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Abstract. We prove that automatic sequences generated by synchronizing automata sat-
isfy the full Sarnak conjecture. This is of particular interest, since Berlinkov [2, 3] proved
recently that almost all automata are synchronizing.

1. Introduction

In 2009, Peter Sarnak stated the following conjecture [17]:

Conjecture 1.1. Let µ be the Möbius function. For any sequence ξ(n) observed by a deter-
ministic �ow (X,T ), it holds that ∑

n≤N

ξ(n)µ(n) = o(N).(1)

There are some classes of functions for which the Sarnak conjecture has already been
proved, as for example periodic sequences, quasiperiodic sequences [7], nilsequences [12] and
horocycle �ows [5].
The purpose of this paper is to add a further class of sequences ξ(n) that ful�ll the Sarnak

conjecture, namely automatic sequences that are generated by synchronizing automata.
Let us be more precise. Suppose that A is a complete deterministic �nite automaton with

output (DFAO) with input alphabet Σ = {0, . . . , k − 1}, transition function δ, state set Q
with the initial state q0 and output mapping τ : Q → ∆. We say a sequence (an)n∈N is
automatic if there exists a DFAO A such that an = τ(δ(q0,wn)) holds for all n ≥ 0, where
wn is the representation of n in base k. As in the de�nition given in [1, p. 152], we assume
the input starts with the most signi�cant digit.
A DFAO A is called synchronizing if there exists a synchronizing word w̃ ∈ Σ∗ whose

action resets A, i.e. w̃ leaves the automaton in one speci�c state, no matter at which state
in Q it is applied: δ(q, w̃) = δ(q0, w̃) for all q ∈ Q. Note that the output of a synchronizing
automaton for an input word only depends on the last occurence of the synchronizing word
and the part thereafter.
We �x a synchronizing DFAO A and denote by a the corresponding automatic sequence

(an)n∈N. We denote by T the shift-operator on the sequences in ∆. We then de�ne X :=

{T n(a) : n ∈ N0}. Since the subword complexity of an automatic sequence is at most linear
it follows that the topological entropy of the dynamical system (X,T ) is zero. Thus, any
automatic sequences (as well as any other sequence observed by (X,T )) is observed by a
deterministic �ow. It is therefore natural to study the Sarnak conjecture for automatic
sequences and their related dynamical system.
Actually a Möbius randomness law has already been established for the Thue�Morse se-

quence [6], [15], the Rudin�Shapiro sequence [16] and sequences related to invertible au-
tomata [8, 10].
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As already mentioned the main focus of this paper is to study automatic sequences that are
generated by synchronizing automata. It is worth mentioning that Berlinkov [2, 3] establishes
a result showing that �almost all� automata are synchronizing. In particular this means that
we are studying � more or less � almost all automatic sequences and only exceptional cases
are not covered. (By the way the Thue�Morse sequence as well the Rudin�Shapiro sequence
are exceptional from this point of view.) Nevertheless the following general result can be
proved by elementary methods.

Theorem 1.2. Let h : N→ C be a bounded function ful�lling∑
n≤N

h(an+ b) = o(N) for all positive integers a, b.(2)

Let, furthermore, (X,T ) be the dynamical system related to an automatic sequence (an)n∈N
that is generated by a synchronizing automaton, where the input starts with the most signif-
icant digit of n. Then for all sequences ξ(n) := f(T n(x)) (with x ∈ X and f ∈ C(X,C)) we
have ∑

n≤N

ξ(n)h(n) = o(N).

This implies the full Sarnak conjecture for this dynamical system.

In Section 3 we address the case where the sequence under consideration is produced by a
synchronizing automaton, where the input starts with the least signi�cant digit. Finally in
Section 4 we discuss Gelfond-like problems for sequences that are generated by synchronizing
automata.

2. Proof of Theorem 1.2

We recall that we work with a �xed synchronizing DFAO A and denote by a the cor-
responding automatic sequence (an)n∈N. We denote by T the shift-operator on the se-

quences in ∆ and de�ne X := {T n(a) : n ∈ N0}. In this case we can use the metric
d(x, y) =

∑∞
n=0 2−n−1dn(xn, yn) on X, where dn denotes the discrete metric on ∆.

