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Abstract. The Thue-Morse sequence is a classical example of an almost periodic (or uniformly
recurrent) sequence in the sense that its associated symbolic dynamical system is minimal. We
prove that the subsequence along squares of the Thue-Morse sequence is normal.

1. Introduction

The goal of this work is to show a first example of an almost periodic sequence (in the sense
of symbolic dynamical systems) whose subsequence along squares is a normal sequence. As an
application, this provides a new method to produce normal numbers in a given base.

In this paper we denote by N the set of non negative integers, by U the set of complex numbers
of modulus 1 and we set e(x) = exp(2iπx) for any real number x. If f and g are two functions
taking strictly positive values such that f/g is bounded, we write f = O(g) or f � g.

1.1. The Thue-Morse dynamical system. Let (tr)r∈N and (t′r)r∈N be the sequences of words
on the alphabet {0, 1} defined by

t0 = 0, t′0 = 1, tr+1 = trt
′
r, and t′r+1 = t′rtr

(in all this paper we identify words b0 . . . bk−1 on the alphabet {0, 1} with sequences (bi)i∈{0,...,k−1} ∈
{0, 1}k and we denote by UV the concatenation of the words U and V on the alphabet {0, 1}).
The sequence (tr)r∈N converges for the product topology in {0, 1}N to an infinite word t ∈ {0, 1}N
called the Thue-Morse sequence (or Thue-Morse infinite word).

There are many other ways to define the Thue-Morse sequence t = (t(n))n∈N ∈ {0, 1}N. For
example it is easy the check that t is the fixed point of the substitution 0→ 01 and 1→ 10 with
t(0) = 0 and that, for any non negative integer n, we have t(n) = s(n) mod 2 where s(n) denotes
the number of powers of 2 in the binary representation of n. Since its introduction independently
by Thue in [17] and by Morse in [12] (see also [14] for an earlier variant introduced by Prouhet), the
Thue-Morse sequence has been studied in many different contexts from combinatorics to algebra,
number theory, harmonic analysis, geometry and dynamical systems (see [1, 8]).

Definition 1. The symbolic dynamical system associated to a sequence u ∈ {0, 1}N is the system
(X(u), T ), where T is the shift on {0, 1}N and X(u) the closure (for the product topology of {0, 1}N)
of the orbit of u under the action of T .

We say that (b0, . . . , bk−1) ∈ {0, 1}k is a factor of the sequence u ∈ {0, 1}N if there exists an
integer i such that u(i) = b0,. . . , u(i+ k − 1) = bk−1.

Definition 2. A sequence u ∈ {0, 1}N is almost periodic (or uniformly recurrent) if every factor
of u occurs infinitely often in u with bounded gaps.
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Morse proved in [12] that t is an almost periodic sequence (see also [8, Proposition 4] or [15,
Proposition 5.1.2]). This property means that the dynamical system (X(t), T ) is minimal (i.e. the
only closed T -invariant sets in X(t) are ∅ and X(t), see [16, Theorem IV.12] or [15, Proposition
5.1.13]).

1.2. Low complexity of the Thue-Morse sequence.

Definition 3. The symbolic complexity of a sequence u ∈ {0, 1}N is the function pu defined by for
any positive integer k by

pu(k) = card{(b0, . . . , bk−1) ∈ {0, 1}k, ∃i / u(i) = b0, . . . , u(i+ k − 1) = bk−1}

( i.e. pu(k) is equal to the number of distinct factors of length k that occur in the sequence u).

It follows from Definition 3 that for any sequence u the function pu verifies 1 ≤ pu(k) ≤ 2k and
constitutes a possible measure for the pseudorandomness of the sequence u. More precisely, it is
easy to show that the topological entropy of the symbolic dynamical system (X(u), T ) is equal to

limk→∞
log pu(k)

k
(see [7]).

The sequence t is defined by a very simple algorithm and its symbolic complexity is very low:
it follows from [3, Proposition 4.5] or [6, Corollary 4.5] that for any positive integer k we have
pt(k) ≤ 10

3
k. For any fixed (a, b) ∈ N2 it is easy the check that the sequence ta,b = (t(an+ b))n∈N is

also obtained by a simple algorithm. More precisely ta,b is generated by a finite 2-automaton (see
[2] for a definition of this notion). It follows that the combinatorial structure of the sequence ta,b
can be understood from the study of its associated 2-automaton and that its symbolic complexity is
also also sublinear: pta,b(k) = Oa(k) (see [5, Theorem 2]). This shows that any symbolic dynamical
system (X(ta,b), T ) obtained by extracting a subsequence of t along arithmetic progressions still
has zero topological entropy.

1.3. Main result. The goal of this work is to show that the situation changes completely when
we replace linear subsequences by quadratic ones.

Definition 4. A sequence u ∈ {0, 1}N is normal if, for any k ∈ N and any (b0, . . . , bk−1) ∈ {0, 1}k,
we have

lim
N→∞

1

N
card{i < N, u(i) = b0, . . . , u(i+ k − 1) = bk−1} =

1

2k
.

Theorem 1. The sequence t2 = (t(n2))n∈N is normal.

There are only few known explicit constructions of normal numbers in a given base (see [4,
Chapters 4 and 5]). This theorem provided a new construction of a number normal in base 2.

Corollary 1. The real number α =
∞∑
n=0

t(n2)
2n

is normal in base 2.

Remark 1. For any integer q ≥ 2, a generalized Thue-Morse sequence t(q) ∈ {0, . . . , q − 1}N can
be defined by

∀n ∈ N, t(q)(n) = s(n2) mod q.

Our method might be adapted to prove that t(q) is normal, providing an example of a real number

normal in base q: α(q) =
∞∑
n=0

t(q)(n2)
qn

.

Allouche and Shallit conjectured in [2, Problem 10.12.7] that the symbolic complexity of the
sequence t2 is maximal (i.e. that for any positive integer k, we have pt2(k) = 2k) and this
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conjecture was proved by Moshe in [13]. The control of the frequency of occurency of the blocks
of length k is a more difficult question. When k = 1, it follows from [9] that

lim
N→∞

1

N
card{n < N, t(n2) = 0} = lim

N→∞

1

N
card{n < N, t(n2) = 1} =

1

2
,

but the method of [9] does not allow to control higher order correlations. In this work we introduce
new ideas in order to be able to control the Fourier transform of correlations of any order.

2. Plan of the Proof

Let εj(n) ∈ {0, 1} denote the j-th digit in the binary representation of a non-negative integer n
and write

f(n) = 1
2

s(n) = 1
2

∑
j≥0

εj(n).

For (λ, µ) ∈ N2 such that 0 ≤ µ < λ, we define the truncated binary sum-of-digits function sλ and
the two-fold restricted binary sum of digits function sµ,λ by

sλ(n) =
∑

0≤j<λ

εj(n) and sµ,λ(n) =
∑
µ≤j<λ

εj(n) = sλ(n)− sµ(n).

We also write

fλ(n) = 1
2

sλ(n) and fµ,λ(n) = 1
2

sµ,λ(n).

In order to prove our main result, we actually need the following theorem on exponential sums.

Theorem 2. For any integer k ≥ 1 and (α0, . . . , αk−1) ∈ {0, 1}k such that (α0, . . . , αk−1) 6=
(0, . . . , 0), there exists η > 0 such that

(1) S0 =
∑
n<N

e

(
1

2

k−1∑
`=0

α` s((n+ `)2)

)
� N1−η.

Lemma 1. Theorem 2 implies that the sequence t2 is normal.

Proof. Let (b0, . . . , bk−1) ∈ {0, 1}k. Then by assuming that (1) holds we obtain

card{n < N : (tn2 , . . . , t(n+k−1)2) = (b0, . . . , bk−1)}

=
∑
n<N

1[tn2=b0]
· · ·1[t(n+k−1)2=bk−1]

=
∑
n<N

1

2

1∑
α0=0

e
(α0

2

(
s(n2)− b0

))
· · · 1

2

1∑
αk−1=0

e
(αk−1

2

(
s((n+ k − 1)2)− bk−1

))

=
1

2k

∑
(α0,...,αk−1)∈{0,1}k

e

(
−α0b0 + · · ·+ αk−1bk−1

2

)∑
n<N

e

(
k−1∑
`=0

1

2
α` s((n+ `)2)

)

=
N

2k
+O

(
N1−η)

with η > 0 obtained in Theorem 2. �

Thus, we just have to concentrate on Theorem 2. The structure of the full proof of Theorem 2
is the following one. First we collect some auxiliary results (Section 3). The following Section 4 is
devoted to some properties of the carry propagation (in particular we have to provide a quantitative
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statement of the fact that carry propagation along several digits are rare). The main ingredients
of the proof of Theorem 2 are upper bounds on the Fourier terms

GI
λ(h, d) =

1

2λ

∑
0≤u<2λ

e

(
k−1∑
`=0

α`fλ(u+ `d+ i`)− h2−λ

)
,

where I = (i0, . . . , ik−1) ∈ Nk. The other ingredients include Van-der-Corput type inequalities in
order to reduce the problem to sums that depend only on few digits of n2, (n+1)2, . . . , (n+k−1)2.
These reduced sums have a periodic structure that allows a proper Fourier analytic treatment.
After the Fourier analysis the problem is roughly speaking split into a part where the Fourier terms
GI
λ(h, d) appear and into a second part involving quadratic exponential sums. The corresponding

bounds are formulated in Propositions 1 and 2 (see Section 5) and proved in Sections 8 and 9. We
have to distinguish in the proof of Theorem 2 between the cases where K = α0 + · · ·+αk−1 is even
and where K is odd, and Sections 6 and 7 correspond to this distinction. In Section 6 we prove
that if K is even we can deduce Theorem 2 from Proposition 1 and in Section 7 we prove that if
K is odd we can deduce Theorem 2 from Proposition 2. Finally, the last two sections (Sections 8
and 9) provide the proofs of Propositions 1 and 2. Proposition 1 is a bound on averages of Fourier
transforms and is actually much easier to prove than the uniform bound of Proposition 2 which is
needed in the odd case.

3. Auxiliary Lemmas

3.1. A multidimensional application of Vaaler’s method. The following lemma is a classical
method to detect real numbers in an interval modulo 1 by means of exponential sums. For α ∈ R
with 0 ≤ α < 1 we denote by χα the characteristic function of the interval [0, α) modulo 1:

(2) χα(x) = bxc − bx− αc .

Lemma 2. For all α ∈ R with 0 ≤ α < 1 and all integer H ≥ 1 there exist real valued trigonometric
polynomials Aα,H(x) and Bα,H(x) such that for all x ∈ R

(3) |χα(x)− Aα,H(x)| ≤ Bα,H(x),

where

(4) Aα,H(x) =
∑
|h|≤H

ah(α,H) e(hx), Bα,H(x) =
∑
|h|≤H

bh(α,H) e(hx),

with coefficients ah(α,H) and bh(α,H) satisfying

(5) a0(α,H) = α, |ah(α,H)| ≤ min
(
α, 1

π|h|

)
, |bh(α,H)| ≤ 1

H+1
.

Proof. This is a consequence of Theorem 19 of [18] (see [11, Lemma 1]). �

Similarly we can detect points in a d-dimensional box (modulo 1):

Lemma 3. For (α1, . . . , αd) ∈ [0, 1)d and (H1, . . . , Hd) ∈ Nd with H1 ≥ 1,. . . , Hd ≥ 1, we have
for all (x1, . . . , xd) ∈ Rd

(6)

∣∣∣∣∣
d∏
j=1

χαj(xj)−
d∏
j=1

Aαj ,Hj(xj)

∣∣∣∣∣ ≤ ∑
∅6=J({1,...,d}

∏
j 6∈J

χαj(xj)
∏
j∈J

Bαj ,Hj(xj)

where Aα,H(.) and Bα,H(.) are the real valued trigonometric polynomials defined by (4).
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Proof. We have∣∣∣∣∣
d∏
j=1

χαj(xj)−
d∏
j=1

Aαj ,Hj(xj)

∣∣∣∣∣ ≤ ∑
∅6=J({1,...,d}

∏
j 6∈J

∣∣χαj(xj)∣∣∏
j∈J

∣∣χαj(xj)− Aαj ,Hj(xj)∣∣
Since χαi ≥ 0, by (3) we get (6). �

Let (U1, . . . , Ud) ∈ Nd with U1 ≥ 1,. . . ,Ud ≥ 1 and put α1 = 1/U1,. . . ,αd = 1/Ud. For j = 1, . . . , d
and any x ∈ R we have

(7)
∑

0≤uj<Uj

χαj

(
x− uj

Uj

)
= 1,

Let N ∈ N with N ≥ 1, f : {1, . . . , N} → Rd and g : {1, . . . , N} → C such that |g| ≤ 1. Writing
f = (f1, . . . , fn) we can express the sum

S =
N∑
n=1

g(n)

as

S =
N∑
n=1

g(n)
∑

0≤u1<U1

χα1

(
f1(n)− u1

U1

)
· · ·

∑
0≤ud<Ud

χαd

(
fd(n)− ud

Ud

)
.

Let (H1, . . . , Hd) ∈ Nd with H1 ≥ 1,. . . , Hd ≥ 1 and

S̃ =
N∑
n=1

g(n)
∑

0≤u1<U1

Aα1,H1

(
f1(n)− u1

U1

)
· · ·

∑
0≤ud<Ud

Aαd,Hd

(
fd(n)− ud

Ud

)
.

