planar graphs. In particular, the
limiting distribution of the number of edges and the number of connected components was
obtained. After that, more complex extremal parameters were successfully analyzed. These
include in particular the size of the largest block (2-connected component). A fundamental
dichotomy between planar and series-parallel graphs was found independently in [26] (using
Boltzmann samplers) and in [21] (using complex analytic methods): random planar graphs
have almost surely a block of linear size, and series-parallel graphs have blocks only of log-
arithmic size. The diameter of random planar graphs has been analyzed too, a notoriously
difficult parameter in this context: it is shown in [7] that it is almost surely in the interval
(n1/4−ǫ, n1/4+ǫ), for each positive ǫ small enough. Our result on the maximum degree adds
to our knowledge of the fine properties and structure of random planar graphs.

Outline The rest of the paper is structured as follows. In Section 2.1 we introduce the
basic methods – combinatorial constructions, generating functions, Boltzmann samplers and
analytic tools – that are required for our further analysis. This section also serves as a gentle
and concise introduction to the techniques mentioned above. Section 3 contains the proof of
the upper bound in Theorem 1.1, Equation (1.1), and Section 4 provides the matching lower
bound. Finally, in Section 5 we show the proof of (1.2). Some further research directions and
discussion are provided in Section 6.

2 Tools and Techniques

2.1 Basic Notation

Let G be a class of graphs, let Gn,m be the graphs in G with n vertices and m edges, and
write gn,m = |Gn,m|. Let also Gn = ∪m≥0Gn,m and set gn = |Gn|. In particular, in the remain-
der of the paper we write C, B and T , respectively, for the class of connected, 2-connected and
3-connected planar graphs. Given a class of graphs G, define G• =

⋃
n≥1{1, . . . , n} × Gn as

the class of vertex-rooted graphs, so that every graph G ∈ Gn is contained n times in Gn, and
each copy contains a different distinguished vertex. Similarly, the vertex-derived class G′n−1,m

is obtained by removing the label n from each graph in Gn,m, so that the resulting graphs
have n − 1 labeled vertices. Consequently, there is a bijection between the classes G′n−1

and Gn. We set G′ :=
⋃

n≥0 G′n. It will also be necessary to distinguish edges. To this end,
define Ge =

⋃
n,m≥1{1, . . . ,m} × Gn,m as the class of edge-rooted graphs, which contains each

graph in G a number of times equal to the number of edges. As for vertex-rooted graphs,
every graph in Ge has a specific distinguished edge. For technical reasons we assume that the
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marked edge does not contribute to the total number of edges in each graph in Ge. In other
words, we may think that this edge is removed, but its former endpoints are distinguished,
so that the graph can be fully recovered.

The main parameter of study in this paper is the maximum degree of random planar
graphs. Let C•n,m,k be the class of vertex-rooted planar graphs with n vertices and m edges,
such that the degree of the root-vertex is k. Define B•n,m,k and T •

n,m,k similarly. Moreover, for
G ∈ {C,B,T } let

G•(x, y, w) =
∑

n,m,k≥0

|G•n,m,k|
n!

xnymwk

denote the exponential generating function (e.g.f.) enumerating the sequence (|G•n,m,k|)n,m,k≥0.
We shall omit any of the parameters x, y, w if the corresponding value is equal to one; for
example, we write G•(x) = G•(x, 1, 1). Similar, we write G′(x, y, w) for the e.g.f. enumerating
(|G′n,m,k|)n,m,k≥0, where G′n,m,k are the graphs in G′n,m, whose unlabeled vertex has degree k.
Observe that

G•(x, y, w) = x
∂

∂x
G(x, y, w), Ge(x, y, w) =

∂

∂y
G(x, y, w).

We mention already at this point that all generating functions considered in this work have (at
least) one finite dominant non-zero singularity on the real axis. For a generating function G
enumerating a graph class G we write ρG for this singularity.

2.2 Combinatorial Constructions, Generating Functions and Boltzmann

Samplers

In this section we describe a collection of five universal constructions (disjoint union, product,
set, vertex- and edge-substitution), together with the associated relations for the generating
functions and the resulting Boltzmann sampling algorithms, that we use to formulate a de-
composition of the class of all connected planar graphs. We first define Boltzmann samplers.
Let G be a class of labelled combinatorial objects (in our case graphs, where possibly vertices
or/and edges might be distinguished), enumerated by the function G(x, y). A Boltzmann
sampler is a randomized algorithm that draws graphs from G under a certain probability
distribution that is spread over the whole class. More precisely, suppose that x, y are such
that G(x, y) exists. Then, the Boltzmann distribution with parameters x, y assigns to each
γ ∈ G the weight

Pr[γ] =
xv(γ)ye(γ)

v(γ)!G(x, y)
, (2.1)

where v(γ) denotes the number of labeled vertices in γ, and e(γ) denotes the number of edges
of γ. A Boltzmann sampler ΓG(x, y) is an algorithm that generates graphs according to the
distribution in (2.1).

Note that Boltzmann samplers are not a priori suited for studying the distribution of
graphs that are drawn uniformly at random from Gn, as (2.1) defines a distribution over the
whole of G. However, observe that if we set y = 1 in (2.1), then the Boltzmann distribution is
actually the uniform distribution over any given size of graphs. More precisely, if we denote
by Gn a graph drawn uniformly at random from Gn and abbreviate γ = ΓG(x, 1), then for
any P ⊆ G we have

Pr[Gn ∈ P] = Pr[γ ∈ P | γ ∈ Gn] = Pr[γ ∈ P and γ ∈ Gn] · Pr[γ ∈ Gn]−1. (2.2)
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Boltzmann samplers can be constructed explicitly, and provide essentially “recipes”, which
translate sequences of independent and identically distributed (i.i.d.) random variables into
random graphs. So, if the Boltzmann probability of getting a desired graph size n is not
too small, then the study of random graphs boils down with (2.2) to studying properties of
sequences of i.i.d. random variables. This approach is essential in Section 4.

We now define the combinatorial constructions and the associated generating functions
and Boltzmann samplers. The proofs for the given relations of the generating functions and
the validity of the Boltzmann samplers, if omitted here, can all be found in [14, 17]. We
denote by X the class containing a single object (in our case a graph) of size one (a graph
with one vertex). Using the notation from Section 2.1, the e.g.f. enumerating X is given by x.

Disjoint Union. The disjoint union of two classes A and B is denoted G = A + B, and its
e.g.f. is G(x, y) = A(x, y) + B(x, y). A Boltzmann sampler ΓG for G can be described in
terms of Boltzmann samplers for A and B, where we denote by Be(p) a Bernoulli random
variable with success probability p.

ΓG(x, y) : b← Be(A(x,y)
G(x,y))

if b = 1 return ΓA(x, y)
else return ΓB(x, y)

In other words, the Boltzmann sampler for G first makes a Bernulli choice between A and B,
and then resorts to the Boltzmann sampler for the chosen class. Let us replicate the proof
of correctness from [14], as it is simple and gives the main idea behind Boltzmann sampling
principles. Let g ∈ A. Since A and B are disjoint, the probability that ΓG generates g is
equal to the probability that simultaneously “b = 1” and “ΓA(x, y) generates g”. Since these
two events are independent and ΓA(x, y) is a Boltzmann sampler for A, we obtain

Pr[ΓG(x, y) = g] =
A(x, y)

G(x, y)
· xv(g)ye(g)

v(g)!A(x, y)
=

xv(g)ye(g)

v(g)!G(x, y)
,

which agrees with (2.1). The same calculation when g ∈ B.
Product. The labelled product G = A × B of two classes A and B is obtained by taking
all ordered pairs (a, b) with a ∈ An and b ∈ Bn′ , and relabelling them in all possible order-
consistent ways. From now on, when vertices are relabelled it is assumed that the relative
order of the labels in each graph is preserved. The e.g.f. enumerating G is given by G(x, y) =
A(x, y)B(x, y). A Boltzmann sampler ΓG for G can be described in terms of Boltzmann
samplers for A and B as follows. The algorithm RandomLabels(G) assigns random labels to
the vertices of G from the set {1, . . . , v(G)}.

ΓG(x, y) : γA ← ΓA(x, y)
γB ← ΓB(x, y)
return RandomLabels((γA, γB))

Note that the Boltzmann sampler performs independent calls to the samplers associated to A
and B, and composes a graph from G by assembling them and distributing randomly labels.

Set. Let A be a class of graphs that contain at least one labeled vertex2. The class G = Set(A)
of sets of A is defined as follows. A graph in G consists of a finite set of graphs from A, whose

2Note that the derivative operator from Section 2.1 allows us to construct classes in which all graphs bear
no labels, e.g. X ′. Such classes are not allowed to be used within the Set construction
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vertices are relabelled. Moreover, for each non-negative integer k we write G = Set≥k(A) for
the class of sets of size at least k. The associated e.g.f. is given by

Gk(x, y) = eA(x,y) −
k−1∑

i=0

A(x, y)i

i!
.

Let Po≥k(λ) be a Poisson distributed random variable with expectation λ, conditioned on
being at least k. That is, for j ≥ k,

Pr[Po≥k(λ) = j] = e−λλ
j

j!
·
(
1−

k−1∑

i=0

e−λλ
i

i!

)−1

.

A Boltzmann sampler for the (≥ k)-set construction is given by the following algorithm.

