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Abstract

We show that the variance of the profiles (number of nodes at each level)of random binary search
trees exhibits asymptotically four phase transitions and a bimodal or “two-humped” behavior, in con-
trast to the unimodality of the mean value of the profiles. Precise asymptotic approximations are de-
rived. The same types of phenomena also hold for the profiles of randomrecursive trees.

1 Introduction

Profiles (number of nodes having the same distance to the root) are informative shape characteristics of
trees. They are directly related to the total path length (the sum of the distances of all nodes to the root)
and depth (the distance of a random node to the root) on the onehand, and can be used to derive effective
bounds for the height and width on the other hand. In terms of branching process language, profiles
correspond to the number of descendants in each generation;they also have more concrete algorithmic
interpretations such as breadth-first search and applications; see Devroye and Robson (1995), Louchard
and Szpankowski (1995), Chern and Hwang (2001). We study in this paper the variance of the profiles in
random binary search trees (abbreviated as BSTs). Part of ouraims is to clarify Figure1 by more precise
mathematical terms.

Binary search trees. A BST T is a binary tree constructed from a given sequence of keys, say A :=
{a1, . . . , an} as follows. Ifn = 0, thenT is empty and, for convenience, we regardT as consisting of
only a node calledexternal node. If n ≥ 1, then the first keya1 is placed at the root (called aninternal
node). The remaining keys are compared successively to the root key, and are directed to the left (or right)
branch if they are smaller (or larger), and keys directed to the same branch are constructed recursively as
a BST. By construction, a query operation like “x ∈ T ?” can be easily carried out in BSTs, thus the name.

∗Partly supported by a Research Award of the Alexander von Humboldt Foundation.
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Figure 1:Profiles of BSTs: exact mean and variance of the numberX1000,k of external nodes at levelk in
random binary search trees of1000 nodes.

BSTs are one of the simplest and widely used data structures inComputer Algorithms. They also
appeared, under different guises, in other contexts such asbranching processes, population genetics, diffu-
sion models and evolutionary trees; see Aldous and Shields (1988), Aldous (1996), Barlow et al. (1997),
Majumdar and Krapivsky (2003). The large number of diverse extensions and variants add significantly to
their importance in practice, in algorithm design, and in theory.

Random BSTs. Assume that the given input is a finite sequence of independent, and identically dis-
tributed random variables with a common continuous distribution. The BST constructed from this random
sequence is called arandom BST. Since only the rank and the order of the keys are relevant, anequivalent
model is to assume that the input is a random permutation whenall n! permutations ofn elements are
equally likely.

Many properties of random BSTs have been studied in the literature; see Gonnet and Baeza-Yates
(1990), Mahmoud (1992), Knuth (1998), Devroye (2003), Hwang and Neininger (2002) for more infor-
mation.

Profiles of random BSTs. We are concerned with the random variablesXn,k, defined to be the number
of external nodes at levelk (the root being at level 0) in a random binary search tree ofn nodes. It is known
that

E(Xn,k) =
2k

n!
s(n, k) (0 ≤ k ≤ n), (1)

where thes(n, k)’s denote the signless Stirling numbers of the first kind:

∑

0≤k≤n

s(n, k)wk = wn (n ≥ 0),
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with wn denoting the rising factorialwn :=
∏

0≤j<n(w + j); see Lynch (1965), Knuth (1998), Brown
and Shubert (1984), Mahmoud and Pittel (1984), Pittel (1984), Louchard (1987), Devroye (1988). Thus
the asymptotic behaviors ofE(Xn,k) can be derived from known results for Stirling numberss(n, k); see
Hwang (1995), Temme (1993).

In particular, the asymptotic behaviors ofE(Xn,k) for varying k are well approximated by a normal
distribution, with mode neark ≈ 2 log n; see Chauvin et al. (2001, 2003) for more precise properties.Note
that the sequence{E(Xn,k)}k for fixed n is unimodal, by the simple fact that the generating polynomial
∑

k E(Xn,k)w
k has only real zeros; see Comtet (1974), Hammersley (1951).

Known results beyond mean. Almost sure convergence ofXn,k/E(Xn,k) and other type of results are
derived in Chauvin et al. (2001), Jabbour-Hattab (2001); seealso the recent paper Chauvin et al. (2003).
Pittel (1984) derived the expression

E(X2
n,k) =

2k

n!

∑

1≤t≤n

1

(2πi)2

��
(
√

8x/y − 1)t−1(x2 + t)n−t

yx2k−1
√

1 − y2
dx dy,

and then showed that

E(X2
n,k) = O((log n)3/2n2(α−α log(α/2)−1)) (2 −

√
2 ≤ α ≤ 2 +

√
2),

for anyε > 0, where,here and throughout this paper,α := k/ log n.