Lemma 4. With the above notations we have∣∣∣S − S̃∣∣∣ ≤ d−1∑
`=1

∑
1≤j1<···<j`

Uj1 · · ·Uj`
Hj1 · · ·Hj`

∑
|hj1 |≤Hj1/Uj1

· · ·
∑

|hj`|≤Hj`/Uj`
(8)

∣∣∣∣∣
N∑
n=1

e (hj1Uj1fj1(n) + · · ·+ hj`Uj`fj`(n))

∣∣∣∣∣ .
Proof. By (6) we have∣∣∣S − S̃∣∣∣ ≤ N∑

n=1

|g(n)|
∑

∅6=J({1,...,d}

∏
j 6∈J

∑
0≤uj<Uj

χαj

(
fj(n)− uj

Uj

)∏
j∈J

∑
0≤uj<Uj

Bαj ,Hj

(
fj(n)− uj

Uj

)
which by (7) gives∣∣∣S − S̃∣∣∣ ≤ N∑

n=1

|g(n)|
∑

∅6=J({1,...,d}

∏
j∈J

∑
0≤uj<Uj

Bαj ,Hj

(
fj(n)− uj

Uj

)
.

Since Bαj ,Hj ≥ 0 and |g| ≤ 1 we get∣∣∣S − S̃∣∣∣ ≤ ∑
∅6=J({1,...,d}

N∑
n=1

∏
j∈J

∑
0≤uj<Uj

∑
|hj |≤Hj

bhj(αj, Hj) e

(
hjfj(n)− hjuj

Uj

)
.
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Observing that ∑
0≤uj<Uj

e

(
−hjuj

Uj

)
=

{
Uj if hj ≡ 0 mod Uj
0 otherwise

we obtain ∣∣∣S − S̃∣∣∣ ≤ ∑
∅6=J({1,...,d}

N∑
n=1

∏
j∈J

Uj
∑

0≤uj<Uj

∑
|hj |≤Hj/Uj

bhjUj(αj, Hj) e (hjUjfj(n)) .

Expanding the product, reversing the order of summations and using (5) this leads to (8). �

3.2. Van der Corput’s inequality. The following lemma is a generalization of van der Corput’s
inequality.

Lemma 5. For all complex numbers z1, . . . , zN and all integers Q ≥ 1 and R ≥ 1 we have

(9)

∣∣∣∣∣ ∑
1≤n≤N

zn

∣∣∣∣∣
2

≤ N +QR−Q
R

( ∑
1≤n≤N

|zn|2 + 2
∑

1≤r<R

(
1− r

R

) ∑
1≤n≤N−Qr

< (zn+Qrzn)

)
where <(z) denotes the real part of z ∈ C.

Proof. See for example Lemma 17 of [9]. �

3.3. Sums of geometric series. We will often make use of the following upper bound of geometric
series of ratio e(ξ) for (L1, L2) ∈ Z2, L1 ≤ L2 and ξ ∈ R:

(10)

∣∣∣∣∣ ∑
L1<`≤L2

e(`ξ)

∣∣∣∣∣ ≤ min(L2 − L1, |sin πξ|−1).

Lemma 6. Let (a,m) ∈ Z2 with m ≥ 1, δ = gcd(a,m) and b ∈ R. For any real number U > 0 we
have

(11)
∑

0≤n≤m−1

min
(
U,
∣∣sin π an+b

m

∣∣−1) ≤ δmin

(
U,
∣∣∣sin π δ ‖b/δ‖m

∣∣∣−1)+
2m

π
log(2m).

Proof. The result is trivial for m = 1. For m ≥ 2 after using Lemma 6 of [10] it suffice to observe
that

δ

sin πδ
2m

+
2m

π
log

2m

πδ
≤ 1

sin π
2m

+
2m

π
log

2m

π
≤ 2m

π
log(2m).

�

Lemma 7. Let m ≥ 1 and A ≥ 1 be integers and b ∈ R. For any real number U > 0 we have

(12)
1

A

∑
1≤a≤A

∑
0≤n<m

min
(
U,
∣∣sin π an+b

m

∣∣−1)� τ(m) U +m logm

and if |b| ≤ 1
2

we have the sharper bound

(13)
1

A

∑
1≤a≤A

∑
0≤n<m

min
(
U,
∣∣sin π an+b

m

∣∣−1)� τ(m) min
(
U,
∣∣sin π b

m

∣∣−1)+m logm,

where τ(m) denotes the number of divisors of m.
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Proof. Using (11) we have for all b ∈ R:∑
0≤n<m

min
(
U,
∣∣sinπ an+b

m

∣∣−1)� gcd(a,m) U +m logm

while for |b| ≤ 1
2
, since gcd(a,m) ‖b/ gcd(a,m)‖ = |b| this can be sharpened using (11) to∑

0≤n<m

min
(
U,
∣∣sin π an+b

m

∣∣−1)� gcd(a,m) min
(
U,
∣∣sinπ b

m

∣∣−1)+m logm.

Now

(14)
∑

1≤a≤A

gcd(a,m) =
∑
d |m
d≤A

d
∑

1≤a≤A
gcd(a,m)=d

1 ≤
∑
d |m
d≤A

d
∑

1≤a≤A
d | a

1 =
∑
d |m
d≤A

d

⌊
A

d

⌋
≤ A τ(m)

which implies (12) and (13) when |b| ≤ 1
2
. �

3.4. Gauss sums.

Lemma 8. For all (a, b,m) ∈ Z3 with m ≥ 1, we have

(15)

∣∣∣∣∣
m−1∑
n=0

e
(
an2+bn
m

)∣∣∣∣∣ ≤√2m gcd(a,m).

Proof. This is Proposition 2 of [9]. �

For incomplete quadratic Gauss sums we have

Lemma 9. For all (a, b,m,N, n0) ∈ Z5 with m ≥ 1 and N ≥ 0, we have

(16)

∣∣∣∣∣
n0+N∑
n=n0+1

e
(
an2+bn
m

)∣∣∣∣∣ ≤ (Nm + 1 + 2
π

log 2m
π

)√
2m gcd(a,m).

Proof. The following argument is a variant of a method known at least since Vinogradov. For
m = 1 the result is true. Assume that m ≥ 2. There are bN/mc complete sums which are

bounded above by
√

2m gcd(a,m). The remaining sum is either empty or of the form

S =

n1+L∑
n=n1+1

e
(
an2+bn
m

)
for some n1 ∈ Z and 1 ≤ L ≤ m. We have

S =

n1+L∑
u=n1+1

m−1∑
n=0

e
(
an2+bn
m

) 1

m

m−1∑
k=0

e
(
k n−u

m

)
,

hence

S =
1

m

m−1∑
k=0

n1+L∑
u=n1+1

e
(−ku
m

)m−1∑
n=0

e
(
an2+(b+k)n

m

)
,

thus

S ≤ 1

m

m−1∑
k=0

min
(
L,
∣∣sin πk

m

∣∣−1) ∣∣∣∣∣
m−1∑
n=0

e
(
an2+(b+k)n

m

)∣∣∣∣∣ .
Applying Lemma 8 with b replaced by b+k and observing (by convexity of t 7→ 1/ sin(πt/m)) that

1

m

m−1∑
k=0

min
(
L,
∣∣sin πk

m

∣∣−1) ≤ 1 +
1

m

∫ m−1/2

1/2

dt

sin πt
m

= 1 +
2

π
log cot

π

2m
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we obtain (16). �

3.5. Norm of matrix products.

Lemma 10. Let M`, ` ∈ N, be N × N-matrices with complex entries M`;i,j, 1 ≤ i, j ≤ N , and
absolute row sums

N∑
j=1

|M`;i,j| ≤ 1.

Furthermore assume that there exists integers m0 ≥ 1 and m1 ≥ 1 and constants c0 > 0 and η > 0
such that

(1) every product A = (Ai,j)(i,j)∈{1,...,N}2 of m0 consecutive matrices M` has the property that
for every row i we have

|Ai,1| ≥ c0 or
N∑
j=1

|Ai,j| ≤ 1− η;

(2) every product B = (Bi,j)(i,j)∈{1,...,N}2 of m1 consecutive matrices M` has the property

N∑
j=1

|B1,j| ≤ 1− η.

Then there exist constants C > 0 and δ > 0 such that

(17)

∥∥∥∥∥
r+k−1∏
`=r

M`

∥∥∥∥∥
∞

≤ C2−δk

uniformly for all r ≥ 0 and k ≥ 0 (where ‖·‖∞ denotes the matrix row-sum norm).

Proof. It is enough to show that the product of m0 + m1 consecutive matrices M` has row-sum
norm ≤ 1− ηc0. Indeed this implies∥∥∥∥∥

r+k−1∏
`=r

M`

∥∥∥∥∥
∞

≤ (1− ηc0)bk/(m0+m1)c ≤ 1

1− ηc0
2−ηc0k/(m0+m1)

and we obtain (17) for C = 1/(1− ηc0) and δ = ηc0/(m0 +m1).
Let A = (Ai,j)(i,j)∈{1,...,N}2 denote the product ofm0 consecutive matrices M` and B = (Bj,k)(j,k)∈{1,...,N}2

the product of the next m1 consecutive matrices M`. For any i ∈ {1, . . . , N}, if |Ai,1| ≥ c0 then
the i-th absolute row-sum of the product is bounded by

N∑
k=1

∣∣∣∣∣
N∑
j=1

Ai,jBj,k

∣∣∣∣∣ ≤
N∑
j=1

|Ai,j|
N∑
k=1

|Bj,k|

= |Ai,1|
N∑
k=1

|B1,k|+
N∑
j=2

|Ai,j|
N∑
k=1

|Bj,k|

≤ |Ai,1| (1− η) +
N∑
j=2

|Ai,j|

≤ |Ai,1| (1− η) + 1− |Ai,1| = 1− η |Ai,1| ≤ 1− ηc0.
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Similarly if we have
∑N

j=1 |Ai,j| ≤ 1− η then

N∑
k=1

∣∣∣∣∣
N∑
j=1

Ai,jBj,k

∣∣∣∣∣ ≤
N∑
j=1

|Ai,j|
N∑
k=1

|Bj,k| ≤ 1− η.

Since c0 ≤ 1 we have 1− η ≤ 1− c0η, which completes the proof of Lemma 10. �

4. Carry Lemmas

The first lemma is a reformulation of Lemma 16 of [9].

Lemma 11. Let (ν, λ, ρ) ∈ N3 such that ν + ρ ≤ λ ≤ 2ν. For any integer r with 0 ≤ r ≤ 2ρ the
number of integers n < 2ν for which there exists an integer j ≥ λ with εj((n + r)2) 6= εj(n

2) is
� 22ν+ρ−λ. Hence, the number of integers n < 2ν with

sλ((n+ r)2)− sλ(n
2) 6= s((n+ r)2)− s(n2)

is also � 22ν+ρ−λ.

The next lemma is more involved.

Lemma 12. Let (λ, µ, ν) ∈ N3 such that 0 < µ < ν < λ and set µ′ = µ − ρ′, where ρ′ is an
integer satisfying 2ρ′ ≤ µ ≤ ν − ρ′ and λ − ν ≤ 2(µ − ρ′). For any integers n < 2ν, s ≥ 1 and
1 ≤ r ≤ 2(λ−ν)/2 we set

n2 ≡ u12
µ′ + w1 mod 2λ (0 ≤ w1 < 2µ

′
, 0 ≤ u1 < 2λ−µ+ρ

′
)

(n+ r)2 ≡ u22
µ′ + w2 mod 2λ (0 ≤ w2 < 2µ

′
, 0 ≤ u2 < 2λ−µ+ρ

′
)(18)

2n ≡ u32
µ′ + w3 mod 2λ (0 ≤ w3 < 2µ

′
, 0 ≤ u3 < 2ν+1−µ+ρ′)

2sn ≡ v mod 2λ−µ, (0 ≤ v < 2λ−µ)

where the integers u1 = u1(n), u2 = u2(n) ,u3 = u3(n), v = v(n) ,w1 = w1(n), w2 = w2(n) and
w3 = w3(n) satisfy the above conditions. Then for any integer ` ≥ 1 the number of integers n < 2ν

for which one of the following conditions

sµ,λ((n+ `)2) 6= sρ′,λ−µ+ρ′(u1 + `u3)

sµ,λ((n+ `+ s2µ)2)) 6= sρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1)(19)

sµ,λ((n+ r + `)2) 6= sρ′,λ−µ+ρ′(u2 + `u3)

sµ,λ((n+ r + `+ s2µ)2)) 6= sρ′,λ−µ+ρ′(u2 + `u3 + v2ρ
′
+ (`+ r)s2ρ

′+1)

is satisfied is � 2ν−ρ
′
.

Proof. We first consider the case (n + `)2. The other cases are similar and we will comment on
them at the end of the proof. We have

(n+ `)2 = (u1 + `u3)2
µ′ + w1 + `w3 + `2 mod 2λ.

This means that if w1+`w3+`2 < 2µ
′
then for 0 ≤ j < λ− µ′ we have εµ′+j((n+`)2) = εj(u1+`u3).