ΓG(x, y) : j ← Po≥k(A(x, y))
for ℓ = 1 . . . j do γi ← ΓA(x, y)
return RandomLabels((γ1, . . . , γj))

Notice that the number of “components” in a (Boltzmann) random graph from G is Poisson
distributed with parameter A(x, y); this can be easily verified by observing that the subclass
of G containing all graphs with exactly j components from A is enumerated by A(x, y)j/j!.

Vertex Substitution. Let A and B be two classes such that all graphs in B have at least
one labeled vertex. Then the class G = A ◦ B obtained by vertex substitution from the core
class A and the replacement class B, is defined as follows. Given a ∈ A, substitute each
labeled vertex v ∈ V (a) with a graph bv ∈ B, and relabel the vertices in (bv)v∈V (a). The e.g.f.
enumerating G is given by G(x, y) = A(B(x, y), y), so that vertex substitution corresponds
formally to the substitution of the variable marking vertices.

The Boltzmann sampler for G first samples a core object from the Boltzmann distribution
for A, and then replaces independently each vertex with a random graph from B, as follows:

ΓG(x, y) : γ ← ΓA(B(x, y), y)
for each vertex v ∈ V (γ) do

γv ← ΓB(x, y)
replace v by γv in γ

return RandomLabels(γ)

Edge Substitution. The setting is as before. The class G = A ◦̃B is obtained by edge
substitution from the core class A and the replacement class B. Given a ∈ A, substitute
every edge e ∈ E(a) by a graph be ∈ B, and relabel the vertices in a and (be)e∈E(a). The e.g.f.
enumerating G is given by G(x, y) = A(x,B(x, y)), so that edge substitution corresponds
formally to the substitution of the variable marking edges. The Boltzmann sampler for G
proceeds analogously:

ΓG(x, y) : γ ← ΓA(x,B(x, y))
for each edge e ∈ E(γ) do

γe ← ΓB(x, y)
replace e by γe in γ

return RandomLabels(γ)
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2.3 Grammars and Generating Functions for Planar Graphs

A connected graph is uniquely specified in terms of its 2-connected components, each of which
is further decomposed into 3-connected components. We describe this decomposition here,
tailored to the specific setting of planar graphs and using the notation from the previous
section. See the classical reference [31], or [8] for a modern exposition.

We start with the well-known decomposition of a graph into 2-connected components. A
block of a vertex-derived connected graph C ′ ∈ C′ is a maximal 2-connected subgraph of C ′.
Notice that C ′ can be obtained recursively as follows. Start with a set {B′

1, . . . , B
′
ℓ} of vertex-

derived 2-connected graphs whose distinguished vertices are identified in a single vertex (the
root of C ′), and substitute every other vertex in B′

1, . . . , B
′
ℓ with a vertex-rooted connected

graph. Note that the B′
i correspond to the blocks incident to the distinguished vertex of C ′.

This description gives us the combinatorial relation

C′ = Set(B′ ◦ C•), (2.3)

which translates into the following equation for the generating functions:

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))
. (2.4)

The decomposition of 2-connected planar graphs into 3-connected components is more in-
volved. We describe it in sufficient detail, as it is crucial for our further analysis. Following
Trakhtenbrot [30] and Tutte [31] we define a (planar) network as a connected graph with
two “special” vertices, called the left pole and the right pole, such that after adding the edge
between the poles and ignoring possible multiple edges, results in a 2-connected planar graph.
The poles do not bear labels, and thus in the e.g.f. enumerating networks the variable x marks
the number of non-pole vertices. The above description provides us with an explicit relation
between the class B and the class of networks D. Note that every edge-rooted 2-connected
planar graph Be ∈ Be, except for the graph with a single edge, gives rise to two networks
with n− 2 labeled vertices: one is obtained by removing the labels from the endpoints of the
root-edge (and relabeling the remaining vertices with {1, . . . , n − 2}), and the other one is
obtained by adding the root-edge to Be. Notice that we have not constructed the network
that consists of a single edge. If e is the network consisting of a single edge, and e′ is the
graph in Be consisting of a single edge, then D and B are related through

(D − e)× X 2 = (1 + e)× (Be − e′).

This translates into the following equation among the generating functions:

∂B(x, y)

∂y
=

x2

2

1 +D(x, y)

1 + y
. (2.5)

We next describe the decomposition of networks in terms of 3-connected planar graphs. Fol-
lowing Tutte [31], a network is either an edge, whose end-vertices are the poles, or is in the
class S (series network), or in the class P (parallel network), or in the class H (core network).
This classes are disjoint and we obtain the combinatorial composition

D = e+ S + P +H. (2.6)
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Figure 2.1: The decomposition of series and parallel networks.

Writing S(x, y), P (x, y) and H(X,Y ) for the e.g.f. enumerating S, P and H respectively, we
have

D(x, y) = y + S(x, y) + P (x, y) +H(x, y). (2.7)

The decomposition of series networks is as follows (see Figure 2.1, taken from [16]). A
network in S consists of two networks D1 and D2, such that the right pole of D1 is identified
with the left pole of D2. Here, D1 is restricted to be either an edge, or in P or in H, and
D2 ∈ D. Hence,

S = (e+ P +H)× X ×D and S(x, y) = x(y + P (x, y) +H(x, y))D(x, y). (2.8)

A parallel network (see Figure 2.1), consists either of an edge and a non-empty set of networks,
either in S or in H, where their right poles (left poles) are identified into a single right pole
(left pole), or of a set of at least two networks, either in S or in H where the identification of
the poles is as before. Thus,

P = e× Set≥1(S +H) + Set≥2(S +H), (2.9)

and consequently

P (x, y) = y(eS(x,y)+H(x,y) − 1) + (eS(x,y)+H(x,y) − S(x, y)−H(x, y)− 1). (2.10)

Finally, we define the class of core networks. Recall that T denotes the class of 3-connected
planar graphs. Let T be the class of networks obtained by taking a graph in T , deleting an
edge, and turning its former end-vertices into poles. A network in H (see Figure 2.2), consists
of a network from T , where each edge is replaced by a network whose poles are identified in
a unique way with the end-vertices of the edges. We thus obtain the relations

H = T ◦̃D and H(x, y) = T (x,D(x, y)). (2.11)

This concludes the definition of the networks and the setup for the associated generating
functions. By a simple elimination procedure [30], Equations (2.7)–(2.11) can be reduced to
a single equation for D(x, y):

D(x, y) = (1 + y) exp

(
xD(x, y)2

1 + xD(x, y)
+ T (x,D(x, y))

)
− 1. (2.12)

It is also known [20] that B(x, y) can be computed explicitly in terms of D(x, y), that is, the
integration in (2.5) can be made explicit. In particular, setting D = D(x, y) we obtain

B(x, y) = T (x,D)− xD

2
+

1

2
log(1 + xD) +

x2

2

(
D +

D2

2
+ (1 +D) log

(
1 + y

1 +D

))
. (2.13)
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Figure 2.2: The decomposition of core networks.

The last step needed to complete the decomposition of the class of all connected planar
graphs is to specify the class T . We will not describe the decomposition here, as it is not
needed for our further analysis, and refer to [25] and [5]. However, we need the associated
generating functions, which satisfy the following equations.

T (x, y) =
y

2

(
1

1 + xy
+

1

1 + y
− 1− (1 + U(x, y))2(1 + V (x, y))2

(1 + U(x, y) + V (x, y))3

)
, (2.14)

where U(x, y) and V (x, y) are given by

U(x, y) = xy(1 + V (x, y))2 and V (x, y) = y(1 + U(x, y))2. (2.15)

Similarly there is an explicit expression for T (x, y) in terms of U(x, y) of V (x, y); see [20].

2.4 Singular Expansions and Asymptotics

A main feature of our approach is the fact that analytic properties, in particular the local
behavior around singularities of a function y(x) =

∑
n ynx

n, translates into asymptotic ex-
pansions for the coefficients yn = [xn]y(x). We use in particular the so-called Transfer Lemma
by Flajolet and Odlyzko [15]. Let x0 be a non-zero complex number, and ǫ and δ positive
real numbers. The region

∆ = ∆(x0, ǫ, δ) = {x ∈ C : |x| < x0 + ǫ, | arg(x/x0 − 1)| > δ}

is called a ∆-region. Suppose that a function y(x) is analytic in ∆(x0, ǫ, δ) and satisfies

y(x) = C (1− x/x0)
α +O

(
(1− x/x0)

α+1
)
, x ∈ ∆(x0, ǫ, δ),

Then we have

[xn] y(x) = C
n−α−1

Γ(−α) x
−n
0 +O

(
x−n
0 n−α−2

)
. (2.16)

It important to observe that the implicit constants are effective, in the sense that the O-
constant in the expansion of y(x) provides an explicit O-constant for the expansion of [xn] y(x);
see [15]. In particular, singular expansions that are uniform in some parameter also translate
into asymptotic expansions of the form (2.16) with a uniform error term.
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A typical situation where the Transfer Lemma applies, is a generating function with a
so-called square-root singularity, that is, with a local representation of the form

y(x) = g(x) − h(x)
√

1− x/x0 (2.17)

that holds in a complex neighborhood U of x0 with x0 6= 0 (we only need to cut the half line
{x ∈ C : arg(x/x0 − 1) = 0} in order to have an unambiguous value of the square root). The
functions g(x) and h(x) above are analytic in U . We also assume that y(x) has an analytic
continuation to the region {x ∈ C : |x| < x0 + ε} \ U for some ε > 0. These assumptions
imply that

y(x) = g(x0)− h(x0)
√

1− x/x0 − x0g
′(x0) (1− x/x0) +O

(
|1− x/x0|3/2

)

uniformly in a ∆-region. It follows that

yn = [xn] y(x) =
h(x0)

2
√
π

n−3/2x−n
0 +O

(
n−5/2x−n

0

)
. (2.18)

Note that a function y(x) of the form (2.17) can also represented as

y(x) =
∑

ℓ≥0

aℓ

(
1− x

x0

)ℓ/2

=
∑

ℓ≥0

aℓX
ℓ, (2.19)

where X =
√
1− x/x0. Moreover the power series

∑

ℓ≥0

aℓX
ℓ

converges for |X| < r (for a suitable r > 0), so that it represents an analytic function of X.
It is also clear that a representation of the form (2.19) can be rewritten into (2.17). We refer
to both representations as singular expansions of y(x). If we are only interested in the first
few terms then we write

y(x) = a0 + a1X + a2X
2 + a3X

3 +O(X4).