First we present a simple lemma that reduces the Sarnak conjecture for the dynamical
system (X,T ) (i.e. the full Sarnak conjecture for a) to a Möbius random law on the corre-
sponding automatic sequence a = (an)n∈N.

Lemma 2.1. Suppose that for every j ≥ 1 and for every function g : ∆j → C we have∑
n≤N

g(an+`, an+`+1, . . . , an+`+j−1)h(n) = o(N),

uniformly for ` ∈ N, where h : N→ C satis�es (2). Then we also have∑
n≤N

ξ(n)h(n) = o(N).

for all sequences of the form ξ(n) = f(T nx), where x ∈ X and f ∈ C(X,C).

Proof. Let f ∈ C(X,C) and ε > 0 be given and suppose that h : N → C satis�es (2) and
w.l.o.g. |h(n)| ≤ 1. Furthermore we assume that ∆ is linearly ordered.
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By continuity there exists δ > 0 such that |f(x) − f(y)| < ε/2 if d(x, y) < δ. Next �x
j ≥ 1 with 2−j ≤ δ. For every x = (x0, x1, . . .) ∈ X set

x(j) = (x0, x1, . . . , xj−1, yj, yj+1, . . .)

such that (yj, yj+1, . . .) is the lexicographically smallest sequence in ∆ with (x0, x1, . . . , xj−1,
yj, yj+1, . . .) ∈ X. Then d(x, x(j)) < 2−j ≤ δ and consequently |f(x)− f(x(j))| < ε/2. Hence∣∣∣∣∣∑

n≤N

f(T nx)h(n)−
∑
n≤N

f((T nx)(j))h(n)

∣∣∣∣∣ ≤ ε

2
N.

Since x(j) only depends on x0, . . . , xj−1 the function f(x(j)) depends only on x0, . . . , xj−1, too,
and can be written as f(x(j)) = g(x0, . . . , xj−1) for a properly chosen function g : ∆j → C.
By assumption there exist N0 = N0(ε) such that∣∣∣∣∣∑

n≤N

g(an+`, an+`+1, . . . , an+`+j−1)h(n)

∣∣∣∣∣ ≤ ε

2
N

for all N ≥ N0 and all ` ≥ 0.
Finally we �x x ∈ X. By de�nition this means that for all N ∈ N there exists ` ∈ N with

xn = an+` for n = 1, . . . , N + j.(3)

In particular it follows that

f((T nx)(j)) = g(an+`, an+`+1, . . . , an+`+j−1) for n = 1, . . . , N,

and, thus, ∣∣∣∣∣∑
n≤N

f((T nx)(j))h(n)

∣∣∣∣∣ =

∣∣∣∣∣∑
n≤N

g(an+`, an+`+1, . . . , an+`+j−1)h(n)

∣∣∣∣∣ ≤ ε

2
N.

Consequently we have for N ≥ N0(ε)∣∣∣∣∣∑
n≤N

f(T nx)h(n)

∣∣∣∣∣ ≤ εN,

which completes the proof of the lemma. �

Next we �nd speci�c bounds on how often synchronizing words occur.

Lemma 2.2. Let A be a synchronizing DFAO with synchronizing word w̃ ∈ Σm0. There
exists η > 0 depending only on m0 and k such that the number of synchronizing words of
length n is bounded from below by kn(1− km0−ηn) for all n ∈ N, that is, at most O(kn(1−η))
words of length n are not synchronizing.

The same kind of statement holds if we delete leading zeros of the words in Σn and consider
only those words in Σn for which the reduced word is synchronizing.

Proof. We note that if w̃ occurs as a (consecutive) subword of some w ∈ Σ∗, then w is also
a synchronizing word. We decompose now every word w ∈ Σn into bn/m0c distinct parts,
each of length m0 and one part of length (n mod m0). If w is not synchronizing, it follows
directly that each of the blocks of length m0 must not coincide with w̃. Thus we can bound
the number of words of length n that are not synchronizing by (km0 − 1)bn/m0c · kn mod m0 .

We de�ne η := log(km0/(km0−1))
log(km0 )

> 0 and the statement follows directly.
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It is easy to extend the proof to the reduced case, where we delete leading zeros. �

Now we are prepared to prove the following proposition which gives rise to the main
theorem of this paper, Theorem 1.2.