However, if w1 + `w3 + `2 ≥ 2µ
′

then there is a carry propagation. However, we will show that
there are only few exceptions where more than ρ′ digits are changed. More precisely the proof is
split into the following two steps:

(1) If the digits block (εj((n+ `)2))µ≤j<λ differ from the digits block (εj(u1 + `u3))ρ′≤j<λ−µ+ρ′ ,
where u1 = u1(n) and u3 = u3(n) are defined in (18), then we have

(20)
(n+ `)2

2µ
−
⌊

(n+ `)2

2µ

⌋
≤ C

2ρ′
or

(n+ `)2

2µ
−
⌊

(n+ `)2

2µ

⌋
≥ 1− C

2ρ′
,
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where C = C(`) is a constant.
(2) The number of integers n < 2ν with (20) is � 2ν−ρ

′
.

Of course if these two properties are true then Lemma 12 is proven.
We start with the proof of the first property. As mentioned above we just have to consider the

case where w1 + `w3 + `2 ≥ 2µ
′
= 2µ−ρ

′
. Since w1, w3 < 2µ

′
the carry

w̃ :=
⌊
2−µ

′ (
w1 + `w3 + `2

)⌋
is bounded and, thus, can only attain finitely many values {1, 2, . . . , D} (where D is a constant
that depends on `). These values of w̃ will certainly affect some of (lower order) digits of u1 + `u3.
Let ṽ := u1 + `u3 mod 2ρ

′
with 0 ≤ ṽ < 2ρ

′
. Then the digits εj(u1 + `u3), ρ

′ ≤ j < λ− µ′, might
be affected by this carry if ṽ ∈ {2ρ′ − 1, 2ρ

′ − 2, . . . , 2ρ
′ −D}. Now since

(n+ `)2

2µ
≡ u1 + `u3

2ρ′
+
w1 + `w3 + `2

2µ′+ρ′
mod 1

≡ ṽ

2ρ′
+
w1 + `w3 + `2

2µ′+ρ′
mod 1,

it immediately follows that (20) holds with C = D+ 1. This completes the proof of the first part.
Next let Z denote the number integers of n < 2ν with (20). Then by Lemma 2 we have

Z =
∑
n<2ν

(
χα
(
2−µ(n+ `)2

)
+ χα

(
−2−µ(n+ `)2

))
≤ 2

∑
|h|≤H

(
α +

1

H

) ∣∣∣∣∣∑
n<2ν

e

(
h

(n+ `)2

2µ

)∣∣∣∣∣
where α = C2−ρ

′
and we can set H = 2ρ

′
. It is clear that the main contribution comes from

the term with h = 0 which gives an upper bound of the form O(2ν−ρ
′
). Now every h 6= 0 with

|h| ≤ H = 2ρ
′

can be written as h = h′2t, where 0 ≤ t ≤ ρ′ and h′ is odd with |h′| ≤ 2ρ
′−t. Then

we have by Lemma 9 ∑
n<2ν

e

(
h

(n+ 1)2

2µ

)
= O

(
2ν+(t−µ)/2 + µ2(µ+t)/2

)
and consequently

2−ρ
′ ∑
06=|h|≤2ρ′

∣∣∣∣∣∑
n<2ν

e

(
h

(n+ 1)2

2µ

)∣∣∣∣∣
= O

(
2−ρ

′ ∑
0≤t≤ρ′

2ρ
′−t (2ν+(t−µ)/2 + µ2(µ+t)/2

))
= O

(
2ν−µ/2 + µ2µ

)
.

Since 2ρ′ ≤ µ ≤ ν − ρ′ all contributions are � 2ν−ρ
′
. This completes the proof of the second part.

Finally we comment on the other cases. First, there is no change for (n + ` + s2µ)2 since the
term s2µ does not affect the discussed carry propagation. Next for (n+ `+ r)2 we have

(n+ `+ r)2 = (u2 + `u3)2
µ′ + w2 + `w3 + `2 + 2r`.

Here we have to assure that 2−µ
′
(w2+`w3+`2+2r`) remains bounded. However, this is ensured by

the assumption λ−ν ≤ 2(µ−ρ′). The same argument applies for the final case (n+`+s2µ+r)2. �
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5. Fourier estimates

For any k ∈ N, we denote by Ik the set of integer vectors I = (i0, . . . , ik−1) with i0 = 0 and
i`−1 ≤ i` ≤ i`−1 + 1 for 1 ≤ ` ≤ k − 1 (note that Ik consists of 2k−1 elements) and for any I ∈ Ik,
h ∈ Z and (d, λ) ∈ N2,

(21) GI
λ(h, d) =

1

2λ

∑
0≤u<2λ

e

(
k−1∑
`=0

α`fλ(u+ `d+ i`)− hu2−λ

)
,

where α` ∈ {0, 1} (we assume that α0 = 1). This sum can be also seen as the discrete Fourier
transform of the function

n 7→ e

(
k−1∑
`=0

α`fλ(u+ `d+ i`)

)
.

For any I ∈ Ik we define

|I| = α0i0 + · · ·+ αk−1ik−1, K = α0 + · · ·+ αk−1 and σ =
k−1∑
`=0

α``.

We start with a recurrence for the discrete Fourier transform terms GI
λ(h, d) defined by (21).

For this purpose we define for any (ε, ε′) ∈ {0, 1}2 the transformations on Ik defined for any
I = (i0, i1, . . . , ik−1) ∈ Ik by

Tεε′(I) =

(⌊
i` + `ε+ ε′

2

⌋)
`∈{0,...,k−1}

.

Lemma 13. For any I ∈ Ik, h ∈ Z, (d, λ) ∈ N2 and ε ∈ {0, 1} we have

(22) GI
λ(h, 2d+ ε) =

(−1)|I|+σε

2
G
Tε0(I)
λ−1 (h, d) +

(−1)|I|+K+σε e(−h/2λ)
2

G
Tε1(I)
λ−1 (h, d).

Proof. We split up the sum 0 ≤ u < 2λ into even and odd numbers and obtain for any ε ∈ {0, 1}

GI
λ(h, 2d) =

1

2λ

∑
0≤u<2λ−1

e

(
k−1∑
`=0

α`fλ(2u+ 2`d+ `ε+ i`)− 2hu2−λ

)

+
1

2λ

∑
0≤u<2λ−1

e

(
k−1∑
`=0

α`fλ(2u+ 2`d+ `ε+ i` + 1)− h(2u+ 1)2−λ

)

=
1

2λ

∑
0≤u<2λ−1

e

(
k−1∑
`=0

α` (fλ−1(u+ `d+ b(`ε+ i`)/2c) + f(ε0(i`)))− hu2−(λ−1)

)

+
1

2λ

∑
0≤u<2λ−1

e

(
k−1∑
`=0

α` (fλ−1(u+ `d+ b(`ε+ i` + 1)/2c) + f(ε0(i` + 1)))− hu2−(λ−1) − h2−λ

)

=
(−1)|I|

2
G
Tε0(I)
λ−1 (h, d) +

(−1)|I|+K e(−h/2λ)
2

G
Tε1(I)
λ−1 (h, d),

since for any non negative integer i we have e(f(ε0(i))) = e(1
2
(ε0(i))) = (−1)ε0(i) = (−1)i. �

As I ∈ Ik implies that (T00(I), T01(I), T10(I), T11(I)) ∈ I4k , it follows that the vector Gλ(h, d) =
(GI

λ(h, d))I∈Ik can be determined recursively.
The next two propositions are crucial for the proof of main result. Since the proofs are quite

involved we postpone them to Sections 8 and 9.
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Proposition 1. If K is even, then there exists η > 0 such that for any I ∈ Ik we have

1

2λ′
∑

0≤d<2λ′

|GI
λ(h, d)|2 � 2−ηλ

uniformly for all integers h, where 1
2
λ ≤ λ′ ≤ λ.

Proposition 2. If K is odd, then there exists η > 0 such that for any I ∈ Ik we have∣∣GI
λ(h, d)

∣∣� 2−ηL max
J∈Ik

∣∣GJ
λ−L(h, bd/2Lc)

∣∣
uniformly for all non-negative integers h, d and L.

6. The case K even

In this section we show that when K = α0 + · · ·+αk−1 is even, Proposition 1 provides an upper
bound for the sum

S0 =
∑
n<N

e

(
k−1∑
`=0

α`f((n+ `)2)

)
.

Let ν be the unique integer such that

2ν−1 < N ≤ 2ν .

Let (λ, µ) ∈ N2 such that

(23) µ < ν < λ and λ− ν = ν − µ = 1
2
(λ− µ)

(the precise values will be specified later).
By using Lemma 11 it follows that the number of integers n < N such that the j-th digits of

n2, (n+ 1)2, . . ., (n+ k − 1)2 coincide for j ≥ λ is equal to N − O(N2−(λ−ν)). Furthermore since
K is even if follows that we obtain for those n

k−1∑
`=0

1

2
α` sλ,∞((n+ `)2) = sλ,∞(n2)

K

2
∈ Z,

where sλ,∞ = s− sλ. Consequently, if we set

S1 =
∑
n<N

e

(
k−1∑
`=0

α`fλ((n+ `)2)

)
,

then

(24) S0 = S1 +O
(
2ν−(λ−ν)

)
.

Next we apply Lemma 5 with Q = 2µ and S = 2ν−µ and obtain

(25) |S1|2 �
N2

S
+
N

S
<(S2),

with

S2 =
∑

1≤s<S

(
1− s

S

)
S ′2(s)

and

S ′2(s) =
∑

n∈I(N,s)

e

(
k−1∑
`=0

α`(fµ,λ((n+ `)2)− fµ,λ((n+ `+ s2µ)2))

)
,

where I(N, s) is an interval included in [0, N − 1] (that we do not specify).
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The right hand side of S ′2(s) depends only on the digits of (n + `)2 and (n + ` + s2µ)2 between
µ and λ. However, we have to take into account also the digits between µ′ = µ− ρ′ and µ, where
ρ′ > 0 will be chosen in a proper way. We set

n2 ≡ u12
µ′ + w1 mod 2λ (0 ≤ w1 < 2µ

′
, 0 ≤ u1 < U1 = 2λ−µ

′
)

2n = u32
µ′ + w3 (0 ≤ w3 < 2µ

′
, 0 ≤ u3 < U3 = 2ν−µ

′+1)

2sn ≡ v mod 2λ−µ (0 ≤ v < 2λ−µ)

where the integers u1 = u1(n), u3 = u3(n), v = v(n), w1 = w1(n), and w3 = w3(n) satisfy the
above conditions. Then, by assuming that

(26) 2µ′ ≥ λ,

we have

(n+ `)2 ≡ (u1 + `u3)2
µ′ + w1 + `w3 + `2 mod 2λ,

(n+ `+ s2µ)2 ≡ (u1 + `u3 + v2ρ
′
+ `s2ρ

′+1)2µ
′
+ w1 + `w3 + `2 mod 2λ.

By Lemma 12 it follows that

fµ,λ((n+ `)2) = fρ′,λ−µ+ρ′(u1 + `u3),

fµ,λ((n+ `+ s2µ)2)) = fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1)

for any integer n < N except for at most O(2ν−ρ
′
) exceptions. Hence it suffices to consider the

sum

S ′3(s) =
∑

n∈I(N,s)

e

(
k−1∑
`=0

α`(fρ′,λ−µ+ρ′(u1 + `u3)− fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1)

)
,

where u1 = u1(n), u3 = u3(n), v = v(n), since we certainly have

(27) S ′2(s) = S ′3(s) +O(2ν−ρ
′
).

Next we rewrite S ′3(s) as

S ′3(s) =
∑

0≤u1<U1

∑
0≤u3<U3∑

n∈I(N,s)

e

(
k−1∑
`=0

α`(fρ′,λ−µ+ρ′(u1 + `u3)− fρ′,λ−µ+ρ′(u1 + `u3 + v(n)2ρ
′
+ `s2ρ

′+1)

)

χ2µ′−λ

(
n2

2λ
− u1
U1

)
χ2µ′−ν−1

(
2n

2ν+1
− u3
U3

)
,

where χα is defined by (2). Lemma 3 allows us to replace the product of characteristic functions
χ by a product of trigonometric polynomials. More precisely, using (8) with H1 = U12

ρ′′ and
H3 = U32

ρ′′ for some suitable ρ′′ > 0 (that will be chosen later), we have

(28) S ′3(s) = S4(s) +O(E1) +O(E3) +O(E1,3),
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with

S4(s) =
∑

0≤u1<U1

∑
0≤u3<U3

∑
0≤v<2λ−µ∑

n∈I(N,s)

e

(
k−1∑
`=0

α`(fρ′,λ−µ+ρ′(u1 + `u3)− fρ′,λ−µ+ρ′(u1 + `u3 + v(n)2ρ
′
+ `s2ρ

′+1)

)

AU−1
1 ,H1

(
n2

2λ
− u1
U1

)
AU−1

3 ,H3

(
2n

2ν+1
− u3
U3

)
1

2λ−µ

∑
0≤h<2λ−µ

e

(
h

2sn− v
2λ−µ

)
,

where we have filtered the correct value of v = v(n) and where the error terms E1, E3, E1,3 can be
easily estimated with the help of Lemma 9 (and obvious estimates):

E1 =
1

2ρ′′
∑
|h1|≤2ρ′′

∣∣∣∣∣∑
n

e

(
h1n

2

2µ′

)∣∣∣∣∣� 2ν−ρ
′′

+ ρ′′2ν−µ
′/2 � 2ν−ρ

′′
,

E3 =
1

2ρ′′
∑
|h3|≤2ρ′′

∣∣∣∣∣∑
n

e

(
h32n

2µ′

)∣∣∣∣∣� 2ν−ρ
′′

+ ρ′′2ν−µ
′ � 2ν−ρ

′′
,

E1,3 =
1

22ρ′′

∑
|h1|≤2ρ′′

∑
|h3|≤2ρ′′

∣∣∣∣∣∑
n

e

(
h1n

2

2µ′
+
h32n

2µ′

)∣∣∣∣∣� 2ν−ρ
′′
,

provided that

(29) ρ′′ < µ′/2 and µ′ � 2ν−µ
′
.