We also encounter several situations where a1 = 0. Then y(x) can be represented as

y(x) = g(x) + h(x)X3 = g(x) + h(x)

(
1− x

x0

)3/2

.

In this case the corresponding asymptotic expansion for the coefficients is of the form

yn =
3h(x0)

4
√
π

n−5/2x−n
0 +O(n−7/2x−n

0 ).

Functions y(x) with a square-root singularity appear naturally as solutions of functional
equations Φ(x, y(x)) = 0, where Φ(x, y) is an analytic function (see [10]). More precisely if
we know that there is x0 and y0 = y(x0) such that (x0, y0) is a regular point of Φ(x, y) with

Φ(x0, y0) = 0 and Φy(x0, y0) = 0 (2.20)

11



and the conditions
Φx(x0, y0) 6= 0 and Φyy(x0, y0) 6= 0, (2.21)

then x0 is a singularity of y(x) and there is a local representation of the form (2.17) with
g(x0) = y0 and h(x0) =

√
2x0Φx(x0, y0)/Φyy(x0, y0).

Usually it is easy to verify that y(x) has an analytic continuation to a ∆-region. A basic
example is the following. If Φ(x, y) is of the form Φ(x, y) = y−F (x, y), where F (0, y) = 0 and
F (x, y) =

∑
i,j fijx

iyj has non-negative coefficients fij, and where the power series solution
y(x) =

∑
n ynz

n of y = F (x, y) with y(0) = 0 has (at least) two non-zero coefficients yn1
, yn2

with gcd(n1, n2) = 1, then there exist uniquely real positive x0, y0 satisfying (2.20) and (2.21).
Furthermore, the gcd-conditions ensures that |Fy(x, y(x))| < Fy(|x|, y(|x|)) if x is not real and
positive. Consequently, it is impossible that Fy(x, y(x)) = 1 = F (x0, y0) for |x| ≤ x0 and
x 6= x0. Then the implicit function theorem implies that there are no singularities in this
range, and thus there is an analytic continuation to a ∆-region. Similar properties hold for
solutions y(x) = (y1(x), . . . , yd(x)) of a system of equations y(x) = F(x,y(x)), where F is
positive and strongly connected. For details see [10].

If the functional equation has an additional analytic parameter u, that is, y = y(x, u)
satisfies Φ(x, u, y) = 0, then we are in a situation that is relevant in this paper (the additional
parameter will typically mark the number of edges and/or the degree of the root vertex).
Then we (usually) have a local representation of the form

f(x, u) = g(x, u) − h(x, u)
√

1− x/ρ(u) (2.22)

that holds in a (complex) neighborhood U of (x0, u0) with x0 6= 0, u0 6= 0 and with ρ(u0) = x0
(as before we slit the line {x ∈ C : arg(x − ρ(u)) = 0}). The functions g(x, u) and h(x, u)
are analytic in U and ρ(u) is analytic in a neighborhood of u0. As above it is usually easy
to establish that f(x, u) has an analytic continuation to the region {(x, u) ∈ C

2 : |x| <
x0 + ε, |u| < u0 + ε} \ U for some ε > 0. Moreover, in complete analogy to the case without
the additional parameter, a function f(x, u) of the form (2.22) can be represented as

f(x, u) =
∑

ℓ≥0

aℓ(u)

(
1− x

ρ(u)

)ℓ/2

=
∑

ℓ≥0

aℓ(u)X
ℓ, (2.23)

where X =
√
1− x/ρ(u) and the coefficients aℓ(u) are analytic in u (for u close to u0).

We recall that square-root singularities appear if we consider solutions y(x) with y(x0) =
y0 of a functional equation Φ(x, y) = 0, where (x0, y0) is a regular point of Φ(x, y). Of course,
this will not remain true if (x0, y0) is a singularity of Φ(x, y). Nevertheless we will encounter
several situations, where a special singular structure appears. The following lemma is [10,
Theorem 2.31].

Theorem 2.1. Suppose that F (x, y, u) has a local representation of the form

F (x, y, u) = g(x, y, u) + h(x, y, u)

(
1− y

r(x, u)

)3/2

(2.24)

with functions g(x, y, u), h(x, y, u), r(x, u) that are analytic around (x0, y0, u0) and satisfy
gy(x0, y0, u0) 6= 1, h(x0, y0, u0) 6= 0, r(x0, u0) 6= 0 and rx(x0, u0) 6= gx(x0, y0, u0). Further-
more, suppose that y = y(x, u) is a solution of the functional equation

y = F (x, y, u)
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with y(x0, u0) = y0. Then y(x, u) has a local representation of the form

y(x, u) = g1(x, u) + h1(x, u)

(
1− x

ρ(u)

)3/2

, (2.25)

where g1(x, u), h1(x, u) and ρ(u) are analytic at (x0, u0) and satisfy h1(x0, u0) 6= 0 and
ρ(u0) = x0.

2.5 Asymptotics for the Number of Planar Graphs

The the system of equations for the generating functions B(x, y) and C(x, y), as described
in Section 2.3, can be used to obtain asymptotic formulas for the numbers bn and cn of 2-
connected and connected planar graphs [20]. Since we use some of the proof methods in the
analysis of the root degree we include a sketch of the proof.

Lemma 2.2. The generating functions B(x) and C(x) for planar graphs have finite radii of
convergence ρB and ρC , respectively, and have local representations of the forms

B(x) = g2(x) + h2(x)

(
1− x

ρB

)5/2

, C(x) = g4(x) + h4(x)

(
1− x

ρC

)5/2

,

with functions g2(x), h2(x) and g4(x), h4(x) that are non-zero and analytic at ρB and ρC , re-
spectively, and B(x) and C(x) have analytic continuations to proper ∆-regions. In particular,
if t(y) is given by the equation

y =
1 + 2t

(1 + 3t)(1− t)
exp

(
− t2(1− t)(18 + 36t+ 5t2)

2(3 + t)(1 + 2t)(1 + 3t)2

)
− 1, (2.26)

then ρB = (1 + 3t(1))(1 − t(1))3/(16t(1)3) and ρC = ρBe
−B′(ρB ,1).

Consequently, there are constants b, c > 0 such that

bn = b · n−7/2ρ−n
B n!

(
1 +O(n−1)

)
and cn = c · n−7/2ρ−n

C n!
(
1 +O(n−1)

)
.

Proof. The main part of the proof is to characterize the kind of singularities of the gener-
ating functions. The analytic continuation to proper ∆-regions is always straightforward to
establish (see also [1]).

First, it follows from the fact that U and V satisfy a positive systems of equations (see [10]),
that U and V have a singular expansion of the form

U(x, z) = U0(x) + U1(x)Z + U2(x)Z
2 + U3(x)Z

3 +O(Z3),

V (x, z) = V0(x) + V1(x)Z + V2(x)Z
2 + V2(x)Z

3 +O(Z3),

where Z =
√

1− z/τ(x). Moreover, it follows that U0(x) is the solution of the equation

x =
(1 + u)(3u − 1)3

16u

and τ(x) is given by

τ(x) =
1

(4x2(1 + u0(x)))
2/3

.
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The functions Uj(x) and Vj(x) are also analytic and can be explicitly given in terms of U0(x).
With the help of these expansions it follows that there is a cancellation of the coefficient of
Z in the expansion of

(1 + U)2(1 + V )2

(1 + U + V )3
= E0 + E2Z

2 + E3Z
3 +O(Z4).

Thus, T (x, z) can be represented as

T (x, z) = T0(x) + T2(x)Z
2 + T3(x)Z

3 +O(Z4).