Proposition 2.3. Let (an)n∈N be an automatic sequence generated by a synchronized au-
tomaton. Then for all j ∈ N, h : N→ C ful�lling (2) and g : ∆j → C∑

n≤N

g(an+`, an+`+1, . . . , an+`+j−1)h(n) = o(N)

uniformly for ` ∈ N.

Proof. Without loss of generality, we assume that g is absolutely bounded by 1. We have to
show that ∀ε > 0,∃N0 ∈ N such that for all N ≥ N0 and all ` ≥ 0∣∣∣∣∣∑

n≤N

g(an+`, an+`+1, . . . , an+`+j−1)h(n)

∣∣∣∣∣ ≤ εN,

in particular, N0 does not depend on `. We choose n1 such that there exist at least kn1(1−
ε/(3kj)) synchronizing words of length n1. (Lemma 2.2 shows that

n1 =
1

η

(
m0 −

log(ε/(3kj))

log k

)
is a valid choice.) Let M denote the set of integers 0 ≤ m < kn1 such that the j input
sequences wm+i mod kn1 , 0 ≤ i < j, are synchronizing. Clearly we have |M | ≥ kn1(1 − ε/3).
We then choose N0 such that for all a < kn1 , N ≥ N0∣∣∣∣∣∣∣

∑
n≤N

n≡a mod kn1

h(n)

∣∣∣∣∣∣∣ ≤
ε

3

N

kn1
.

Furthermore we assume that N0 ≥ 3kn1/ε. Note that N0 only depends on n1, k and ε(and
h).
Furthermore we note that if n ≡ m mod kn1 for some m < kn1 for which the input word

wm is synchronizing we have an = am since wn = vwm for some v ∈ {0, . . . , k − 1}∗.
Hence, we obtain∣∣∣∣∣∑

n≤N

g(an+`, an+`+1, . . . , an+`+j−1)h(n)

∣∣∣∣∣
≤
∑
m∈M

∣∣∣∣∣∣∣
∑
n≤N

n+`≡m mod kn1

g(an+`, an+`+1, . . . , an+`+j−1)h(n)

∣∣∣∣∣∣∣+ #{n ≤ N : (n+ ` mod kn1) /∈M}

≤
∑
m∈M

|g(am, . . . , am+j−1)|

∣∣∣∣∣∣∣
∑
n≤N

n≡m−` mod kn1

h(n)

∣∣∣∣∣∣∣+

⌈
N

kn1

⌉
· (kn1 − |M |)

≤ ε

3
N +

(
N

kn1
+ 1

)
kn1ε

3
≤ εN,
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which completes the proof. �

Of course this implies Theorem 1.2.

3. Reading the digits in reverse order

We made the usual convention that we start with the most signi�cant digit of wn for the
input in A. We could also start with the least signi�cant digit but then we will get (in
general) another automatic sequence which can be also considered as an automatic sequence
generated by a synchronizing automaton.
If we start with the most signi�cant digit, then the analysis of Section 2 shows that the

density of the pull-back of an element of the output set exists (see also Section 4). However, if
we start with the least signi�cant digit the situation is completely di�erent. As we will see in
the analysis below we will typically get no density (just a logarithmic density). Nevertheless
we can also say something in the direction of the Sarnak conjecture for sequences of this
kind (however, in a slightly di�erent form).

Theorem 3.1. Let h : N→ C be a bounded function ful�lling∑
n≤N

h(n) = o(N).(4)

Let, furthermore, (an)n∈N be an automatic sequence that is generated by a synchronizing au-
tomaton, where the input starts with the least signi�cant digit of n; without loss of generality
we assume that ∆ ⊆ C. Then we have∑

n≤N

anh(n) = o(N).

This implies that (an)n∈N is orthogonal to the Möbius function in the sense (1).

In order to prove Theorem 3.1 we will use the following lemma.

Lemma 3.2. Let k ≥ 2, f : N→ C a bounded function and B a subset of N with density 1.
Then the following properties are equivalent:

(5)
∑
n≤N

f(n) = o(N) (N →∞).

(6) For all b ∈ B
∑

0≤n<kt
f(bkt + n) = o(kt) (t→∞).