Thus the error terms E1, E3, and E1,3 are negligible (if ρ′′ →∞) and so we just have to concentrate
on S4(s). By using the representation of AU−1

1 ,H1
and AU−1

3 ,H3
we obtain

S4(s) =
1

2λ−µ

∑
|h1|≤H1

∑
|h3|≤H3

∑
0≤h<2λ−µ

ah1(U
−1
1 , H1) ah3(U

−1
3 , H3)

∑
0≤u1<U1

∑
0≤u3<U3

∑
0≤v<2λ−µ

e

(
−h1u1

U1

− h3u3
U3

− hv

2λ−µ

)

e

(
k−1∑
`=0

α`(fρ′,λ−µ+ρ′(u1 + `u3)− fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1)

)

×
∑
n

e

(
h1n

2

2λ
+
h3n

2ν
+

2hsn

2λ−µ

)
,

where by (5),

|ah1(U−11 , H1)| ≤ U−11 and |ah3(U−13 , H3)| ≤ U−13 .

The first step in the analysis of the main term of S4(s) is to observe that we only have to take into
accout the term that corresponds to h1 = 0. Namely if h1 6= 0 we can estimate the exponential
sum in a simple way. By Lemma 9 we have∑

n

e

(
h1n

2

2λ
+
h3n

2ν
+

2hsn

2λ−µ

)
�
(
N2−λ + 1 + λ

)√
2λ gcd(h1, 2λ)� λ2λ/2

√
gcd(h1, 2λ),



THE THUE-MORSE SEQUENCE ALONG SQUARES IS NORMAL 15

and

(30)
∑

1≤h1≤H1

√
gcd(h1, 2λ) ≤

∑
0≤i≤λ

2i/2
∑

1≤h1≤H1

2i |h1

1 =
∑
0≤i≤λ

2i/2
⌊
H1

2i

⌋
≤ H1

1− 2−1/2
,

so that ∑
0<|h1|≤H1

∑
|h3|≤H3

∑
0≤h<2λ−µ

∣∣∣∣∣∑
n

e

(
h1n

2

2λ
+
h3n

2ν
+

2hsn

2λ−µ

)∣∣∣∣∣� λH1H32
λ/2+λ−µ.

We assume that

(31) (ν − µ) + 2(λ− µ) + 2(ρ′ + ρ′′) ≤ λ/4

(which will be justified later) so that

(32) S4(s) = S5(s) +O(λ23λ/4),

where S5(s) denotes the part of S4(s) with h1 = 0. By applying the triangle inequality and by
considering the remaining exponential sum we obtain

|S5(s)| ≤
1

U1U32λ−µ

∑
|h3|≤H3

∑
0≤h<2λ−µ

∑
0≤u3<U3∣∣∣∣∣∣

∑
0≤u1<U1

∑
0≤v<2λ−µ

e

(
k−1∑
`=0

α`(fρ′,λ−µ+ρ′(u1 + `u3)− fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1))− hv

2λ−µ

)∣∣∣∣∣∣
×min

(
N,

∣∣∣∣sin(π(h32ν
+

2hs

2λ−µ

))∣∣∣∣−1
)
.

By setting u1 = u′′1 + 2ρ
′
u′1 and u3 = u′′3 + 2ρ

′
u′3 (where 0 ≤ u′′1, u

′′
3 < 2ρ

′
) we get

fρ′,λ−µ+ρ′(u1 + `u3) = fλ−µ(u′1 + `u′3 + i`),

fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1) = fλ−µ(u′1 + v + `(u′3 + 2s) + i`)

with i` = b(u′′1 + `u′′3)/2ρ
′c. As I = (i`)0≤`<k = (b(u′′1 + `u′′3)/2ρ

′c)0≤`<k is contained in Ik, we have

S5(s) ≤
1

22(λ−µ)+(ν+1−µ)

∑
|h3|≤H3

∑
0≤h<2λ−µ

∑
0≤u′3<2ν−µ+1

max
I∈Ik

∣∣∣∣∣∣
∑

0≤u′1<2λ−µ

∑
0≤v<2λ−µ

e

(
k−1∑
`=0

α`(fλ−µ(u′1 + `u′3 + i`)− fλ−µ(u′1 + v + `(u′3 + 2s) + i`)−
hv

2λ−µ

)∣∣∣∣∣∣
×min

(
N,

∣∣∣∣sin(π(h32ν
+

2hs

2λ−µ

))∣∣∣∣−1
)
.

By substituting u′1+v by another variable u′1, by using the definition of GI
λ−µ(h, d) and by replacing

the maximum by a sum we obtain

S5(s) ≤
∑
|h3|≤H3

∑
0≤h<2λ−µ

1

2ν+1−µ

∑
0≤u′3<2ν−µ+1

∑
I∈Ik

∣∣∣GI
λ−µ(h, u′3)G

I
λ−µ(h, u′3 + 2s)

∣∣∣
×min

(
N,

∣∣∣∣sin(π(h32ν
+

2hs

2λ−µ

))∣∣∣∣−1
)
.
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By using the estimate |GI
λ−µ(h, u′3 + 2s)| ≤ 1 and the Cauchy-Schwarz inequality we have

∑
0≤u′3<2ν−µ+1

∣∣∣GI
λ−µ(h, u′3)G

I
λ−µ(h, u′3 + 2s)

∣∣∣ ≤ 2(ν−µ+1)/2

 ∑
0≤u′3<2ν−µ+1

∣∣GI
λ−µ(h, u′3)

∣∣21/2

.

Hence by applying Proposition 1 (replacing λ by λ− µ, λ′ by ν − µ+ 1 and using (23)) we get

S5(s)� 2−η(λ−µ)/2
∑
|h3|≤H3

∑
0≤h<2λ−µ

min

(
N,

∣∣∣∣sin(π(h32ν
+

2hs

2λ−µ

))∣∣∣∣−1
)
.

It is now convenient to take also into account the dependency on s and to average according to it.
Since |h3|/2ν ≤ 1/2 we obtain from (13)

1

S

∑
1≤s≤S

∑
0≤h<2λ−µ

min

(
2ν ,

∣∣∣∣sin(π(h32ν
+

2hs

2λ−µ

))∣∣∣∣−1
)

� (λ− µ) min

(
2ν ,

∣∣∣∣sin(πh32ν

)∣∣∣∣−1
)

+ (λ− µ)2λ−µ

Finally we have ∑
|h3|≤H3

min

(
2ν ,

∣∣∣∣sin(πh32ν

)∣∣∣∣−1
)
� ν 2ν

and thus we obtain the estimate

1

S

∑
1≤s≤S

|S5(s)| ≤ 2−η(λ−µ)/2ν22ν +H3(λ− µ)2λ−µ

� 2−η(λ−µ)/2ν22ν

provided that

(33) ν − µ′ + ρ′′ + λ− µ ≤ ν.

Putting all these estimates together (and recalling that µ′ = µ− ρ′), from (24), (25), (27), (28),
(32) we finally get the upper bound

|S0| � 2ν−(λ−ν) + ν2ν2−η(λ−ν)/2 + 2ν−ρ
′/2 + 2ν−ρ

′′/2 + λ1/22ν/2+3λ/8

provided that the conditions (23) (26), (29), (31), (33) hold:

2ρ′ ≤ µ ≤ ν − ρ′, ρ′′ < µ′/2, µ′ � 2ν−µ
′
, 2µ′ ≥ λ,

(ν − µ) + 2(λ− µ) + 2(ρ′ + ρ′′) ≤ λ/4, ν − µ′ + ρ′′ + λ− µ ≤ ν.

For example the choice

λ = ν +
ν

20
and ρ′ = ρ′′ =

ν

200
ensures that the above conditions are satisfied.

Summing up we have proved that there exists η′ > 0 with

S0 � 2ν(1−η
′) � N1−η′

which is precisely the statement of Theorem 2.
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7. The case K odd

In this section we show that when K = α0 + · · ·+ αk−1 is odd, Proposition 2 provides an upper
bound for the sum

S0 =
∑
n<N

e

(
k−1∑
`=0

α`f((n+ `)2)

)
.

Let µ, λ, ρ and ρ1 be integers satisfying

(34) 0 ≤ ρ1 < ρ < µ = ν − 2ρ < ν < λ = ν + 2ρ < 2ν

to be chosen later. We apply Lemma 5 with Q = 1 and R = 2ρ, we sum trivially for 1 ≤ r ≤ R1 =
2ρ1 and obtain

|S0|2 �
N2R1

R
+
N

R

∑
R1<r<R

(
1− r

R

)
<(S1(r)),

where

S1(r) =
∑

n∈I1(r)

e

(
k−1∑
`=0

α`
(
f((n+ `)2)− f((n+ r + `)2)

))
and I1(r) is an interval included in [0, N − 1]. By Lemma 11 we have

S1(r) = S ′1(r) +O(2ν−(λ−ν−ρ)),

where

S ′1(r) =
∑

n∈I1(r)

e

(
k−1∑
`=0

α`
(
fλ((n+ `)2)− fλ((n+ r + `)2)

))
,

which leads to

|S0|2 � 22ν−ρ+ρ1 + 23ν+ρ−λ +
2ν

R

∑
R1<r<R

|S ′1(r)|

and by the Cauchy-Schwarz inequality to

|S0|4 � 24ν−2ρ+2ρ1 + 26ν+2ρ−2λ +
22ν

R

∑
R1<r<R

|S ′1(r)|
2
.

Let ρ′ ∈ N to be chosen later such that 1 ≤ ρ′ ≤ ρ. Applying Lemma 5 with Q = 2µ and

(35) S = 22ρ′ ≤ 2ν−µ,

observing that for any m ∈ N we have

sλ((m+ s2µ)2)− sλ(m
2) = sµ,λ((m+ s2µ)2)− sµ,λ(m

2),

we get

(36) |S0|4 � 24ν−2ρ+2ρ1 + 26ν+2ρ−2λ +
24ν

S
+

23ν

RS

∑
R1<r<R

∑
1≤s<S

|S2(r, s)| ,

with

S2(r, s) =
∑

n∈I2(r,s)

e

(
k−1∑
`=0

α`
(
fµ,λ((n+ `)2)− fµ,λ((n+ r + `)2)

−fµ,λ((n+ s2µ + `)2) + fµ,λ((n+ s2µ + r + `)2)
))
,

where I2(r, s) is an interval included in [0, N − 1].
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We can now make a Fourier analysis as in the case where K is even. Let µ′ = µ−ρ′ > 0. Writing

(37) U = 2λ−µ+ρ
′
, U3 = 2ν−µ+ρ

′+1, V = 2λ−µ,

we assume that

n2 ≡ u12
µ′ + w1 mod 2λ (0 ≤ u1 < U, 0 ≤ w1 < 2µ

′
),

(n+ r)2 ≡ u22
µ′ + w2 mod 2λ (0 ≤ u2 < U, 0 ≤ w2 < 2µ

′
),

2n = u32
µ′ + w3 (0 ≤ u3 < U3, 0 ≤ w3 < 2µ

′
),

2sn ≡ v mod 2λ−µ (0 ≤ v < V ),

where the integers u1 = u1(n), u2 = u2(n), u3 = u3(n), v = v(n), w1 = w1(n), w2 = w2(n), and
w3 = w3(n) verify the above conditions. Assuming that λ ≤ 2µ′, we have

(n+ `)2 ≡ (u1 + `u3)2
µ′ + w1 + `w3 + `2 mod 2λ,

(n+ `+ s2µ)2 ≡ (u1 + `u3 + v2ρ
′
+ `s2ρ

′+1)2µ
′
+ w1 + `w3 + `2 mod 2λ,

(n+ `+ r)2 ≡ (u2 + `u3)2
µ′ + w2 + `w3 + `2 + 2r` mod 2λ,

(n+ `+ s2µ + r)2 ≡ (u2 + `u3 + v2ρ
′
+ (`+ r)s2ρ

′+1)2µ
′
+ w2 + `w3 + `2 + 2r` mod 2λ.

According to Lemma 12, uniformly for fixed integers r, s, ` ≥ 1, the number of integers n < 2ν for
which at least one of the following conditions

fµ,λ((n+ `)2) 6= fρ′,λ−µ+ρ′(u1 + `u3),

fµ,λ((n+ `+ s2µ)2)) 6= fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1)

fµ,λ((n+ r + `)2) 6= fρ′,λ−µ+ρ′(u2 + `u3),

fµ,λ((n+ r + `+ s2µ)2)) 6= fρ′,λ−µ+ρ′(u2 + `u3 + v2ρ
′
+ (`+ r)s2ρ

′+1)

is satisfied is � 2ν−ρ
′
. Filtering now by the values of u1, u2, u3, it follows that

S2(r, s) =
∑

0≤u1<U

∑
0≤u2<U

∑
0≤u3<U3∑

n∈I2(r,s)

e

(
k−1∑
`=0

α`
(
fρ′,λ−µ+ρ′(u1 + `u3)− fρ′,λ−µ+ρ′(u2 + `u3)

−fρ′,λ−µ+ρ′(u1 + `u3 + v(n)2ρ
′
+ `s2ρ

′+1)

+fρ′,λ−µ+ρ′(u2 + `u3 + v(n)2ρ
′
+ (`+ r)s2ρ

′+1)
))

χU−1

(
n2

2λ
− u1
U

)
χU−1

(
(n+ r)2

2λ
− u2
U

)
χU−1

3

(
2n

2ν
− u3
U3

)
+O(2ν−ρ

′
).