Next we use (2.12)

D = (1 + y) exp

(
xD2

1 + xD
+ T (x,D)

)
− 1 = Φ(x, y,D),

and assume that y = 1 or that y is very close to 1. Due to the singular structure of the right
hand side we can apply Theorem 2.1 and obtain a local expansion for D = D(x, y) of the
form

D(x, y) = D0(y) +D2(y)X
2 +D3(y)X

3 +O(X4), (2.27)

where
X =

√
1− x/ρD(y)

for some function ρD(y). In fact, we can be much more precise. Let t = t(y) be defined by
(2.26), that exists in a suitable neighborhood of y = 1. Then ρD(y) is given by

ρD(y) =
(1 + 3t(y))(1 − t(y))3

16t(y)3
,

in particular ρD = ρD(1) = 0.038191.... There are several ways to show that D(x, y) extends
analytically to a ∆-region. One way is to rewrite the system of Equations (2.8), (2.10),
(2.11) explicitly into one equation of the form f(x, y) = F (x, y, f(x, y)) for the function
f(x, y) = S(x, y) + H(x, y), where F has non-negative coefficients. It is easy to check that
Ff (x0, 1, f(x0, 1)) < 1, which implies that |Ff (x, y, f(x, y))| < 1 for |x| ≤ x0 and |y| ≤ 1.
By the implicit function theorem there is an analytic continuation to a proper ∆-region for
f(x, y) = S(x, y) +H(x, y), and consequently also for D(x, y) = y + f(x, y) + y(ef(x,y) − 1) +
ef(x,y) − 1− f(x, y).

The representation (2.27) provides a local expansion for ∂B(x,y)
∂y of the form

∂B(x, y)

∂y
= B0(y) +B2(y)X +B3(y)X

3 +O(X4) = g1(x, y) + h1(x, y)X
3,

with certain analytic functions g1(x, y) and h1(x, y). Hence, by integration (see [10]) or by
using the representation (2.13), where one has to check that the coefficients of X and X3

disappear, B(x, y) and consequently ∂B(x,y)
∂x have an expansions of the form

B(x, y) = g2(x, y) + h2(x, y)X
5,

∂B(x, y)

∂x
= g3(x, y) + h3(x, y)X

3
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with certain analytic functions g2(x, y), g3(x, y) and h2(x, y), h2(x, y). Note that ρB = ρD and
the analytic continuation property of D(x, y) implies a corresponding property for B(x, y).

Finally we have to solve (2.4). For simplicity set y = 1. Since ρD B′′(ρD) ≈ 0.0402624 < 1,
the singularity of the right-hand-side induces the singular behaviour of the solution xC ′(x).
Actually we just have to apply Theorem 2.1 and obtain a local expansion for C ′(x) of the
form

C ′(x) = g3(x) + h3(x)

(
1− x

ρC

)3/2

, (2.28)

where ρC = ρBe
−B′(ρB) = 0.0367284..., and consequently we obtain corresponding represen-

tations for

C(x) = g4(x) + h4(x)

(
1− x

ρC

)5/2

.

Note that the condition ρD B′′(ρD) ≈ 0.0402624 < 1 also ensures that C ′(x) (and also C(x))
has no other singularity for |x| ≤ ρC which implies that C ′(x) (and C(x)) has an analytic
continuation to a ∆-region.

Using these representations the asymptotic expansion for bn and cn follow immediately
by the Transfer Lemma of Flajolet and Odlyzko [15].

2.6 Generating Functions for the Root Degree

In this section we extend the results from Section 2.3 to incorporate the root degree into
the generating functions. We start with connected planar graphs. Recall (2.3), which says
that a vertex-derived connected planar graph C ′ can be decomposed as a set {B′

1, . . . , B
′
ℓ} of

vertex-derived 2-connected graphs, whose roots are identified into a single vertex, and where
each other vertex is substituted by a vertex-rooted connected graph. Since the root degree of
C ′ equals the sum of the root degrees of the (B′

i)1≤i≤ℓ, we obtain

C ′(x, y, w) = exp
(
B′ (C•(x, y), y, w)

)
. (2.29)

It was shown in [12] that the remaining steps of the decomposition can be translated into
corresponding relations for the generating functions, that also take into account the root
degree. We omit the lengthy details here, and just state the results. The generating functions
for B, D and T satisfy the relations

∂B′(x, y, w)

∂w
= xy

1 +D(x, y, w)

1 + yw
(2.30)

D(x, y, w) = (1 + yw) exp

(
xD(x, y, w)D(x, y, 1)

1 + xD(x, y, 1)
+ T

(
x,D(x, y, 1),

D(x, y, w)

D(x, y, 1)

))
− 1,

(2.31)

T (x, y, w) =
yw

2

(
1

1 + wy
+

1

1 + xy
− 1 (2.32)

−
(U + 1)2

(
−w1(U, V,w) + (U − w + 1)

√
w2(U, V,w)

)

2w(V w + U2 + 2U + 1)(1 + U + V )3


 ,
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with polynomials w1 = w1(U, V,w) and w2 = w2(U, V,w) given by

w1 = −UV w2 + w(1 + 4V + 3UV 2 + 5V 2 + U2 + 2U + 2V 3 + 3U2V + 7UV )

+ (U + 1)2(U + 2V + 1 + V 2),

w2 = U2V 2w2 − 2wUV (2U2V + 6UV + 2V 3 + 3UV 2 + 5V 2 + U2 + 2U

+ 4V + 1) + (U + 1)2(U + 2V + 1 + V 2)2.

Again it is possible to integrate ∂B′(x,y,w)
∂w and one obtains the following expression (see [12]):

B′(x, y, w) = x

(
D − xED

1 + xE

(
1 +

D

2

))
− x(1 +D)T (x,E,D/E) + x

∫ D

0
T
′
(x,E, t/E) dt,

(2.33)
where for simplicity we let D = D(x, y, w) and E = E(x, y) = D(x, y, 1) The remaining
integral is equal to following lengthy expression:

∫ D

0
T (x,E, t/E) dt = −(xED2 − 2D − 2xED + (2 + 2xE) log(1 +D))

4(1 + xE)

− uv

2x(1 + u+ v)3

(
D/E(2u3 + (6v + 6)u2 + (6v2 − vD/E + 14v + 6)u+ 4v3 + 10v2 + 8v + 2)

4v(v + 1)2

+
(1 + u)(1 + u+ 2v + v2)(2u3 + (4v + 5)u2 + (3v2 + 8v + 4)u+ 2v3 + 5v2 + 4v + 1)

4uv2(v + 1)2

−
√
Q(2u3 + (4v + 5)u2 + (3v2 − vD/E + 8v + 4)u+ 5v2 + 2v3 + 4v + 1)

4uv2(v + 1)2

+
(1 + u)2(1 + u+ v)3 log(Q1)

2v2(1 + v)2

+
(u3 + 2u2 + u− 2v3 − 4v2 − 2v)(1 + u+ v)3 log(Q2)

2v2(1 + v)2u

)
,

where the expressions Q, Q1 and Q2 are given by

Q = u2v2D2/E2 − 2uvD/E(u2(2v + 1) + u(3v2 + 6v + 2) + 2v3 + 5v2 + 4v + 1)

+ (1 + u)2(u+ (v + 1)2)2

Q1 =
1

2(Dv/E + (u+ 1)2)2(v + 1)(u2 + u(v + 2) + (v + 1)2)

(
−uvD/E(u2 + u(v + 2) + 2v2 + 3v + 1)

+(u+ 1)(u+ v + 1)
√

Q+ (u+ 1)2(2u2(v + 1) + u(v2 + 3v + 2) + v3 + 3v2 + 3v + 1
)

Q2 =
−Duv/E + u2(2v − 1) + u(3v2 + 6v + 2) + 2v3 + 5v2 + 4v + 1−√Q

2v(u2 + u(v + 2) + (v + 1)2)

and u and v abbreviate u = U(x,E) and v = V (x,E).

2.7 A Boltzmann Sampler for Networks

In this section we describe a Boltzmann sampler for the class of planar networks, which plays
a central role in our analysis; see Section 4. This sampler was already developed in [16] for
general classes that can be decomposed into 3-connected components (see also [17] for the
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case of planar graphs). We repeat here the exposition, tailored to our needs, as several details
are important in our proofs.

We start with the Boltzmann sampler for the class D of all networks. Recall (2.6), which
says that D is the disjoint union of the classes e (single edge), S (series networks), P (parallel
networks), and H (core networks). By applying the rules from Section 2.2, a Boltzmann
sampler for D calls a sampler for a subclass with a probability proportional to the value
of the generating function of this subclass. More precisely, we say that a variable X is
network-distributed with parameters x and y, X ∼ Net(x, y), if its domain is the set of

symbols ΩNet = {e, S, P,H} and for any s ∈ ΩNet it holds Pr[X = s] = s(x,y)
N(x,y) . Then

the sampler ΓD(x, y) with parameters x, y for D can be described concisely as follows, where
Γe,ΓS,ΓP , and ΓH are (yet to be defined) Boltzmann samplers for the classes e,S,P, and H.

ΓD(x, y) : s← Net(x, y)
return Γs(x, y)

Next we describe the sampler for S. The combinatorial relation in (2.8) implies that S =
A×X ×D, where A = e+P +H. Again using the rules from Section 2.2, we conclude that a
Boltzmann sampler for S proceeds in the following way. It first samples a network from A, by
making a “three-way” Bernulli choice among e, P, and H with the appropriate probabilities,
and generates a Boltzmann distributed object N1 from the chosen class. Then, it generates a
network N2 that is Boltzmann distributed from D. Finally, it creates and returns a network
(N1, N2) such that the right pole of N1 is identified with the left pole of N2, and in which the
labels are distributed randomly. More formally, we say that a variable X is series-distributed
with parameters x and y, X ∼ Ser(x, y), if its domain is the set of symbols ΩSer = {e, P,H}
and for any s ∈ ΩSer it holds Pr[X = s] = s(x,y)

S(x,y) . Then ΓS(x, y) can be described concisely
as follows:

ΓS(x, y) : s← Ser(x, y)
N1 ← Γs(x, y)
N2 ← ΓD(x, y)
return (N1, N2), relabeling randomly its non-pole vertices

We proceed the class P. The combinatorial relation (2.9) guarantees that P = P1 + P2,
where P1 = e×Set≥1(S+H) and P2 = Set≥2(S+H). Together with the rules for Boltzmann
samplers from Section 2.2 for disjoint union and set, this implies that ΓP (x, y) first makes a
Bernulli choice between P1 and P2, and then samples a set (with a given lower bound on the
number of elements) of networks from S or H according to the Boltzmann distribution.