Proof. Without loss of generality, we may assume that f is bounded by 1.
First we assume (5) and prove (6) for any non-negative integer b not necessarily belonging

to B. For ε > 0, we select Tε such that for all N ≥ kTε∣∣∣∣∣∑
m≤N

f(m)

∣∣∣∣∣ ≤ ε

3b
N.
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For t ≥ Tε, we have ∣∣∣∣∣∣
∑
n≤kt

f(bkt + n)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

m≤(b+1)kt

f(m)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
m≤b kt

f(m)

∣∣∣∣∣∣
≤ ε

3b

(
(b+ 1)kt + bkt

)
≤ εkt,

which proves (6).
Second we now assume that (6) holds true. We �x ε > 0 and construct an integer V such

that

(7) for all N ≥ kV

∣∣∣∣∣∑
n≤N

f(n)

∣∣∣∣∣ ≤ εN.

For this purpose we �rst select v such that

(8) for all M ≥ kv #([1,M) ∩ B) ≥
(

1− ε

4

)
M and k−v ≤ ε

4
.

Condition (6) says that for all b ∈ B and for all η > 0 there exists T (b, η) such that for all
t ≥ T (b, η)

(9)

∣∣∣∣∣∣
∑

0≤n<kt
f(bkt + n)

∣∣∣∣∣∣ ≤ ηkt.

We de�ne V by

(10) V = v + max
b∈B, b≤kv+1

T
(
b,

ε

4k2v+1

)
.

Let N ≥ kV ; we let u = blogN/ log kc so that ku ≤ N < ku+1. We set A = bN/ku−vc so
that kv ≤ A < kv+1. We split the interval [1, N ] into the disjoint union of A + 1 intervals
I0, I1, . . . , IA given by

I0 = [1, ku−v),

Ia = [aku−v, (a+ 1)ku−v), for 1 ≤ a < A,

IA = [Aku−v, N ].

Since the length of any interval Ii is at most ku−v, we have

(11)

∣∣∣∣∣ ∑
n∈I0∪IA

f(n)

∣∣∣∣∣ ≤ |I0|+ |IA| ≤ 2ku−v ≤ 2Nk−v ≤ ε

2
N.

Since A ≥ kv, we have by (8)

(12)

∣∣∣∣∣ ∑
1≤a<A, a 6∈B

∑
n∈Ia

f(n)

∣∣∣∣∣ ≤ ∑
1≤a<A, a 6∈B

|Ia| ≤
ε

4
Aku−v ≤ ε

4
N.
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If a ∈ B, we have by (9) and (10)∣∣∣∣∣∑
m∈Ia

f(m)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

0≤n<ku−v

f(aku−v + n)

∣∣∣∣∣∣ ≤ ε

4k2v+1
ku−v ≤ ε

4kv+1
N.

Since A ≤ kv+1, we have

(13)

∣∣∣∣∣ ∑
1≤a<A, a∈B

∑
m∈Ia

f(m)

∣∣∣∣∣ ≤ ∑
1≤a<A, a∈B

∣∣∣∣∣∑
m∈Ia

f(m)

∣∣∣∣∣ ≤ Aε

4kv+1
N ≤ ε

4
N.

Putting together (11), (12), and (13), we obtain (7), which completes the proof of Lemma 3.2
�

It is now easy to complete the proof of Theorem 3.1.

Proof. (of Theorem 3.1) First we observe that (4) and the �rst part of Lemma 3.2 imply∑
0≤n<kt

h(bkt + n) = o(kt)

for all positive integers b.
Next let B be the set of positive integers b for which the k-ary expansions wb are synchro-

nizing (when we start with the least signi�cant digit). Hence for every integer of the form
m = bkt + n (with b ∈ B and 0 ≤ n < kt) the output am of the automaton is constant,
namely ab. Thus it follows that∑

0≤n<kt
abkt+nh(bkt + n) = ab

∑
0≤n<kt

h(bkt + n) = o(kt) (t→∞).

By Lemma 2.2 the set B has density 1. Consequently it follows by Lemma 3.2 that∑
n≤N

anh(n) = o(N), (N →∞)

which �nishes the proof. �

We remark that we (usually) get no densities of the pull-back of the elements of the output
set. Namely, for every synchronizing b the set

⋃
t≥0{bkt + n : 0 ≤ n < bt} (on which the

output sequence equals ab) has no density.
Finally we note that we do not see how we could generalize Theorem 3.1 to the dynamical

system related to (an)n∈N. We can show that for any j ≥ 1, g : ∆j → C and any ` ≥ 1, one
has ∑

n≤N

g(an+`, an+`+1, . . . , an+`+j−1)h(n) = o(N), (N →∞),

but it is not clear how to show the uniformity in `.