Lemma 3 allows us to replace the product of characteristic functions χ by a product of trigonometric
polynomials. More precisely, using (8) U1 = U2 = U , H1 = H2 = U2ρ2 and H3 = U32

ρ3 , where the
integers ρ2 and ρ3 verify

(38) ρ2 ≤ µ− ρ′, ρ3 ≤ µ− ρ′,
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we obtain

S2(r, s) = S3(r, s) + O(2ν−ρ
′
) +O (E30(r)) +O (E31(0)) +O (E31(r))(39)

+ O (E32(0)) +O (E32(r)) +O (E33(r)) +O (E34(r)) ,

with

S3(r, s) =
∑

0≤u1<U

∑
0≤u2<U

∑
0≤u3<U3

∑
0≤v<V

e

(
k−1∑
`=0

α`
(
fρ′,λ−µ+ρ′(u1 + `u3)− fρ′,λ−µ+ρ′(u2 + `u3)

−fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1)

+fρ′,λ−µ+ρ′(u2 + `u3 + v2ρ
′
+ (`+ r)s2ρ

′+1)
))

∑
n∈I2(r,s)

AU−1,H1

(
n2

2λ
− u1
U

)
AU−1,H2

(
(n+ r)2

2λ
− u2
U

)
AU−1

3 ,H3

(
2n

2ν
− u3
U3

)
1

2λ−µ

∑
0≤h<2λ−µ

e

(
h

2sn− v
2λ−µ

)
.

We have

E30(r) =
U3

H3

2ν +
U3

H3

∑
1≤h′3≤H3/U3

∣∣∣∣∣∑
n<2ν

e

(
2h′3U3n

2ν

)∣∣∣∣∣ ,
which by (12) and (37) gives

E30(r)� 2ν−ρ3 + 2−ρ3
∑

1≤h′3≤2ρ3

∣∣∣∣sin πh′3
2µ−ρ′−2

∣∣∣∣−1 � 2ν−ρ3 + µ2µ−ρ
′−ρ3 � 2ν−ρ3 .

Similarly we have

E31(r) =
U

H2

∑
|h′2|≤H2/U

∣∣∣∣∣∑
n<2ν

e

(
h′2(n+ r)2

2λ/U

)∣∣∣∣∣ ,
which gives by (15) (for which we have 2ν−µ+ρ

′
complete sums), (30) and (38)

E31(r) � 2ν−ρ2 + 2−ρ2
∑

1≤h′2≤2ρ2

2ν−µ+ρ
′√

gcd(h′2, 2
µ−ρ′)

� 2ν−ρ2 + 2ν−µ+ρ
′ ≤ 2ν−ρ2 .

Similarly we have

E32(r) =
U

H2

U3

H3

∑
|h′2|≤H2/U

∑
|h′3|≤H3/U3

∣∣∣∣∣∑
n<2ν

e

(
h′2(n+ r)2

2λ/U
+

2h′3n

2ν/U3

)∣∣∣∣∣ ,
which gives by (15), (30) and (38), with a trivial summation over h′3,

E32(r)� 2ν−ρ2 + 2−ρ2
∑

1≤h′2≤2ρ2

2ν−µ+ρ
′√

gcd(h′2, 2
µ−ρ′)� 2ν−ρ2 .
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Similarly again we have

E33(r) =
U2

H2
2

∑
|h′1|≤H2/U

∑
|h′2|≤H2/U

∣∣∣∣∣∑
n<2ν

e

(
h′1n

2 + h′2(n+ r)2

2λ/U

)∣∣∣∣∣ ,
which gives by (15), (30) and (38), writing h′ = h′1 + h′2,

E33(r)� 2ν−ρ2 + 2−ρ2
∑

1≤h′≤2ρ2+1

2ν−µ+ρ
′√

gcd(h′, 2µ−ρ′)� 2ν−ρ2 .

Similarly once more we have

E34(r) =
U2

H2
2

U3

H3

∑
|h′1|≤H2/U

∑
|h′2|≤H2/U

∑
|h′3|≤H3/U3

∣∣∣∣∣∑
n<2ν

e

(
h′1n

2 + h′2(n+ r)2

2λ/U
+

2h′3n

2ν/U3

)∣∣∣∣∣ ,
which gives by (15), (30) and (38), writing h′ = h′1 + h′2, with a trivial summation over h′3,

E34(r) � 2ν−ρ2 + 2−ρ2
∑

1≤h′≤2ρ2+1

2ν−µ+ρ
′√

gcd(h′, 2µ−ρ′)� 2ν−ρ2 .

We deduce from (39) that

(40) S2(r, s) = S3(r, s) +O(2ν−ρ
′
) +O(2ν−ρ2) +O(2ν−ρ3)

and we can write

S3(r, s) = 2µ−λ
∑

0≤h<2λ−µ

∑
|h1|≤H1

ah1(U
−1, H1)

∑
|h2|≤H2

ah2(U
−1, H2)

∑
|h3|≤H3

ah3(U
−1
3 , H3)

∑
0≤u1<U

∑
0≤u2<U

∑
0≤u3<U3

∑
0≤v<V

e

(
−h1u1 + h2u2

U
− h3u3

U3

− hv

2λ−µ

)

e

(
k−1∑
`=0

α`
(
fρ′,λ−µ+ρ′(u1 + `u3)− fρ′,λ−µ+ρ′(u2 + `u3)

−fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1)

+fρ′,λ−µ+ρ′(u2 + `u3 + v2ρ
′
+ (`+ r)s2ρ

′+1)
))

∑
n∈I2(r,s)

e

(
h1n

2 + h2(n+ r)2

2λ
+

2h3n

2ν
+

2hsn

2λ−µ

)
.

Let us introduce the decomposition

(41) S3(r, s) = S4(r, s) + S ′4(r, s),

where S4(r, s) denotes the contribution of the terms for which h1 + h2 = 0 while S ′4(r, s) denotes
the contribution of the terms for which h1 + h2 6= 0. We have by (16)

S ′4(r, s) �
∑
|h1|≤H1

ah1(U
−1, H1)

∑
|h2|≤H2

ah2(U
−1, H2)

∑
|h3|≤H3

ah3(U
−1
3 , H3)

U2U3V λ2λ/2
√

gcd(h1 + h2, 2λ)

� ν3U2U3V λ2λ/2
√

2H2

� ν42ν+
1
2
(8λ−9µ+7ρ′+ρ2),
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and it remains to consider S4(r, s). Setting u1 = u′′1 + 2ρ
′
u′1, u2 = u′′2 + 2ρ

′
u′2 and u3 = u′′3 + 2ρ

′
u′3

(where 0 ≤ u′′1, u
′′
2, u

′′
3 < 2ρ

′
) we get

fρ′,λ−µ+ρ′(u1 + `u3) = fλ−µ

(
u′1 + `u′3 +

⌊
(u′′1 + `u′′3)/2ρ

′
⌋)

,

fρ′,λ−µ+ρ′(u2 + `u3) = fλ−µ

(
u′2 + `u′3 +

⌊
(u′′2 + `u′′3)/2ρ

′
⌋)

,

fρ′,λ−µ+ρ′(u1 + `u3 + v2ρ
′
+ `s2ρ

′+1) = fλ−µ

(
u′1 + v + `(u′3 + 2s) +

⌊
(u′′1 + `u′′3)/2ρ

′
⌋)

fρ′,λ−µ+ρ′(u2 + `u3 + v2ρ
′
+ (`+ r)s2ρ

′+1) = fλ−µ

(
u′2 + v + 2sr + `(u′3 + 2s) +

⌊
(u′′2 + `u′′3)/2ρ

′
⌋)

.

Using the periodicity modulo 2λ−µ(= V ) we replace the variable v by v1 such that v1 ≡ u′1 +
v mod 2λ−µ and we introduce a new variable v2 such that

v2 ≡ u′2 + v + 2sr mod 2λ−µ ≡ v1 + u′2 − u′1 + 2sr mod 2λ−µ

If we observe that U/2ρ
′
= V and write U ′3 = U3/2

ρ′ , we obtain

S4(r, s) = 22µ−2λ
∑

0≤h<2λ−µ

∑
0≤h′<2λ−µ

∑
|h2|≤H2

a−h2(U
−1, H2)ah2(U

−1, H2)
∑
|h3|≤H3

ah3(U
−1
3 , H3)

∑
0≤u′′1<2ρ′

∑
0≤u′′2<2ρ′

∑
0≤u′′3<2ρ′

e

(
−−h2u

′′
1 + h2u

′′
2

U
− h3u

′′
3

U3

)
∑

0≤u′3<U ′3

e

(
−h3u

′
3

U ′3
+

2h′sr

2λ−µ

)
∑

0≤u′1<V

e

(
k−1∑
`=0

α`fλ−µ

(
u′1 + `u′3 +

⌊
(u′′1 + `u′′3)/2ρ

′
⌋)
− (−h2 − h+ h′)u′1

2λ−µ

)
∑

0≤u′2<V

e

(
−

k−1∑
`=0

α`fλ−µ

(
u′2 + `u′3 +

⌊
(u′′2 + `u′′3)/2ρ

′
⌋)

+
(h′ − h2)u′2

2λ−µ

)
∑

0≤v1<V

e

(
−

k−1∑
`=0

α`fλ−µ

(
v1 + `(u′3 + 2s) +

⌊
(u′′1 + `u′′3)/2ρ

′
⌋)

+
(h′ − h)v1

2λ−µ

)
∑

0≤v2<V

e

(
k−1∑
`=0

α`fλ−µ

(
v2 + `(u′3 + 2s) +

⌊
(u′′2 + `u′′3)/2ρ

′
⌋)
− h′v2

2λ−µ

)
∑

n∈I2(r,s)

e

(
2h2rn+ h2r

2

2λ
+

2h3n

2ν
+

2hsn

2λ−µ

)
.
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Using (21) this gives

S4(r, s) � 22λ−2µ
∑

0≤h<2λ−µ

∑
0≤h′<2λ−µ

∑
|h2|≤H2

min(U−2, h−22 )
∑
|h3|≤H3

min(U−13 , h−13 )

∑
0≤u′′1<2ρ′

∑
0≤u′′2<2ρ′

∑
0≤u′′3<2ρ′

∑
0≤u′3<U ′3∣∣∣GI(u′′1 ,u

′′
3 )

λ−µ (h′ − h− h2, u′3)
∣∣∣ ∣∣∣GI(u′′2 ,u

′′
3 )

λ−µ (h′ − h2, u′3)
∣∣∣∣∣∣GI(u′′1 ,u

′′
3 )

λ−µ (h′ − h, u′3 + 2s)
∣∣∣ ∣∣∣GI(u′′2 ,u

′′
3 )

λ−µ (h′, u′3 + 2s)
∣∣∣∣∣∣∣∣∣

∑
n∈I2(r,s)

e

(
2h2rn

2λ
+

2h3n

2ν
+

2hsn

2λ−µ

)∣∣∣∣∣∣ ,
where, for any (u, ũ) ∈ N2

I(u, ũ) =

(⌊ u
2ρ′

⌋
,

⌊
u+ ũ

2ρ′

⌋
, . . . ,

⌊
u+ (k − 1)ũ

2ρ′

⌋)
.

This leads to

S4(r, s) � 22λ−2µ
∑

0≤u′′1 ,u′′2 ,u′′3<2ρ′

∑
|h2|≤H2

min(U−2, h−22 )
∑
|h3|≤H3

min(U−13 , h−13 )

∑
0≤h<2λ−µ

∣∣∣∣∣min

(
2ν ,

∣∣∣∣sin πh2r + 2λ−νh3 + 2µhs

2λ−1

∣∣∣∣−1
)∣∣∣∣∣S5(h, h2, s, u

′′
1, u

′′
2, u

′′
3),

where

S5(h, h2, s, u
′′
1, u

′′
2, u

′′
3) =

∑
0≤u′3<U ′3

∑
0≤h′<2λ−µ

∣∣∣GI(u′′1 ,u
′′
3 )

λ−µ (h′ − h− h2, u′3)
∣∣∣ ∣∣∣GI(u′′2 ,u

′′
3 )

λ−µ (h′ − h2, u′3)
∣∣∣∣∣∣GI(u′′1 ,u

′′
3 )

λ−µ (h′ − h, u′3 + 2s)
∣∣∣ ∣∣∣GI(u′′2 ,u

′′
3 )

λ−µ (h′, u′3 + 2s)
∣∣∣

can be bounded above by using the Cauchy-Schwarz inequality:

S5(h, h2, s, u
′′
1, u

′′
2, u

′′
3)

≤

 ∑
0≤u′3<U ′3

∑
0≤h′<2λ−µ

∣∣∣GI(u′′1 ,u
′′
3 )

λ−µ (h′ − h− h2, u′3)
∣∣∣2 ∣∣∣GI(u′′1 ,u

′′
3 )

λ−µ (h′ − h, u′3 + 2s)
∣∣∣2
1/2

 ∑
0≤u′3<U ′3

∑
0≤h′<2λ−µ

∣∣∣GI(u′′2 ,u
′′
3 )

λ−µ (h′ − h2, u′3)
∣∣∣2 ∣∣∣GI(u′′2 ,u

′′
3 )

λ−µ (h′, u′3 + 2s)
∣∣∣2
1/2

.