Let us introduce some notation before we describe formally the sampler. We say that a
variable X is parallel-distributed with parameters x and y, and write X ∼ Par(x, y), if

X ∼ 1 + Be

(
eS(x,y)+H(x,y) − 1− S(x, y)−H(x, y)

P (x, y)

)
.

In words, X “distinguishes” between the two possibilities in the definition a parallel network.
We say that a variable is sh-distributed with parameters x and y, X ∼ sh(x, y), if its domain
is the set of symbols Ωsh = {S,H} and for s ∈ Ωsh it holds

P(X = s) =
s(x, y)

S(x, y) +H(x, y)
.
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Using Po≥p(λ) to denote a Poisson distributed random variable with parameter λ conditioned
on being at least p, the Boltzmann sampler ΓP works as follows.

ΓP (x, y) : p← Par(x, y)
k ← Po≥p(S(x, y) +H(x, y))

for i = 1 . . . k
bi ← sh(x, y)
pi ← Γbi(x, y)

construct a network P by identifying the left and right poles of p1, . . . , pk
relabel randomly the non-pole vertices of P

if p = 1 then return P , where the poles are joined by an edge
else return P

Finally, we describe the sampler for H. Recall (2.11), which guarantees that a H-network is
obtained by substituting the edges of a network from T by graphs from D. Here we assume
that we have an auxiliary sampler ΓT (x, y), which samples graphs from T according to the
Boltzmann distribution. Then the sampler for H can be described as follows.

ΓH(x, y) : T ← ΓT (x,N(x, y))

foreach edge e of T
γe ← ΓN(x, y)

replace every e in T by γe
return T , relabeling randomly its non-pole vertices

This completes the description of the samplers. The next lemma was shown in [16], and
it can be proved in the present case directly by using the asymptotic enumeration results
for 2-connected planar graphs, as obtained by Bender, Gao and Wormald [1], or by using
Lemma 2.2. The proof is included for completeness.

Lemma 2.3. Let x, y ≥ 0 be such that D(x, y) <∞. Then ΓD(x, y) is a Boltzmann sampler
with parameters x and y for D. Moreover,

Pr[ΓD(ρD, 1) ∈ Dn] = Θ(n−5/2),

where ρD = ρB denotes the singularity of D(x, 1) and ρB is gi ven in Lemma 2.2.

Proof. Recall Equation (2.27), which says that

D(x) = D0 +D2 (1− x/ρD) +D3 (1− x/ρD)
3/2 +O

(
(1− x/ρD)

2
)
.

Moreover, the discussion after (2.27) guarantees that D(x) is analytic in an appropriate ∆-
domain. Thus, the Tranfer Lemma applies, implying that

|Dn| = n! [xn]D(x) = Θ(1) · n−5/2 ρ−n
D n!.

The definition of the Boltzmann model then implies that

Pr[ΓD(ρD, 1) ∈ Dn] = |Dn| ·
ρnD

n!D(ρD, 1)
= Θ(n−5/2),

as claimed.

In other words, if we choose (x, y) = (ρB , 1), then ΓN(x, y) has a polynomially small
probability of generating a network of a given size n. This important fact will be used in
Section 4.
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3 The Upper Bound

3.1 Generating Functions and the First Moment Method

In order to obtain an upper bound for the distribution of the maximum degree we use the
first moment method. Let Xn,k denote the number of vertices of degree k in a 2-connected
random planar graph Bn with n vertices and let

Yn,k =
∑

ℓ>k

Xn,ℓ

denote the number of vertices of degree larger than k. If we denote by ∆(G) the maximum
degree of a vertex in a graph G, then obviously we have

∆(Bn) > k ⇐⇒ Yn,k > 0

and consequently
Pr [∆(Bn) > k] = Pr [Yn,k > 0] ≤ EYn,k.

Let dn,k denote the probability that the root degree (in a 2-connected graph of size n) equals
k. Then EXn,k = dn,k n. Hence, it is sufficient to provide upper bounds for

dn,k =
[xnwk]B′(x, 1, w)

[xn]B′(x)
.

The asymptotic expansion of
[xn]B′(x) ∼ c · n−5/2ρ−n

B

is known, where c > 0 and ρB = 0.03672841..., see [1, 20] or Section 2.5. This follows from a
precise analysis of the singularity of B′(x) which is of the form

B′(x) = g(x) + h(x)

(
1− x

ρB

)3/2

.

Consequently, we just need upper bounds for [xnwk]B′(x, 1, w). Suppose that w0 > 0 is
chosen in a way that B′(x, 1, w0) is a convergent power series. Then, the non-negativity of
the coefficients of B implies that

[xnwk]B′(x, 1, w) ≤ w−k
0 [xn]B′(x, 1, w0).

Actually, it will turn out that we can choose w0 > 1 in an “optimal way” so that B′(x, 1, w0)
has the same radius of convergence ρB as B′(x) and also the same kind of singularity.

Lemma 3.1. Let t(y) be given by (2.26) and set

w0 =
1

1− t(1)
exp

(
t(1)(t(1) − 1)(t(1) + 6)

6t(1)2 + 20t(1) + 6

)
− 1 ≈ 1.48488989 (3.1)

Then B′(x, 1, w0) has a local representation of the form

B′(x, 1, w0) = g(x) + h(x)

(
1− x

ρB

)3/2

,

with functions g(x), h(x) that are non-zero and analytic at ρB. Furthermore

[xn]B′(x, 1, w0) ∼ c · n−5/2ρ−n
B

for some constant c > 0.
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The proof of this lemma is spread over the next sections. We recall that q = w0 is the
radius of convergence of the generating function

∑
k≥1 dkw

k of the limiting degree distribution
of 2-connected planar graphs (see [12]). Summing up we have

EXn,k = O
(
nq−k

)
(3.2)

and consequently

Pr [∆(Bn) > k] = O
(
nq−k

)
.

Of course, this estimate provides the upper bound in Theorem 1.1, Equation (1.1), for random
2-connected planar graphs. The proof of the upper bound for connected graphs is very similar,
and follows from the analogous counting estimate provided by the next lemma.

Lemma 3.2. Let w0 be the same constant as in Lemma 3.1. Then C ′(x, 1, w0) has a local
representation of the form

C ′(x, 1, w0) = g2(x) + h2(x)

(
1− x

ρC

)3/2

,

with functions g2(x), h2(x) that are non-zero and analytic at ρC . Furthermore

[xn]C ′(x, 1, w0) ∼ c2 · n−5/2ρ−n
C

for some constant c2 > 0.

It remains to show the claimed upper bound for random (not necessarily) connected planar
graphs in Theorem 1.1. To this end, we use the following property, see [26, 20].

Theorem 3.3. Let Pn be a random planar graph with n vertices, and let ωn be an arbitrary
slowly growing function. Let c(Pn) denote the size of the largest connected component in Pn.
Then, w.h.p., c(Pn) ≥ n− ωn.

Conditional on any specific value of c(Pn) within the bounds guaranteed by the previous
theorem, note that any connected planar graph with c(Pn) vertices is equally likely to be the
largest component of Pn. The upper bound for Pn in Theorem 1.1 follows immediately from
Lemma 3.2, since ωn is arbitrary.

3.2 Singular Functional Equations

Towards the proofs of Lemmas 3.1 and 3.2 we first have a closer look at Equation (2.31). If
we set w = 1, then it reduces to an equation for D(x, y, 1), which is equivalent to (2.12). In
order to avoid conflicts with the notation we set E(x, y) := D(x, y, 1). From (2.27) we know
the analytic behaviour of E(x, y) around its dominant singularity:

E(x, y) = E0(y) + E2(y)X
2 + E3(y)X

3 +O(X4), where X =

√
1− x

ρD(y)
. (3.3)

Recall that the coefficient of the squareroot term X vanishes. Since we are not interested in
the number of edges we will set y = 1 in (most of) the following calculations. A crucial step
in our analysis is the discussion of the relation in (2.31). First, we rewrite it to

D + 1 = exp
(
G(x,D,w,E,U, V ) +H(x,D,E,U, V )

√
J(D,E,U, V )

)
, (3.4)
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where

G = log(1 + w) +
xDE

1 + xE

+
D

2

(
1

1 +D
+

1

1 + xE
− 1 +

(U + 1)2w1(U, V,D/E)

2D/E(V D/E + U2 + 2U + 1)(1 + U + V )3

)
,

H = − (U + 1)2D(U −D/E + 1)

4D/E(V D/E + U2 + 2U + 1)(1 + U + V )3
,

J = w2(U, V,D/E)

and U and V abbreviate U = U(x,E(x, 1)) and V = V (x,E(x, 1). Note that this equation
for D(x, y, w) has no combinatorial meaning, since the right hand is not a power series with
non-negative coefficients. Nevertheless, this equation is appropriate for the further analysis.