4. Gelfond Problems

Let sk(n) denote the k-ary sum-of-digits function. Then it is well known that sequences
of the form an = sk(n) mod m are k-automatic. The most prominent sequence of this form
is the Thue�Morse sequence tn = s2(n) mod 2.
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Without using (or even knowing) the notion of automatic sequences, Gelfond [11] proved
that for every ` ∈ {0, 1, . . . ,m− 1}

#{n ≤ N : sk(an+ b) ≡ ` mod m} =
N

m
+O

(
N1−η)

for some η > 0 (provided that (k−1,m) = 1), that is, linear subsequences of the k-automatic
sequence an = sk(n) mod m are asymptotically uniformly distributed on the output alphabet
{0, 1, . . . ,m− 1}.
What is even more interesting, in the same paper [11] Gelfond formulated three problems,

which are usually called Gelfond Problems:

(1) If k1, k2 ≥ 2 are coprime integers and (k1 − 1,m1) = (k2 − 1,m2) = 1 then

#{n ≤ N : sk1(n) ≡ `1 mod m1, sk2(n) ≡ `2 mod m2} =
N

m1m2

+O
(
N1−η)

for some η > 0.
(2) If k ≥ 2 with (k − 1,m) = 1 then

#{p ≤ N : p ∈ P, sk(p) ≡ ` mod m} =
π(N)

m
+O

(
N1−η)

for some η > 0. (Here π(x) denotes the number of primes ≤ x.)
(3) If k ≥ 2 with (k − 1,m) = 1 then for every integer polynomial P (x)

#{n ≤ N : sk(P (n)) ≡ ` mod m} =
N

m
+O

(
N1−η)

for some η > 0.

Whereas the �rst problem was almost immediately solved by Besineau [4] (without an explicit
error term; the error term was �nally proved by Kim [13]) it took more than 40 years till the
other two problems were solved or came close to a solution. Actually, the second problem on
the subsequence along the primes was solved by Mauduit and Rivat [15]. The third problem
was completely solved for quadratic polynomials by Mauduit and Rivat [14] and partially
solved for general polynomials by Drmota, Mauduit and Rivat [9] (it is assumed that the
base k is prime and su�ciently large with respect to the degree of P (x)).

It is immediate to translate the Gelfond problems to arbitrary automatic sequences. The
only di�erence is that we cannot expect a uniform distribution on the output alphabet but
just densities (or only logarithmic densities). The general question is maybe out of reach,
nevertheless we can give a complete answer for automatic sequences that are generated by
synchronizing automata.

Theorem 4.1. Suppose that k1 > 1 and k2 > 1 are coprime integers and (an)n∈N ∈ ∆N
1 and

(bn)n∈N ∈ ∆N
2 are automatic sequences that are generated by a synchronizing k1-automaton

and a synchronizing k2-automaton, respectively.
Then for every pair (α, β) ∈ (∆1,∆2) the density

δ(α, β) = lim
N→∞

1

N
#{n ≤ N : (an, bn) = (α, β)}

exists and equals the product of the densities of α in (an)n∈N and β in (bn)n∈N.
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Theorem 4.2. Suppose that (an)n∈N ∈ ∆N
1 is an automatic sequence that is generated by a

synchronizing automaton.
Then for every α ∈ ∆ the density

δP(α) = lim
N→∞

1

π(N)
#{p ∈ P, p ≤ N : ap = α}

exists.

Theorem 4.3. Suppose that (an)n∈N ∈ ∆N is an automatic sequence that is generated by a
synchronizing automaton and P (x) is a non-zero and positive integer valued polynomial.

Then for every α ∈ ∆ the density

δP (α) = lim
N→∞

1

N
#{n ≤ N : aP (n) = α}

exists.

Before we start with the proof of Theorems 4.1�4.3 we show that every element of the
output alphabet ∆ of an automatic sequence that is generated by a synchronizing automaton
has a density.