By periodicity modulo 2λ−µ and taking h′′ = h′ − h the first parenthesis is independent of h and
we get

S5(h, h2, s, u
′′
1, u

′′
2, u

′′
3) ≤ S6(h2, s, u

′′
1, u

′′
3)1/2S6(h2, s, u

′′
2, u

′′
3)1/2,

where

(42) S6(h2, s, u
′′, u′′3) =

∑
0≤u′3<U ′3

∑
0≤h′<2λ−µ

∣∣∣GI(u′′,u′′3 )
λ−µ (h′ − h2, u′3)

∣∣∣2 ∣∣∣GI(u′′,u′′3 )
λ−µ (h′, u′3 + 2s)

∣∣∣2 .
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We obtain

S4(r, s) � 22λ−2µ
∑

0≤u′′1 ,u′′2 ,u′′3<2ρ′

∑
|h2|≤H2

min(U−2, h−22 )
∑
|h3|≤H3

min(U−13 , h−13 )

S6(h2, s, u
′′
1, u

′′
3)1/2S6(h2, s, u

′′
2, u

′′
3)1/2∑

0≤h<2λ−µ

∣∣∣∣∣min

(
2ν ,

∣∣∣∣sinπh2r + 2λ−νh3 + 2µhs

2λ−1

∣∣∣∣−1
)∣∣∣∣∣ .

Observing that∣∣h2r + 2λ−νh3
∣∣ /2µ ≤ (H2R + 2λ−νH3)/2

µ ≤ 2λ−2µ+ρ
′+ρ2+ρ + 2λ−2µ+ρ

′+ρ3+1 ≤ 1/2,

we have by (11) ∑
0≤h<2λ−µ

∣∣∣∣∣min

(
2ν ,

∣∣∣∣sin πh2r + 2λ−νh3 + 2µhs

2λ−1

∣∣∣∣−1
)∣∣∣∣∣

� gcd(s, 2λ−µ−1) min

(
2ν ,
∣∣∣sin π h2r+2λ−νh3

2λ−1

∣∣∣−1)+ (λ− µ)2λ−µ

and since 2λ−µ � min

(
2ν ,
∣∣∣sin π h2r+2λ−νh3

2λ−1

∣∣∣−1) , it follows

S4(r, s) � (λ− µ) gcd(s, 2λ−µ−1) 22λ−2µ
∑

0≤u′′1 ,u′′2 ,u′′3<2ρ′

∑
|h2|≤H2

min(U−2, h−22 )

S6(h2, s, u
′′
1, u

′′
3)1/2S6(h2, s, u

′′
2, u

′′
3)1/2∑

|h3|≤H3

min(U−13 , h−13 ) min

(
2ν ,
∣∣∣sinπ h2r+2λ−νh3

2λ−1

∣∣∣−1) .
We recall here that in (36) we have R1 < r < R and introduce the integers H ′2 and κ such that

(43) H ′2 = 2λ−ν+1H3/R1 = 2λ−µ+ρ
′+ρ3−ρ1+2 = 2κ.

By (37), assuming that

(44) ρ′ + ρ3 + 2 < ρ1,

we will have H ′2 < 2λ−µ and the condition |h2| > H ′2 ensures that 2λ−ν |h3| ≤ 1
2
|h2r|. This leads to

S4(r, s)� S41(r, s) + S42(r, s) + S43(r, s),

where S41(r, s), S42(r, s) and S43(r, s) denote respectively the contribution above of the terms
|h2| ≤ H ′2, H

′
2 < |h2| ≤ 2λ−µ, 2λ−µ < |h2| ≤ H2.

7.1. Estimate of S41(r, s). By (11) we have∑
|h3|≤H3

min

(
2ν ,
∣∣∣sin π h3+h2r2ν−λ2ν−1

∣∣∣−1)� ν2ν ,

so that

S41(r, s) � ν (λ− µ) gcd(s, 2λ−µ−1) 2ν+2λ−2µU−2U−13∑
0≤u′′1 ,u′′2 ,u′′3<2ρ′

∑
|h2|≤H′2

S6(h2, s, u
′′
1, u

′′
3)1/2S6(h2, s, u

′′
2, u

′′
3)1/2.
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By Proposition 2 (replacing λ by λ− µ and L by λ− µ− κ), we have for some 0 < η′ ≤ 1∣∣∣GI(u′′,u′′3 )
λ−µ (h′ − h2, u′3)

∣∣∣� 2−η
′(λ−µ−κ) max

J∈Ik

∣∣GJ
κ(h′ − h2, bu′3/2Lc)

∣∣ .
By Parseval’s equality and recalling that card Ik = 2k−1 it follows that∑

|h2|≤H′2

max
J∈Ik

∣∣GJ
κ(h′ − h2, bu′3/2Lc)

∣∣2
≤
∑
J∈Ik

∑
|h2|≤H′2

∣∣GJ
κ(h′ − h2, bu′3/2Lc)

∣∣2 ≤ 2k+1.

We obtain uniformly in λ, µ, H ′2, u
′
3, u

′′ and u′′3:∑
|h2|≤H′2

∣∣∣GI(u′′,u′′3 )
λ−µ (h′ − h2, u′3)

∣∣∣2 � 2−η
′(λ−µ−κ) =

(
H ′2

2λ−µ

)η′
.

It follows from (42) and Parseval’s equality that∑
|h2|≤H′2

S6(h2, s, u
′′, u′′3)� U ′3

(
H ′2

2λ−µ

)η′
and by the Cauchy-Schwarz inequality we obtain∑

|h2|≤H′2

S6(h2, s, u
′′
1, u

′′
3)1/2S6(h2, s, u

′′
2, u

′′
3)1/2

≤

 ∑
|h2|≤H′2

S6(h2, s, u
′′
1, u

′′
3)

1/2 ∑
|h2|≤H′2

S6(h2, s, u
′′
2, u

′′
3)

1/2

� U ′3

(
H ′2

2λ−µ

)η′
.

This gives

S41(r, s)� ν (λ− µ) gcd(s, 2λ−µ−1) 2ν+2λ−2µ+3ρ′U−2U−13 U ′3

(
H ′2

2λ−µ

)η′
,

so that by (43), (37) and (14)

(45)
1

RS

∑
R1<r<R

∑
1≤s<S

S41(r, s)� ν (λ− µ)2 2ν−η
′(ρ1−ρ′−ρ3).

7.2. Estimate of S42(r, s). The condition |h2| > H ′2 ensures that 2λ−ν |h3| ≤ 1
2
|h2r| so that

min

(
2ν ,
∣∣∣sin π h2r+2λ−νh3

2λ−1

∣∣∣−1)� 2λ

H ′2r
.

By the Cauchy-Schwarz inequality we have∑
H′2<|h2|≤2λ−µ

S6(h2, s, u
′′
1, u

′′
3)1/2S6(h2, s, u

′′
2, u

′′
3)1/2

≤

 ∑
|h2|≤2λ−µ

S6(h2, s, u
′′
1, u

′′
3)

1/2 ∑
|h2|≤2λ−µ

S6(h2, s, u
′′
2, u

′′
3)

1/2

� U ′3.
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It follows that

S42(r, s)� (λ− µ) gcd(s, 2λ−µ−1) 22λ−2µ+3ρ′U−2
2λ

H ′2r
U ′3

∑
|h3|≤H3

min(U−13 , h−13 )

and we get by (43) and (37),

S42(r, s)� (λ− µ)2
gcd(s, 2λ−µ−1)

r
2ν+ρ1+ρ

′−ρ3 ,

so that by (14)

(46)
1

RS

∑
R1<r<R

∑
1≤s<S

S42(r, s)� ρ(λ− µ)3 2ν−ρ+ρ1+ρ
′−ρ3 .

7.3. Estimate of S43(r, s). We will split the summation over h2 into J = H2/2
λ−µ − 1 parts of

the form j2λ−µ < h2 ≤ (j + 1)2λ−µ with j = 1, . . . , J . The condition |h2| > j2λ−µ ensures that
2λ−ν |h3| ≤ 1

2
|h2r| so that

min

(
2ν ,
∣∣∣sin π h2r+2λ−νh3

2λ−1

∣∣∣−1)� 2λ

j2λ−µr
=

2µ

jr
.

By the Cauchy-Schwarz inequality we have∑
j2λ−µ<|h2|≤(j+1)2λ−µ

S6(h2, s, u
′′
1, u

′′
3)1/2S6(h2, s, u

′′
2, u

′′
3)1/2

�

 ∑
h2 mod 2λ−µ

S6(h2, s, u
′′
1, u

′′
3)

1/2 ∑
h2 mod 2λ−µ

S6(h2, s, u
′′
2, u

′′
3)

1/2

� U ′3.

It follows that

S43(r, s)� (λ− µ) gcd(s, 2λ−µ−1) 23ρ′U ′3
∑

1≤j≤J

2µ

j3r

∑
|h3|≤H3

min(U−13 , h−13 ),

so that by (37) and (14)

(47)
1

RS

∑
R1<r<R

∑
1≤s<S

S43(r, s)� ρ (λ− µ)3 2ν−ρ+3ρ′ .

It follows from (45), (46) and (47) that

1

RS

∑
R1<r<R

∑
1≤s<S

S4(r, s)� ν42ν
(

2−η
′(ρ1−ρ′−ρ3) + 2−ρ+ρ1+ρ

′−ρ3 + 2−ρ+3ρ′
)
.

Choosing

ρ1 = ρ− ρ′, ρ2 = ρ3 = ρ′,

we obtain

(48)
1

RS

∑
R1<r<R

∑
1≤s<S

S4(r, s)� ν42ν
(

2−η
′(ρ−3ρ′) + 2−ρ

′
+ 2−(ρ−3ρ

′)
)
.

Using (41) and (40), since 0 < η′ < 1 we obtain

(49)
1

RS

∑
R1<r<R

∑
1≤s<S

S2(r, s)� ν42ν
(

2−η
′(ρ−3ρ′) + 2−ρ

′
+ 2

1
2
(8λ−9µ+8ρ′)

)
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that we can insert in (36), recalling by (35) that S = 22ρ′ and by (34) that µ = ν− 2ρ, λ = ν+ 2ρ,
so that we get

|S0|4 � 24ν−2ρ′ + 24ν−2ρ + ν424ν
(

2−η
′(ρ−3ρ′) + 2−ρ

′
+ 2−

ν
2
+17ρ+4ρ′

)
and if we set ρ′ = bν/146c and ρ = 4ρ′ we obtain

(50) |S0| � ν2ν−
η′ρ′
4 � νN1−η′′

which completes the proof that when K is odd Proposition 2 implies Theorem 2.

8. Proof of Proposition 1

8.1. Proof of Proposition 1 in the case (α0, . . . , αk−1) = (1, . . . , 1). With the help of Lemma 13
it is easy to establish a set of recurrences for

ΦI,I′

λ,λ′(h) =
1

2λ′
∑

0≤d<2λ′

GI
λ(h, d)GI′

λ (h, d),

where h ∈ Z, (λ, λ′) ∈ N2 and (I, I ′) ∈ I2k : if λ, λ′ ≥ 1 we have

ΦI,I′

λ,λ′(h) =
(−1)|I|+|I

′|

8

×
(

Φ
T00(I),T00(I′)
λ−1,λ′−1 (h) + e(h/2λ)Φ

T00(I),T01(I′)
λ−1,λ′−1 (h) + e(−h/2λ)ΦT01(I),T00(I′)

λ−1,λ′−1 (h) + Φ
T01(I),T01(I′)
λ−1,λ′−1 (h)

+ Φ
T10(I),T10(I′)
λ−1,λ′−1 (h) + e(h/2λ)Φ

T10(I),T11(I′)
λ−1,λ′−1 (h) + e(−h/2λ)ΦT11(I),T10(I′)

λ−1,λ′−1 (h) + Φ
T11(I),T11(I′)
λ−1,λ′−1 (h)

)
.

If we split up the sum over 0 ≤ d < 2λ
′

into even and odd d, this gives rise to a vector recurrence

for ψλ,λ′(h) =
(

ΦI,I′

λ,λ′(h)
)
(I,I′)∈I2k

of the form

ψλ,λ′(h) = M(h/2λ) ·ψλ−1,λ′−1(h),

where the 22(k−1) × 22(k−1)-matrix M(β) = (M(I,I′),(J,J ′)(β)))((I,I′),(J,J ′))∈I2k×I2k is independent of λ,

λ′ and β = h/2λ. By construction all absolute row sums of M(β) are equal to 1. More precisely
in each row there are eight non-zero entries, where all of them are either equal to ±1/8 or equal
to ± e(±β)/8.