In the sequel we will consider first E,U, V as new variables, in particular when we apply
Lemma 3.4. Finally, we will substitute them by E = E(x, 1), U = U(x,E(x, 1)), V =
V (x,E(x, 1)). Set

t0 = t(1) ≈ 0.626371, where t(.) is defined in (2.26),

x0 = ρD(1) =
(3t0 + 1)(1 − t0)

3

16t30
≈ 0.038191,

w0 =
1

1− t0
exp

(
t0(t0 − 1)(t0 + 6)

6t20 + 20t0 + 6

)
− 1 ≈ 1.48488989

D0 = D(x0, 1, w0) =
t0

1− t0
≈ 1.676457

E0 = E(x0, 1) =
3t20

(1− t0)(3t0 + 1)
≈ 1.094175,

U0 = U(x0, E0) =
1

3t0
≈ 0.532166,

V0 = V (x0, E0) =
1 + 3t0
3(1 − t0)

≈ 2.568609.

Then we actually have

H(x0,D0, E0, U0, V0) = J(D0, E0, U0, V0) = 0,

which can easily be checked by writingH(x0,D0, w0, E0, U0, V0) and J(D0, E0, U0, V0) in terms
of t0. In order to further understand the behavior of the function D defined by (3.4), let us
start with the following auxiliary statement.

Lemma 3.4. Let v = (v1, . . . , vd) be a d-dimensional complex vector and let y = y(v) be a
function with y(v0) = y0 that satisfies a functional equation

R(y,v)2 + S(y,v) = 0, (3.5)

where R(y,v) and S(y,v) are analytic functions at (y0,v0) such that

R(y0,v0) = S(y0,v0) = 0
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and, in addition, all the partial derivatives of S up to order 2 are zero at (y0,v0), and
Ry(y0,v0) 6= 0. Then, y(v) has a local representation of the form

y(v) = P (v) ±
√

Q(v), (3.6)

where either the + or − sign applies and where P and Q are analytic at v0 with P (v0) =
Q(v0) = 0, and Q and all its partial derivatives up to order 2 are zero at v0. Furthermore, the
evaluations of the partial derivatives Qxxx, Qxxw and Qxwz at (v0) for any variables x,w, z of
v are

Qxxx =
R3

xSyyy − 3R2
xRySxyy + 3RxR

2
ySxxy −R3

ySxxx

R5
y

,

Qxxw =
1

R5
y

(
R2

xRwSyyy − 2RxRwRySxyy + 2RxR
2
ySxwy

−R2
xRySwyy +RwR

2
ySxxy −R3

ySxxw

)
,

Qxwz =
1

R5
y

(RxRwRzSyyy −RwRzRySxyy −RxRzRySwyy

−RxRwRySzyy +RwR
2
ySxzy +RzR

2
ySxwy +RxR

2
ySwzy −R3

ySxwz

)
.

Proof. Set
F (y,v) := R(y,v)2 + S(y,v). (3.7)

By the assumptions we have

F (y0,v0) = 0,

Fy(y0,v0) = 0,

Fyy(y0,v0) = 2Ry(y0,v0)
2 6= 0.

Hence, by the Weierstrass preparation theorem, there exist analytic functions p = p(v),
q = q(v), and K = K(y,v) with p(v0) = q(v0) = 0 and K(y0,v0) 6= 0 such that

F (y,v) = K(y,v)
(
(y − y0)

2 + p(v)(y − y0) + q(v)
)
. (3.8)

Consequently, the original Equation (3.5) is equivalent to

(y − y0)
2 + p(v)(y − y0) + q(v) = 0

and, thus, we obtain (3.6) with

P (v) = y0 −
p(v)

2
and Q(v) =

p(v)2

4
− q(v).

We now compute the partial derivatives of Q(v). The basic idea is to differentiate both
Equations (3.7) and (3.8), and to rewrite the partial derivatives of p(v) and q(v) in terms of
those of R(y,v) and S(y,v). In what follows, all functions are evaluated at (y0,v0) or (v0),
and the symbols x,w, z denote any three variables of v.

First observe that, due to Equation (3.7) and the fact that R = S = 0, the first partial
derivatives of F (y,v) vanish,

Fy = 0, Fx = 0, (3.9)
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and that the second derivatives of F (y,v) are given by

Fyy = 2R2
y, Fxy = 2RxRy, (3.10)

Fxx = 2R2
x, Fxw = 2RxRw.

Next, by using Equation (3.8) and p = q = 0, we obtain that

Fy = 0, Fx = Kqx, (3.11)

Fyy = 2K, Fxy = Kyqx +Kpx,

Fxx = 2Kxqx +Kqxx, Fxw = Kxqw +Kwqx +Kqxw.

Hence from Equations (3.9), (3.10) and (3.11) we derive that K = R2
y, and that

qx = 0, px = 2
Rx

Ry
,

qxx = 2
R2

x

R2
y

, qxw = 2
RxRw

R2
y

.

Consequently,

Qx =
ppx
2
− qx = 0,

Qxx =
ppxx + p2x

2
− qxx = 2

R2
x

R2
y

− 2
R2

x

R2
y

= 0,

Qxw =
ppxw + pxpw

2
− qxw = 2

RxRw

R2
y

− 2
RxRw

R2
y

= 0,

as claimed. Finally, it remains to obtain the values of Qxxx, Qxxw and Qxwz in terms of the
partial derivatives of H and J . To compute

Qxxx =
3

2
pxpxx − qxxx,

observe that, on the one hand, by differenciating Equation (3.8) we obtain

Fxxx = 3Kxqxx +Kqxxx,

Fxxy = Kyqxx + 2Kxpx +Kpxx,

Fxyy = 2Kypx + 2Kx,

Fyyy = 6Ky,

and that, on the other hand, from Equation (3.7) we obtain

Fxxx = 6RxRxx + Sxxx,

Fxxy = 4RxRxy + 2RyRxx + Sxxy

Fxyy = 4RyRxy + 2RxRyy + Sxyy

Fyyy = 6RyRyy + Syyy.
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It is just a matter of computation to derive that

Qxxx =
R3

xSyyy − 3R2
xRySxyy + 3RxR

2
ySxxy −R3

ySxxx

R5
y

,

as claimed. In a completely analogous way, and by considering the other third derivatives of
F , one obtains the expressions for Qxxw and Qxwz.

Lemma 3.4 can be used directly to study the behavior of the generating function D. In
particular, the following corollary applies to a more general class of functions.

Corollary 3.5. Let v = (v1, . . . , vd) be a d-dimensional complex vector and let y = y(v) be
a function with y(v0) = y0 that satisfies a functional equation

y = exp
(
G(y,v) +H(y,v)

√
J(y,v)

)
, (3.12)

where G, H, and J are analytic functions at (y0,v0) such that

H(y0,v0) = J(y0,v0) = 0

and
y0Gy(y0,v0) 6= 1.

Then, y(v) has a local representation of the same form as in Lemma 3.4, that is,

y(v) = P (v) ±
√

Q(v), (3.13)

where either the + or − sign applies and where P and Q are analytic at v0, the evaluation of
P at v0 is y0, and Q and all its partial derivatives up to order 2 are zero at v0. Furthermore,
the evaluation of Qxxx at v0, for any variable x in v, is

Qxxx(v0) =
6 (y0HyGx −Hx(y0Gy − 1))2 (y0JyGx − Jx(y0Gy − 1)) y20

(y0Gy − 1)5
,

with y0 = y(v0).

Proof. Just set

R(y,v) := log y −G(y,v), S(y,v) := −H(y,v)2J(y,v),

and apply Lemma 3.4. Note that the condition y0Gy(y0,v0) 6= 1 guarantees that Ry(y0,v0) 6=
0. Of course, by rewriting the derivatives of R and S in terms of the derivatives of G, H and
J we obtain the proposed representation for Qxxx.

Next we apply Corollary 3.5 to Equation (3.4) with y = D + 1 and v = (x,w,E,U, V ).
Indeed, note that

(D + 1)GD = −(−1 + t0)(5 t0
2 + 16 t0 + 6)

2(3 t0 + 1)(t0 + 3)
6= 1,

and the other conditions are verified easily. Thus, we obtain a representation of D as a
function of x,w,E,U, V of the form

D = P (x,w,E,U, V )±
√

Q(x,w,E,U, V ), (3.14)
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where Q and all partial derivatives of Q up to order 2 vanish. In particular if we substitute
E = E(x, 1) etc. we see that Q(x,w,E(x), U(x,E(x)), V (x,E(x))) can be represented as

Q(x,w,E(x, 1), U(x, 1), V (x, 1)) (3.15)

= X3h1(X) +X2Wh2(X,W ) +XW 2h3(W ) +W 3h4(W ),

where W = 1−w/w0, X =
√

1− x/x0 and h1, . . . , h4 are proper convergent power series. A
simple (but tedious) computation provides

h1(0) ≈ 0.009976458560,

h2(0) ≈ −0.03944762502,
h3(0) = 0,

h4(0) ≈ 0.09137050078.