Lemma 4.4. Suppose that (an)n∈N ∈ ∆N is an automatic sequences that is generated by a
synchronizing automaton.

Then for every α ∈ ∆ the density

δ(α) = lim
N→∞

1

N
#{n ≤ N : an = α}

exists.

Proof. Let ε > 0 be given. Then by using a simpli�ed version of the arguments in the proof
of Proposition 2.3 there exists n1 ≥ 1 and a set M of integers 0 ≤ m < kn1 such that
|M | ≥ kn1(1− ε) and that all words wm with m ∈ M are synchronizing (in the automaton
related to (an)n∈N). We also recall that an = am if n ≡ m mod kn1 . Hence it follows that

#{n ≤ N : an = α} =
∑

m∈M,am=α

#{n ≤ N : n ≡ m mod kn1}+O(εN)

=
∑

m∈M,am=α

(
N

kn1
+O(1)

)
+O(εN)

=
#{m ∈M : am = α}

kn1
N +O(kn1) +O(εN).

Consequently, the sequence
1

N
#{n ≤ N : an = α}

is a Cauchy sequence and, thus, convergent. �

Proof. (of Theorem 4.1) As in the proof of Lemma 4.4 we construct for given ε > 0 a set
M1 of integers 0 ≤ m1 < kn1

1 such that |M1| ≥ kn1(1 − ε) and that all k1-ary words wm1

with m1 ∈ M1 are synchronizing in the automaton related to (an)n∈N. In the same way we
can handle the sequence (bn)n∈N. Therefore we have to construct a corresponding set M2

of integers 0 ≤ m2 < kn2
2 such that |M2| ≥ kn2

2 (1 − ε) and that all k2-ary words wm2 with
m2 ∈M2 are synchronizing in the automaton related to (bn)n∈N.



10 JEAN-MARC DESHOUILLERS, MICHAEL DRMOTA, AND CLEMENS MÜLLNER

Similarly to the above we obtain

#{n ≤ N : (an, bn) = (α, β)}

=
∑

m1∈M1, am1=α

∑
m2∈M2, bm2=β

#{n ≤ N : n ≡ m1 mod kn1
1 , n ≡ m2 mod kn2

2 }+O(εN)

=
∑

m1∈M1, am1=α

∑
m2∈M2, bm2=β

(
N

kn1
1 k

n2
2

+O(1)

)
+O(εN)

=
#{m1 ∈M1 : am1 = α}

kn1
1

· #{m2 ∈M2 : bm2 = β}
kn2
2

N +O(kn1
1 k

n2
2 ) +O(εN),

where we have used that k1 and k2 are coprime. Hence the existence of δ(α, β) follows, and
also that it is equal to δ(α) · δ(β). �

Proof. (of Theorem 4.2) For every ε > 0 we de�ne a set M as in the proof of Lemma 4.4.
Furthermore we denote by π(N) the number of primes p ≤ N and by π(a, k;N) the number of
primes p ≤ N with p ≡ a mod k. By the prime number Theorem in arithmetic progressions
we have π(a, k;N) ∼ π(N)/ϕ(k) if (a, k) = 1.
Here we have

#{p ∈ P, p ≤ N : ap = α} =
∑

m∈M,am=α

#{p ∈ P, p ≤ N : p ≡ m mod kn1}+O(επ(N))

=
∑

m∈M, (m,kn1 )=1, am=α

π(N)

ϕ(kn1)
+ o(π(N)) +O(kn1

1 ) +O(επ(N)),

which shows that the sequence

1

π(N)
#{p ∈ P, p ≤ N : ap = α}

is a Cauchy sequence and, thus, convergent. �

Proof. (of Theorem 4.3) The proof is (again) very similar to the proof of Lemma 4.4. With
the help of the notation

c(m,K) = #{0 ≤ n < K : P (n) ≡ m mod K}
we have

#{n ≤ N : aP (n) = α} =
∑

m∈M,am=α

#{n ≤ N : P (n) ≡ m mod kn1}+O(εN)

=
∑

m∈M,am=α

(
c(m, kn1)

N

kn1
+O(c(m, kn1))

)
+O(εN)

=
∑

m∈M,am=α

c(m, kn1)

kn1
N +O(k2n1) +O(εN).

Again this proves convergence and completes the proof of the theorem. �
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