It is convenient to interpret these matrices as weighted directed graphs, where the vertices are
the pairs (I, I ′) ∈ I2k and starting from each vertex there are eight directed edges to the vertices
(Tεε′(I), Tεε′′(I

′)) (where (ε, ε′, ε′′) ∈ {0, 1}3) with the corresponding weights 1/8 or e(±β)/8 (with
the common sign (−1)|I|+|I

′|), see Figure 1. Of course products of m such matrices correspond to

I, I'

T  (I), T  (I') T  (I), T  (I') T  (I), T  (I') T  (I), T  (I')T  (I), T  (I') T  (I), T  (I')T  (I), T  (I')T  (I), T  (I') 0001 10 110000 0101 0100 10 10 1011 11 11

1/8

e( )/8β e( )/8β
e(-  )/8β

e(-  )/8β 1/8 1/8

1/8

Figure 1. Weighted directed graph representation of the recurrence for ΦI,I′

λ,λ′(h)

(the common sign of all the edge weights is (−1)|I|+|I
′|).
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oriented paths of length m on these graphs, where such paths are weighted with the corresponding
products (of modulus 8−m). The entries at position ((I, I ′), (J, J ′)) of such product matrices
correspond then to the sum of weights of paths from (I, I ′) to (J, J ′).

In order to prove Proposition 1 it is enough to check the conditions of Lemma 10 uniformly in
h for M` = M(h/2`). Indeed, as for 1

2
λ ≤ λ′ ≤ λ we have

ψλ,λ′(h) = M(h/2λ) · · ·M(h/2λ−λ
′+1)ψλ−λ′,0(h),

it follows by applying (17) with k = λ′ and r = λ− λ′ + 1 that

(51) ‖ψλ,λ′(h)‖∞ ≤ C2−δλ
′ ‖ψλ−λ′,0(h)‖∞ ≤ C2−δλ

′ � 2−δλ/2

and consequently

ΦI,I
λ,λ′(h) =

1

2λ′
∑

0≤d<2λ′

∣∣GI
λ(h, d)

∣∣2 ≤ ‖ψλ,λ′(h)‖∞ � 2−δλ/2.

We first show that there exists an integerm0 ≥ 1 such that every product A = (A(I,I′),(J,J ′))((I,I′),(J,J ′))∈I2k×I2k
of m0 consecutive matrices M` = M(h/2`) verifies the condition (1) of Lemma 10. It is clear that
Tm00(I) = 0 for all I ∈ Ik if m is sufficiently large, which means in the graph interpretation (see
Figure 1) that for every vertex (I, I ′) there is a path of length m from (I, I ′) to (0,0). Let m0 be
one of these values and fix a row indexed by (I, I ′) in the matrix A. From the graph interpretation
it is clear that the entry A(I,I′),(0,0) is the sum of at least one term of modulus 8−m0 . Now there
are two possible cases. If the absolute row sum is ≤ 1− 8−m0/2 then we are done. However, if the
absolute row sum is > 1−8−m0/2 then it follows that |A(I,I′),(0,0)| ≥ 8−m0/2. Indeed the inequality
|A(I,I′),(0,0)| < 8−m0/2 would imply that A(I,I′),(0,0) is the sum of at least two terms of modulus
8−m0 , so that the absolute row sum would be bounded by∑

(J,J ′)

|A(I,I′),(J,J ′)| <
1

2
8−m0 +

(
1− 2 · 8−m0

)
= 1− 3

2
8−m0 ,

which would contradict the assumption that the absolute row sum is > 1− 8−m0/2.

Finally we show that there exists an integerm1 ≥ 1 such that every product B = (B(I,I′),(J,J ′))((I,I′),(J,J ′))∈I2k×I2k
of m1 consecutive matrices M` = M(h/2`) verifies the condition (2) of Lemma 10. Indeed we will
concentrate on the entry B(0,0),(0,0), that is, we will consider all possible paths from (0,0) to (0,0)
of length m1 in the corresponding graph and show that a positive saving is just due to the structure
of this entry. Since T00(0) = T01(0) = 0 it follows that the entry B(0,0),(0,0) is certainly a sum of
k0 = k0(m1) ≥ 2 terms of modulus 8−m1 (for every m1 ≥ 1), that is, there are k0 ≥ 2 paths from
(0,0) to (0,0) of length m1 in the corresponding graph. For m1 ≥ 3, starting from (0,0) we first
apply m1 − 2 times the transformations (T00, T00), then one time the transformation (T00, T01),
and then one time the transformation (T00, T00). This corresponds in the graph interpretation (see
Figure 1) to a path from (0,0) to (0,0) of length m1 with weight e(h/2λ−m1+1)8−m1 .

Next we observe that T11(0) has k − 1 non-zero entries and we recall that k − 1 is odd. Thus,
there exists m1 ≥ 4 such that Tm1−3

01 T11(0) is of the form 011 · · · 1, that is, it has an odd number
of 1’s. Starting from (0,0) we apply now one time the transformation (T11, T11), then one time the
transformation (T01, T01), then m1 − 3 times the transformations (T00, T01), and then one time the
transformation (T00, T00). This corresponds in the graph interpretation (see Figure 1) to a path from
(0,0) to (0,0) of length m1 with weight (−1)|0|+|(0,1,...,1)| e(h/2λ−m1+1)8−m1 = − e(h/2λ−m1+1)8−m1 .

Thus we have shown that at least two terms cancel for a properly chosen m1. Of course this
implies

|B(0,0),(0,0)| ≤ (k0 − 2)8−m1 ,
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so that ∑
(J,J ′)

|B(0,0),(J,J ′)| ≤ (k0 − 2)8−m1 + (1− k08−m1) ≤ 1− 2 · 8−m1 ,

so that condition (2) of Lemma 10 is verified with η = 2 · 8−m1 , which completes the proof of
Proposition 1 when (α0, . . . , αk−1) = (1, . . . , 1) and K is even.

8.2. Proof of Proposition 1 in the case (α0, . . . , αk−1) 6= (1, . . . , 1). Without loss of generality
we can assume that α0 = 1 and that for at least one ` ≥ 1 we have α` = 0. As the discrete Fourier
transform GI

λ only depends on those indices ` for which α` = 1, let us introduce the reduced K-uple

Ĩ = (i`)0≤`<k, α`=1 and the reduced sets Ĩk = {Ĩ , I ∈ Ik}.
Then the proof of Proposition 1 works in the case (α0, . . . , αk−1) 6= (1, . . . , 1) in the same way as

in the case (α0, . . . , αk−1) = (1, . . . , 1) if we replace Ik by Ĩk, GI
λ by GĨ

λ and for any (ε, ε′) ∈ {0, 1}2
the transformation Tεε′ on Ik by the corresponding transformation T̃εε′ on Ĩk. In particular, working
with

ΦĨ,Ĩ′

λ,λ′(h) =
1

2λ′
∑

0≤d<2λ′

GĨ
λ(h, d)GĨ′

λ (h, d)

instead of ΦI,I′

λ,λ′(h), the corresponding recurrence is exactly the same. Furthermore the matrices

M(β) have now dimension |Ĩk|2×|Ĩk|2 instead of 22(k−1)×22(k−1) and, of course, the corresponding
weighted directed graph has less vertices. If we replace k by K (and use the fact that K is even)
then we prove in the same way like in Section 8.1 that the conditions of Lemma 10 are satisfied.

This completes the proof of Proposition 1 in the case where K is even.

9. Proof of Proposition 2

9.1. Proof of Proposition 2 in the case (α0, . . . , αk−1) = (1, . . . 1). Formula (22) can be written
as

Gλ(h, d) =
1

2
Mε0(d)

(
e(−h/2λ)

)
Gλ−1(h, bd/2c),

with for any ε ∈ {0, 1} and z ∈ U,

Mε(z) =
(
1l[J=Tε0(I)]wε0(I, z) + 1l[J=Tε1(I)]wε1(I, z)

)
(I,J)∈I2k

,

where for any ε′ ∈ {0, 1},

wεε′(I, z) = (−1)|I|+εσ+ε
′Kzε

′
= (−1)|I|+εσ+ε

′
zε
′

(as K = k is odd) and 1l[P] = 1 if the proposition P is true and 1l[P] = 0 otherwise. It follows by
induction that for any integer n ≥ 1, we have

Gλ(h, d) =
1

2m
Mε0(d)...εm−1(d)

(
e(−h/2λ)

)
Gλ−m(h, bd/2mc),

where for any d = (d0, . . . , dm−1) ∈ {0, 1}m we put

Md(z) = Md0...dm−1(z) = Md0(z) · · ·Mdm−1(z2
m−1

)

and we define the polynomials Pd
IJ for (I, J) ∈ I2k by

Md(z) =
(
Pd
IJ(z)

)
(I,J)∈I2k

,

so that ∥∥Md(z)
∥∥
∞ = max

I∈Ik
max
z∈U

∑
J∈Ik

∣∣Pd
IJ(z)

∣∣ .
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By Lemma 10, Proposition 2 will follow from the fact that there exists an integer m ≥ 1 such that
for any d ∈ {0, 1}m and I ∈ Ik,

max
z∈U

∑
J∈Ik

∣∣Pd
IJ(z)

∣∣ < 2m.

The end of this section is devoted to a proof of this fact.

Let G(z) be the weighted directed graph of outdegree 4 whose vertices are the elements of Ik
and where for each (ε, ε′) ∈ {0, 1}2 and I ∈ Ik the edge from I to Tεε′(I) has weight wεε′(I, z).

For example when k = 3 we have

M0(z) =


1− z 0 0 0
−1 z 0 0
1 0 −z 0
0 1 −z 0

 , M1(z) =


0 −1 z 0
0 1 0 z
0 0 −1 z
0 0 0 1− z


and G(z) is the following weighted directed graph:

001

000

011

012

w11(z) = −z

w00(z) = −1

w10(z) = 1w01(z) = z

w10(z) = −1

w00(z) = 1

w01(z) = −z

w11(z) = z

w00(z) = 1

w01(z) = −zw10(z) = −1

w11(z) = z

w01(z) = −z

w10(z) = 1

w11(z) = −z

w00(z) = 1

For any d = (d0, . . . , dm−1) ∈ {0, 1}m we can interpret the coefficients of the matrix Md(z) as

coding of paths of length m with, for j ∈ {0, . . . ,m − 1}, step j in the graph G(z2
j
). More

precisely, for any I ∈ Ik, e = (e0, . . . , em−1) ∈ {0, 1}m and i ∈ {1, . . . ,m}, let us denote Tde
i (I) =

Tdi−1ei−1
◦ · · · ◦ Td0e0(I) and associate to each of the 2m paths from the vertex I to the vertices

Tde
m (I) the weight

wde(I, z) = wd0e0(I, z)wd1e1(T
de
1 (I), z2) · · ·wdm−1em−1(T

de
m−1(I), z2

m−1

)

= (−1)ν(I,d,e)zN(e),

with

(52) ν(I,d, e) = |I|+
∣∣Tde

1 (I)
∣∣+ · · ·+

∣∣Tde
m−1(I)

∣∣+ |d|σ + |e|

and

(53) N(e) =
m−1∑
i=0

ei2
i.
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Then, for any (I, J) ∈ I2k , we have, by definition of Pd
IJ :

(54) Pd
IJ(z) =

∑
e∈{0,1}m
Tde
m (I)=J

wde(I, z) =
∑

e∈{0,1}m
Tde
m (I)=J

(−1)ν(I,d,e)zN(e).

Lemma 14. For any d ∈ {0, 1}m, the family of polynomials (Pd
IJ)(I,J)∈I2k has the following prop-

erties:

(1) for any (I, J) ∈ I2k , the coefficients of Pd
IJ are 0, +1 or −1;

(2) for any I ∈ Ik and j ∈ {0, . . . , 2m − 1}, zj or −zj appears exactly once as a monomial of
some polynomial Pd

IJ (J ∈ Ik);
(3) for any I ∈ Ik,

card{j, 0 ≤ j < 2m, ∃J ∈ Ik, zj appears as a monomial of Pd
IJ}

= card{j, 0 ≤ j < 2m, ∃J ∈ Ik, −zj appears as a monomial of Pd
IJ} = 2m−1.

Proof. It follows from (54) that (1) is a direct consequence of the fact that the function N defined
by (53) is a bijection between {0, 1}m and {0, . . . , 2m−1} and (2) of the fact that for any J ∈ Ik,
the sets E(J) = {e ∈ {0, 1}m, Tde

m (I) = J} form a partition of {0, 1}m. Moreover, as for any
ε ∈ {0, 1} the sum of the coefficients of each line of the matrix Mε(1) is equal to zero, it follows
that for any d ∈ {0, 1}m the sum of the coefficients of each line of the matrix Md(1) is equal to
zero, which proves (3). �

For any I = (i0, . . . , ik−1) ∈ Ik we denote I|j = ij.

Lemma 15. Let (I0, I1) ∈ I2k and j ∈ {0, . . . , k − 1} such that I0|j − I1|j ∈ {0, 1}. Then, for any
ε ∈ {0, 1}, we have either

Tε0(I0)|j = Tε0(I1)|j and Tε1(I0)|j = Tε1(I1)|j + 1

or
Tε0(I0)|j = Tε0(I1)|j + 1 and Tε1(I0)|j = Tε1(I1)|j.

Proof. For I ∈ Ik, j ∈ {0, . . . , k − 1} and (ε, ε′) ∈ {0, 1}2 we have Tεε′(I)|j =
⌊
I|j+jε+ε

′

2

⌋
, so that

Lemma 15 follows from the fact that for any (i, i′) ∈ N2 we have either⌊
i+ i′

2

⌋
=

⌊
i+ 1 + i′

2

⌋
or

⌊
i+ i′ + 1

2

⌋
=

⌊
i+ 1 + i′ + 1

2

⌋
.