Note that we have to be careful in the computation of the expansion of U(x,E(x)) and
V (x,E(x)). Recall that Z =

√
1− z/τ(x), so that we have to substitute z = E(x) and that

τ(x0) = E0. Hence, Z can be represented as

Z = c1X + c2X
2 + c3X

3 + · · ·

for certain (computable) constants cj.
It should be remarked that h1(0) > 0, h4(0) > 0, and h3(0) = 0. This shows that

D(x, 1, w0) has a singular behavior of the form

D(x, 1, w0) = g(x) + h(x)X3 (3.16)

with X =
√

1− x/x0 and where h(x0) > 0, that is, we have to choose the + sign.
It is also not difficult to show that D(x, 1, w0) has an analytic continuation to a ∆-region.

For this purpose we can proceed similarly as for the function D(x, y) = D(x, y, 1). For
technical reasons it is preferable to work with f(x, y, w) = S(x, y, w)+H(x, y, w) that satisfies
a functional equation of the form f = F (x, y, w, f), where F has non-negative coefficients.
The point (x0, 1, w0, f(x0, 1, w0)) has the property that Ff (x0, 1, w0, f(x0, 1, w0)) = 1. So, we
have |Ff (x, 1, w0, f(x, 1, w0))| < 1 for |x| ≤ x0 and x 6= x0, and the implicit function theorem
implies that f(x, 1, w0) can be continued analytically to a ∆-region. Consequently the same
holds for D(x, 1, w0).

Remark We want to note that in the expansion (3.15) we actually have h3(W ) = 0 which
can be shown without doing any numerical calculations. If h3 6= 0 it would follow that the
dominant singularity of D(x, 1, w) would have a singular behavior of the form XW ℓ−1/2 for
some integer ℓ ≥ 0 which would lead to an asymptotic leading term of the coefficient of xnwk of
the squareroot part of the form c x−n

0 w−k
0 n−3/2k−ℓ−1/2 Similarly if P (x,w,E(x), U(x), V (x))

has a factor X in its expansion then the dominant behavior in n would be of the form
x−n
0 n−3/2. In both cases this contradicts the asymptotic expansion of for the coefficient

[xn]D(x, 1, 1) ∼ c1 x
−n
0 n−5/2.
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3.3 Proof of Lemma 3.1

With all the above facts at hand it is now not very difficult to provide the proof of Lemma 3.1
We use the explicit representation (2.33) and apply the local expansion (3.3) for E(x, 1) and
(3.16) for D(x, 1, w0) (and also those of u = U(x,E(x, 1)) and v = V (x,E(x, 1))). This leads
directly to a singular representation of B′(x, 1, w0) of the following type:

B′(x, 1, w0) = g1(x) + h1(x)X
3. (3.17)

Note that we definitely have h1(x0) 6= 0 and hence h1(x0) > 0. Namely, if h1(x0) = 0 then
we would have [xn]B′(x, 1, w0) = O

(
x−n
0 n−7/2

)
, which is impossible. Thus, by applying the

transfer lemma of Flajolet and Odlyzko [15] we obtain

[xn]B′(x, 1, w0) ∼ c1x
−n
0 n−5/2,

which completes the proof of the Lemma 3.1. We recall that it is easy to establish analytic con-
tinuation of B′(x, 1, w0) to a proper ∆-region. As mentioned above this holds for D(x, 1, w0),
and of course for E(x, 1) = D(x, 1, 1) and u = U(x,E(x)) and v = V (x,E(x)), too. Hence,
the representation (2.33) transfers the analytic continuation property to B′(x, 1, w0).

3.4 Proof of Lemma 3.2

By using (2.29) and the local expansions (2.28) and (3.17) it follows that

C•(x, 1, w0) = g2(x) + h2(x)

(
1− x

ρC

)3/2

. (3.18)

Now we proceed as is the 2-connected case.

4 The Lower Bound

This section is structured as follows. In the next subsection we collect some basic facts and
tools that will be useful in our arguments. Then, in Section 4.2 we give the full proof of
the lower bound in Theorem 1.1 for the 2-connected graphs, i.e., we show a lower bound
for the maximum degree in random 2-connected planar graphs that holds w.h.p. Finally,
in Sections 4.3 and 4.4 we demonstrate that the lower bounds for (connected) graphs in
Theorem 1.1 are simple corollaries of the lower bound for the 2-connected graphs.

4.1 Networks and Boltzmann Sampling

Before we investigate the maximum degree of graph that is drawn uniformly at random from
the class of 2-connected planar graphs, let us mention an auxiliary result that reduces the
analysis to the study of random networks. The following lemma is from [16].

Lemma 4.1. Let Bn be a uniform random graph from Bn, and Dn a network that is drawn
uniformly at random from Dn. Suppose that Pr[Dn−2 ∈ P] ≥ 1 − f(n − 2), where P is any
property of graphs that is closed under automorphisms. Then Pr[Bn ∈ P] ≥ 1− 6f(n− 2).
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Therefore, it is sufficient to show a lower bound for the maximum degree of a random
network.

Recall the decomposition of networks that is described in Section 2.3, see (2.6)–(2.11).
In particular, (2.6) guarantees that a network is either an edge, or a series-network, or a
parallel network, or a core network. Except of the former case, in all other cases the classes
of networks are described recursively. We will say that a network D has a (3-connected) core
of size s, if the largest graph from T that was used in the decomposition of D has s vertices.
Note that a network can have an empty core, in which case it consists only of series and
parallel connections. However, in [16, 21] it was shown that a “typical” network has a very
large core; here we present a simplified version of that result that is sufficient for our purposes.

Theorem 4.2. There is a constant c > 1/2 such that the following is true. Let ε > 0 and
denote by C(Dn) the size of the largest core in a random network Dn from Dn. Then, with
probability 1− o(1), we have that C(Dn) > cn.

The Pole Degree in the Boltzmann Model In the sequel we will write rd(N) for the
degree of the left pole of a network N . The following technical lemma is an important tool
in the proof of the lower bound of the maximum degree of random networks.

Lemma 4.3. Let γ be a random network drawn from the Boltzmann distribution for D with
parameters x = ρD and y = 1. Then

Pr[rd(γ) ≥ k] ∼ ck−5/2w−k
0 ,

for some constant c > 0, where w0 is given in (3.1).

Proof. Let ℓ ≥ 1. The definition of the Boltzmann model implies that

Pr[rd(γ) = ℓ] =
1

D(ρD, 1)

∑

D∈D: rd(D)=ℓ

ρ
v(D)
D

v(D)!
=

[wℓ]D(ρD, 1, w)

D(ρD, 1)
,

By following the representation (3.14) of D(x, 1, w) and by setting x = x0 in (3.15) we obtain
a singular representation of the form

D(x0, 1, w) = a(w) + b(w)

(
1− w

w0

)3/2

for some functions a(w), b(w) that are non-zero and analytic at w0. It is also easy to see that
D(x0, 1, w) has an analytic continuation to a proper ∆-domain in w. We just have to modify
the arguments at the end of Section 3.2. Hence we can apply the Transfer Lemma of Flajolet
and Odlyzko and obtain

Pr[rd(γ) = ℓ] ∼ c1ℓ
−5/2w−ℓ

0

for some constant c1 > 0. By adding these values up for ℓ ≥ k we obtain the statement of the
lemma.
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4.2 Proof of the Lower Bound for 2-connected Graphs in Theorem 1.1

Let Dn denote a random network from Dn, and recall the definition of w0 in (3.1). Moreover,
let ε = ε(n) = c′ log log n/ logw0

n, where c′ = 10/ logw0. By applying Proposition 4.1 we
infer that if

Pr
[
∆(Dn−2) ≤ (1− ε) logw0

n
]
= o(1),

then it follows also that Pr[∆(Bn) ≤ (1 − ε) logw0
n] = o(1). We thus proceed with the

estimation of the above probability, where we write n instead of n− 2 for brevity.
First of all, by applying Theorem 4.2 we obtain that

p = Pr
[
∆(Dn) ≤ (1− ε) logw0

n
]
= Pr

[
∆(Dn) ≤ (1− ε) logw0

n and C(Dn) > n/2
]
+ o(1),

where C(D) denotes the size of the largest core in a network D. Let us write γ = ΓD(ρN , 1),
where ΓD is the Boltzmann sampler for the class of networks described in Section 2.7. By
using the first equality in (2.2) we infer that

p = Pr
[
∆(γ) ≤ (1− ε) logw0

n and C(γ) > n/2 | γ ∈ Dn

]
+ o(1),

By Lemma 2.3 we obtain that Pr[γ ∈ Dn] = Θ(n−5/2). So,

p = O(n5/2) Pr
[
∆(γ) ≤ (1− ε) logw0

n and C(γ) > n/2 and γ ∈ Dn

]
+ o(1). (4.1)

In the subsequent analysis we will make the following modification of the Boltzmann sam-
pler ΓD(x, y). Let L = (L1, L2, . . . ) be an infinite list, where for all i ≥ 1 we have Li ∈ D.
Recall the definition of the sampler ΓH(x, y) that generates core networks. ΓH(x, y) first
samples a network from T̄ , and then replaces independently every edge by a network that
is drawn from the Boltzmann distribution with parameters x and y for D. Instead of doing
this, we modify ΓH(x, y) so that it uses graphs from L instead, provided that the network
sampled from T̄ is large. In particular, the sampler Γ̃H(x, y; n,L) works as follows.