�

Lemma 16. For any (di)i∈N ∈ {0, 1}N and any I ∈ Ik there exist J = J(I) ∈ Ik, m = m(I) ∈
{1, . . . , k} and (e, e′) ∈ {0, 1}m × {0, 1}m, e 6= e′ such that J = Tde

m (I) = Tde′
m (I) and N(e′) =

N(e) + 1, where d = (d0, . . . , dm−1).

Proof. For any I ∈ Ik and e0 ∈ {0, 1} we define Ie0 = Td0e0(I).
If d0 = 0 and I = (0, . . . , 0) or d0 = 1 and I = (0, 1, . . . , k − 1), we have I0 = I1 = I so that

Lemma 16 is true in these two cases with m = 1.
In any other case, we have I0 6= I1 and it remains to find an integer m ∈ {2 . . . , k} and

(e1, . . . , em−1) ∈ {0, 1}m−1 such that

Tdm−1em−1 ◦ · · · ◦ Td1e1(I0) = Tdm−1em−1 ◦ · · · ◦ Td1e1(I1).
Let j1 be the smallest integer j such that I0|j = I1|j + 1 and choose, by Lemma 15, e1 ∈ {0, 1}
such that Td1e1(I0)|j1 = Td1e1(I1)|j1 + 0. By repeating this procedure m − 1 ≤ k − 1 times (by

construction, for any i ∈ {1, . . . ,m} the entries of Tdi−1ei−1
◦ · · · ◦Td00(I) and Tdi−1ei−1

◦ · · · ◦Td01(I)
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are equal or differ by 1) and taking e = (0, e1, . . . , em−1) and e′ = (1, e1, . . . , em−1) we obtain
Lemma 16. �

Lemma 16 remains valid if for any I ∈ Ik we replace m = m(I) by m = k (or any value greater
than k) and it shows that for any m ≥ k, d ∈ {0, 1}m and I ∈ Ik there exist J ∈ Ik such
that the polynomial Pd

IJ contains two monomials of consecutive degrees: ±zN(e) and ±zN(e)+1.
The end of the proof of Proposition 2 is based on Lemma 17 which will be deduced from Lemma
18 showing that we can find two such monomials of consecutive degrees with different signs:
ν(I,d, e) ≡ ν(I,d, e′) + 1 mod 2.

Lemma 17. For any d ∈ {0, 1}k+1 and any I ∈ Ik we have

max
z∈U

∑
J∈Ik

∣∣Pd
IJ(z)

∣∣ < 2k+1.

Proof. Lemma 16 implies that for any d ∈ {0, 1}k and any I ∈ Ik, there exists J = J(I) ∈ Ik
and j = j(I) ∈ {0, . . . , 2k − 2} such that ±zj and ±zj+1 are monomials of the polynomial Pd

IJ .
In particular, any z ∈ U such that

∑
J∈Ik

∣∣Pd
IJ(z)

∣∣ = 2k should verify |±zj ± zj+1| = |z ± 1| = 2,
which implies z ∈ {−1,+1}. Moreover, for any ε ∈ {0, 1}, it follows from the relation

Pd′

IJ(z) = (−1)|I|+εσPd
Tε0(I)J

(z2) + (−1)|I|+εσ+1zPd
Tε1(I)J

(z2)

(we put d′ = (ε, d0, . . . , dk−1) and we consider the coefficients (I, J) of the matrix Md′(z) =
Mε(z)Md(z2)) that if, for any I ∈ Ik we have

∑
J∈Ik

∣∣Pd
IJ(1)

∣∣ < 2k then for any I ∈ Ik, we have∑
J∈Ik

∣∣Pd′
IJ(−1)

∣∣ < 2k+1. It follows that in order to prove Lemma 17 it is enough to prove that

for any d ∈ {0, 1}k and any I ∈ Ik, we have
∑

J∈Ik

∣∣Pd
IJ(1)

∣∣ < 2k. This will be an immediate
consequence of Lemma 18 below. �

Lemma 18. For any d ∈ {0, 1}k and any I ∈ Ik there exist J ∈ Ik and (e, e′) ∈ {0, 1}k×{0, 1}k,
e 6= e′ such that J = Tde

k (I) = Tde′

k (I), N(e′) = N(e) + 1 and ν(I,d, e′) ≡ ν(I,d, e) + 1 mod 2.

Proof. Let us consider for any ` ∈ {1, . . . , k} the k-uples I0(`) = Td`−1e`−1
◦ · · · ◦ Td1e1(I0) and

I1(`) = Td`−1e`−1
◦ · · · ◦Td1e1(I1) obtained by the procedure described in the proof of Lemma 16. By

construction the entries of I0(`) and I1(`) are equal or differ by 1 and we will distinguish between
two cases depending on the parity of the number of different entries.

Even case. For any ` ∈ {1, . . . , k}, I0(`) and I1(`) differ at an even number of entries.
In this case, for any ` ∈ {1, . . . , k} we have |I0(`)| ≡ |I1(`)| mod 2, which implies∣∣Tde

1 (I)
∣∣+ · · ·+

∣∣Tde
k−1(I)

∣∣ ≡ ∣∣Tde
1 (I)

∣∣+ · · ·+
∣∣∣Tde′

k−1(I)
∣∣∣ mod 2

and
ν(I,d, e) ≡ ν(I,d, e′) + 1 mod 2,

so that Lemma 18 is true in this case.

Odd case. There exists ` ∈ {1, . . . , k} such that I0(`) and I1(`) differ at an odd number of entries.
In this case, let `0 ≥ 1 be the smallest number for which this occurs. In what follows we slightly

modify the procedure described in the proof of Lemma 16 for the remaining steps. We again
construct (e`0 , . . . , ek−1) such that Tde

k (I) = Tde′

k (I), but by using another principle, namely that
at each step ` ≥ `0 (with the only exception of the final steps) I0(`) and I1(`) differ at on odd
number of positions. For convenience we say that a position j is corrected if I0(`+ 1)|j = I1(`+ 1)|j
whereas I0(`)|j and I1(`)|j differ by 1.

Let us describe the first step of this new procedure. When we compare (Td`00(I0(`)), Td`00(I1(`)))
and (Td`01(I0(`)), Td`01(I1(`))), which are the possible candidates for (I0(`0+1), I1(`0+1)) it follows
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from Lemma 15 that a position j is corrected in the first case if and only if it is not corrected in
the second case. This means that either Td`00(I0(`)) and Td`00(I1(`)) or Td`01(I0(`)) and Td`01(I1(`))
differ at an odd number of positions (and the other one at an even number of positions). Suppose
without loss of generality that Td`00(I0(`)), Td`00(I1(`)) differs by an odd number of positions.
If Td`01(I0(`)) = Td`01(I1(`)) then we choose e`0+1 = 1 and the procedure stops. However, if
Td`0+11(I0(`)) 6= Td`0+11(I1(`)) then we choose e`0+1 = 0 and observe that the number of different
positions in I0(`0 +1) and I1(`0 +1) is again odd but smaller than the number of different positions
in I0(`0) and I1(`0). Of course we can proceed in this way step by step till I0(k) = I1(k) = J .

The advantage of this procedure is that we can control the values modulo 2 of ν(I,d, e) and
ν(I,d, e′). Actually since |I0(`)| ≡ |I1(`)| mod 2 for 1 ≤ ` < `0, |I0(`)| 6≡ |I1(`)| mod 2 for
`0 ≤ ` ≤ m0 (with 1 ≤ m0 < k) and I0(`) = I1(`) = J for m0 < ` ≤ k, we obtain

ν(I,d, e) ≡ ν(I,d, e′) + (m0 − `0 + 1) + 1 mod 2.

If m0 − `0 is odd we are done.
Ifm0−`0 is even we modify the last step of the above procedure. As I0(m0) and I1(m0) differ at an

odd number of positions and Tdm0em0
(I0(m0)) = Tdm0em0

(I1(m0)), it follows, writing ẽm0 = 1− em0 ,
that Tdm0 ẽm0

(I0(m0)) = I0(m0) and Tdm0 ẽm0
(I1(m0)) = I1(m0) (since Tdm0em0

corrects all positions,
Tdm0 ẽm0

corrects no position). By using ẽm0 instead of em0 at step m0, we have I0(m0) = I0(m0 +1)
and I1(m0) = I1(m0 + 1) (and of course they differ at an odd number of positions).

If we can choose em0+1 in a way that I0(m0 + 2) = I1(m0 + 2) then by the same arguments as
above (where we have to replace m0 by m0 + 1) it follows that

(55) ν(I,d, e) ≡ ν(I,d, e′) + (m0 + 1− `0 + 1) + 1 mod 2 ≡ ν(I,d, e′) + 1 mod 2

and we are done. In particular this is possible if I0(m0 + 1) and I1(m0 + 1) differ at precisely one
position.

If we cannot choose em0+1 in a way that I0(m0 + 2) = I1(m0 + 2) then we restart the original
procedure at this point knowing that the number of different positions in I0(m0+2) and I1(m0+2)
is smaller than the number of different positions in I0(m0 + 1) and I1(m0 + 1). If I0(`) and I1(`)
differ at an even number of positions for all ` ≥ m0 + 2 (till we end up at some common J), then
we again get (55) and we are done. If not, let `1 be the smallest integer ` ≥ m+ 1 such that I0(`1)
and I1(`1) differ at an odd number of positions. By construction this number is smaller that the
number of different positions in I0(`0) and I1(`0) and we can proceed now by induction and the
procedure will terminate after at most k steps. �

9.2. Proof of Proposition 2 in the case (α0, . . . , αk−1) 6= (1, . . . , 1). Without loss of generality
we can assume that α0 = 1 and that for at least one ` ≥ 1 we have α` = 0. As we mentionned
in Section 8.2, the discrete Fourier transforms GI

λ only depends on those indices ` for which

α` = 1, so that we again introduce the reduced K-uple Ĩ = (i`)0≤`<k, α`=1 and the reduced sets

Ĩk = {Ĩ , I ∈ Ik}.
The proof of Proposition 2 works again in the case (α0, . . . , αk−1) 6= (1, . . . , 1) in the same way as

in the case (α0, . . . , αk−1) = (1, . . . , 1) if we replace Ik by Ĩk, GI
λ by GĨ

λ and for any (ε, ε′) ∈ {0, 1}2
the transformation Tεε′ on Ik by the corresponding transformation T̃εε′ on Ĩk. In particular we
introduce, for any integer m ≥ 1, d ∈ {0, 1}m and z ∈ U, the matrices

M̃d(z) =
(
P̃d
ĨJ̃

(z)
)
(Ĩ,J̃)∈Ĩ2k

,

where the family of polynomials P̃d
ĨJ̃

verifies Lemma 14. The corresponding weighted directed

graph G̃(z) has still outdegree 4 but less vertices and the coefficients of the matrix M̃d(z) can still
be interpreted as codings of path of length m with, for j ∈ {0, . . . ,m − 1}, step j in the graph
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G̃(z2
j
). More precisely, for any Ĩ ∈ Ĩk, e = (e0, . . . , em−1) ∈ {0, 1}m and i ∈ {1, . . . ,m}, if we

denote T̃de
i (Ĩ) = T̃di−1ei−1

◦ · · · ◦ T̃d0e0(Ĩ) we can associate to each of the 2m paths from the vertex

Ĩ to the vertices T̃de
m (Ĩ) the weight

wde(Ĩ , z) = wd0e0(Ĩ , z)wd1e1(T̃
de
1 (Ĩ), z2) · · ·wdm−1em−1(T̃

de
m−1(Ĩ), z2

m−1

)

= (−1)ν(Ĩ,d,e)zN(e),

so that, for any (Ĩ , J̃) ∈ Ĩ2k , we have, by definition of P̃d
ĨJ̃

:

P̃d
ĨJ̃

(z) =
∑

e∈{0,1}m

T̃de
m (Ĩ)=J̃

wde(Ĩ , z) =
∑

e∈{0,1}m

T̃de
m (Ĩ)=J̃

(−1)ν(Ĩ,d,e)zN(e).

Next, the Lemmas 15, 16, and 18 can be generalized in a direct way, replacing I by Ĩ, Ik by
Ĩk and for any m ∈ {1, . . . , k} and any (d, e) ∈ {0, 1}m × {0, 1}m, Tde

m by T̃de
m . In particular the

procedures described in Lemmas 16, and 18 directly translate to this case. For example we can
project the two paths from the proof of Lemma 16 that connect I to J to corresponding paths

that connect Ĩ and J̃ and prove that for any m ≥ k, d ∈ {0, 1}m and Ĩ ∈ Ĩk there exist J̃ ∈ Ĩk
such that the polynomial P̃d

ĨJ̃
contains two monomials of consecutive degrees and then show, as

in Lemma 18, that we can find J̃ ∈ Ĩk such that the polynomial P̃d
ĨJ̃

contains two monomials of
consecutive degrees and opposite signs by distinguish again an even case and an odd case.

This completes the proof of Proposition 2.

10. Conclusion, open problems

This work shows that it is possible, starting from an almost periodic sequence, to obtain a normal
subsequence just by extracting along the squares. Our proof works (with some extra technicity)
for any quadratic polynomial taking values in N, but the two following problems are open.

Problem 1. For any polynomial of degree at least 3 taking values in N, is it true that (t(P (n)))n∈N
is normal ?

Problem 2. Let (pn)n∈N denote the sequence of prime numbers. For any non constant polynomial
taking values in N, is it true that (t(P (pn)))n∈N is normal ? 1

Moreover it would be interesting to find some other almost periodic sequences u with the same
property and also to understand this phenomenon from the dynamical system point of view.
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