Γ̃H(x, y; n,L) : T ← ΓT̄ (x,D(x, y)) (∗)
if T has more than n/2 vertices

i← 1
foreach edge e of T

γe ← Li

i← i+ 1
else

foreach edge e of T
γe ← ΓD(x, y)

replace every e in T by γe
return T , relabeling randomly its non-pole vertices

Note that if we choose the Li’s independently from the Boltzmann distribution with param-
eters x and y for D, then for any D ∈ D we have for all values of n that that

Pr[ΓH(x, y) = D] = Pr[Γ̃H(x, y; n,L) = D].

In other words, we can work with Γ̃H instead of ΓH. In particular, we shall assume
that ΓD, ΓS and ΓP use Γ̃H instead of ΓH, where the Li’s are independent samples from
the Boltzmann distribution with parameters x and y for D.
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With these assumptions in mind, let us proceed with the estimation of the probability on
the right-hand side of (4.1). First of all, the event “C(γ) > n/2” implies that at some point in
time in the construction of γ = ΓD(x, y) the sampler Γ̃H(x, y; n,L) is used, and the graph T
(generated in the line marked with (∗)) has > n/2 vertices. Since T is a 3-connected planar
graph minus an edge, it has ≥ n/2 edges. Thus, in the construction of γ certainly the first
⌊n/2⌋ graphs from L are used. Recall that every edge e = {u, v} of T is subsequently replaced
by some distinct network Li from L, so that the degree of, say, u is at least rd(Li). In other
words, the event “∆(γ) ≤ (1− ε) log1/q n and C(γ) > n/2 and γ ∈ Dn” implies that the first
⌊n/2⌋ graphs in L have the property that the root degree of their left pole is ≤ (1−ε) logw0

n.
Hence, by using (4.1), the desired probability is at most

p ≤ O(n5/2) Pr
[
∀1 ≤ i ≤ ⌊n/2⌋ : rd(Li) ≤ (1− ε) logw0

n
]
+ o(1).

Recall that the Li’s are independent samples from the Boltzmann distribution with parame-
ters ρD and 1 for D. By applying Lemma 4.3 we obtain for sufficiently large n that

Pr
[
rd(Li) ≤ (1− ε) logw0

n
]
≤ 1− (log n)−3w

−(1−ε) logw0
n

0 = 1− (log n)−3n−(1−ε).

So, since ε = c′ log log n/ logw0
n, by choosing, say, c′ = 10/ log(w0)

p ≤ O(n5/2)
(
1− (log n)−3n−(1−ε)

)⌊n/2⌋
+ o(1) = o(1),

and the proof is completed.

4.3 Proof of the Lower Bound for Connected Graphs in Theorem 1.1

The proof of the lower bound for random connected planar graphs in Theorem 1.1 follows
directly from the lower bound in the previous section. More precisely, in [26, 21] it was shown
that a random planar graph contains with probability 1 − o(1) a very large 2-connected
subgraph.

Theorem 4.4. There is a constant c > 1/2 such that the following is true. Let ε > 0 and
denote by b(Cn) the size of the largest 2-connected subgraph in a random graph Cn from Cn.
Then, w.h.p.,

|b(Cn)− cn| ≤ εn.

Conditional on any specific value of b(Cn) that is within the bounds given in the above
theorem, note that any 2-connected planar graph with b(Cn) vertices is equally likely to
be the largest 2-connected subgraph of Cn. Thus, for sufficiently large n, the maximum
degree in Cn is w.h.p. at least the maximum degree of a random 2-connected planar graph
with, say, n/4 vertices. By using the results of the previous section, this is w.h.p. at least
log(n/4)/ log(w0)−O(log log n) = log n/ log(w0)−O(log log n), and the proof is completed.

4.4 Proof of the Lower Bound for Planar Graphs in Theorem 1.1

The statement (1.1) in Theorem 1.1 for random (not necessarily connected) planar graphs
is an immediate consequence of Theorem 3.3. Indeed, we can assume that w.h.p. a random
planar graph contains a component of size at least, say, n− log log n. Since the largest degree
of a vertex outside this component is bounded by log log n, the claim follows from the results
in Section 4.3.
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5 The Expected Value of the Maximum Degree

In this section we present the proof of (1.2) in Theorem 1.1. We shall restrict ourselves to
the case of 2-connected graphs, since the same statement for connected and general planar
graphs follows by similar arguments. First of all, if we write Bn for a random 2-connected
planar graph, note that

E∆(Bn) =
∑

ℓ≥1

ℓPr[∆(Bn) = ℓ] ≥ (c log n−O(log log n))
∑

|ℓ−c logn|=O(log logn)

Pr[∆(Bn) = ℓ].

Since (1.1) guarantess that |∆(Bn)− c log n| = O(log log n) w.h.p., we infer that

E∆(Bn) ≥ (1− o(1)) c log n,

as claimed. To see the upper bound for the expectation, let us write, as in Section 3, Xn,k

for the number of vertices of degree k in Bn. Moreover, abbreviate ℓ+ = c log n+ 2 log log n.
Then

E∆(Bn) ≤ ℓ+ +
∑

ℓ≥ℓ+

ℓPr[Xn,ℓ > 0].

However, by applying (3.2) we obtain that

Pr[Xn,ℓ > 0] ≤ EXn,ℓ = O(nq−ℓ).

Thus
E∆(Bn) ≤ ℓ+ +O(1)

∑

ℓ≥ℓ+

ℓnq−ℓ ≤ ℓ+ +O(1)ℓ+ n q−ℓ+ = (1 + o(1))ℓ+,

and the proof is completed.

6 Conclusion and Discussion

The main objective of this paper is to derive asymptotic bounds for the maximum degree
of random planar graphs. We remark that for random planar maps (graphs with a fixed
embedding in the plane), much more precise results are known. It is shown in [18] that the
maximum degree ∆n of random planar maps with n edges is asymptotically log n/ log(6/5),
and that ∆n − E∆n follows asymptotically an extreme value (Gumbel) distribution. It is
plausible to conjecture the same results for graphs, since a random planar graph is made out
of a large 3-connected map to which small graphs are substituted for edges and attached to
vertices. However, the results in [18] require the analysis of higher moments for the number
of vertices of given degree, and already the analysis of the second moment does not appear
feasible at present for planar graphs.

In the remainder of this section we describe two possible extensions of the present work:
random planar graphs with fixed average degree, and the expected number of vertices of
degree k.

30



α

c(α)
1/ log(4/3)

1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 6.1: The function c(α). Note that limα=0+ c(α) = 0 and limα=3− c(α) = log(4/3). This
is consistent with the facts that w.h.p. the maximum degree of a random tree is o(log n) [24]
and the maximum degree of a random triangulation is (1 + o(1)) log n/ log(4/3) [19].

6.1 Fixed Average Degree

Besides the uniform distribution on the class of all planar graphs with n vertices it is also
interesting to study random planar graphs, where the ratio of the number of vertices and the
number of edges is fixed to some constant 1 < α < 3. Analytically, this means that we have
to take in the generating functions also the variable y into account (and usually it will be set
to a value different from 1). For example, in [20], using this method, the asymptotic number
of planar graphs with a fixed edge density was determined.

Actually, this program could also be worked out for determining the maximum degree.
More precisely, it is possible to adapt and extend several parts of our analysis to show that,
w.h.p., the maximum degree ∆n,α of a random planar graph with n vertices and αn edges
satisfies

|∆n,α − c(α) log n| ≤ O(log log n), (6.1)

where c(α) = 1/ log(w(t(y))/y), t = t(y) is given by (2.26),

w(t) =
1

(1− t)
exp

{
t(t− 1)(t+ 6)

(3t+ 1)(t+ 3)

}
− 1,

and α and y are linked by the equation α = −yρ′B(y)/ρB(y). Indeed, as already shown in [12],
w0 = w(t(y))/y is the singular point of the functions C(ρC(y), y, w) and B(ρB(y), y, w).
A more careful analysis along the lines of Lemma 3.4, Corollary 3.5 and the argument in
Section 4.2, where now all functions also depend on y, yields the statement in (6.1). However,
the calculations are technically more involved. In particular we need an additional (saddle
point like) Cauchy integration in oder to obtain the asymptotics of the coefficient of [yαn].
Figure 6.1 contains a plot of the function c(α).
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6.2 The Expected Number of Vertices of Degree k

We recall that the expected number of vertices of degree k is given by EXn,k = npn,k, where
pn,k denotes the probability that the root vertex of a random planar graph with n vertices
has degree equal to k. Moreover, note that

pn,k =
[xnwk]C•(x, 1, w)

[xn]C•(x, 1, 1)
.

Lemma 2.2 implies that

[xn]C•(x, 1, 1) = (1 + o(1))c n−5/2 ρ−n
C n!.

Thus, in order to obtain the asymptotic value of pn,k it is necessary to derive bivariate
asymptotics for the coefficients of C•(x, 1, w) with respect to x and w. A similar task was
performed in [13], where the authors solved this problem for the case of series parallel graphs.
In the present setting, the generating functions are significantly more involved. However,
since the analytic structure of the generating function enumerating planar networks, see
Section 3.2, is analyzed already quite thoroughly in this work, it it is possible to extend the
methods developed in [13] to compute the asymptotic value of pn,k. Again we have to apply
another Cauchy integration in order to obtain the asysmptotics for the coefficient of wk for k
of order O(log n).
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[4] M. Bodirsky, É. Fusy, M. Kang, and S. Vigerske. Boltzmann samplers, Pólya theory,
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