Global description of the phase transitions. The aim of this paper is to derive more precise asymptotic
approximations to the varianceV(Xn,k) for all ranges of interest. We show that the asymptotic behavior
of V(Xn,k) exhibits phase transitions at the four pointsα = 3 ± 2

√
2 andα = 2 ±

√
2 (not viewable from

Figure1 though). The rough picture ofV(Xn,k) is as follows; see Theorem2.

– Whenα is small or large, more precisely,0 ≤ α ≤ 3− 2
√

2− ε or α ≥ 3 + 2
√

2 + ε, then the variance
is of the same order as the mean

V(Xn,k) ∼ E(X2
n,k) ≍ E(Xn,k);

– Whenα lies in the middle range, namely,2 −
√

2 + ε ≤ α ≤ 2 +
√

2 − ε, then the variance is of the
order of(E(Xn,k))

2

V(Xn,k) ∼ ϕ(α)(E(Xn,k))
2, (2)

where

ϕ(α) :=
Γ(α)2α2(2α − 1)

Γ(2α)(4α − α2 − 2)
− 1, (3)

Γ being the Gamma function;

– Whenα lies in the two intermediate ranges3 − 2
√

2 + ε ≤ α ≤ 2 −
√

2 − ε and2 +
√

2 + ε ≤ α ≤
3 + 2

√
2 − ε, then the variance is larger in order than the mean and the mean square

E(Xn,k), (E(Xn,k))
2 ≪ V(Xn,k) ∼ E(X2

n,k).

Note thatE(Xn,k) = o(1) for α < α− andα > α+, whereα− ≈ 0.37336 . . . andα+ ≈ 4.31107 . . .
are the two zeros of the equatione(z−1)/z = z/2 (sometimes called the binary search tree constants;
see§5.13, Finch, 2003). AlsoE(Xn,k) ≪ (E(Xn,k))

2 for α− < α < α+.

To bridge the asymptotic estimates in neighboring ranges, we need more uniform estimates. We show
that the transition is well dictated by aparabolic cylinder functionwhenα crosses3 ± 2

√
2, and by a

normal distribution functionwhenα crosses the other two transitional points.
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The valley. The approximation (2) in the middle range is insufficient for describing the behaviors of the
variance whenα ≈ 2 sinceϕ(2) = ϕ′(2) = 0. More precise approximations are thus needed and we derive
an asymptotic expansion forV(Xn,k) in the middle range. In particular, the visible valley in Figure1 is
roughly due to the estimates

V(Xn,⌊2 log n+O(1)⌋) ≍
n2

(log n)3
,

V

(

Xn,⌊2 log n±
√

2 log n⌋
)

≍ n2

(log n)2
.

Indeed, we show that

max
k≥0

V(Xn,k) ∼
21 − 2π2

24πe
· n2

(log n)2
.

See Section5 for a more precise description of the valley, including an explanation of why the left “hump”
is higher than the right one.

Numerically, the valley forV(Xn,k) appears only whenn ≥ 357.

A “false valley”. While the valley near2 log n may be quite expected (see Chauvin et al., 2001, 2003),
the functionϕ(α) also satisfiesϕ(1) = ϕ′(1) = 0, suggesting that there may be a second valley near
α ∼ 1. We show that this is indeed a “false valley” since the decrease of the variance in the logarithmic
term is well “smoothed out” by other larger factors; see Corollary 5.

Why the valley? Structurally, the valley for the variance neark = 2 log n + O(
√

log n) indicates that
there is a better concentration of external nodes near theselevels, and indeed almost all external nodes
lie at these levels, each level having aboutn/

√
log n nodes; see also Chauvin et al. (2001). Similarly, the

“false valley” neark = log n+O(
√

log n) may be ascribable to the structural change of number of internal
nodes near there.

Methodology. Our approach is mostly analytic and relies on integral representations for the second mo-
ments. The basic idea is to consider the bivariate generating function, sayF2(z, w) of E(Xn,k(Xn,k − 1)),
which satisfies a differential equation of first order. Solving the differential equation yields an integral
representation forF2, from which we apply Cauchy’s integral expression and complex-analytic tools, in-
cluding singularity analysis, saddlepoint method, and some uniform asymptotic methods (for handling the
coalescence of a saddlepoint and an algebraic singularity). The approach is of some generality and may be
applied to otherlog-class of trees (see Bergeron et al., 1992, Devroye, 1999).

Universality? The above interesting phenomena naturally suggest the question: are the phase transitions
and bimodality unique for BSTs? or is there some sort of universality for such phenomena? We will briefly
examine recursive trees in Section7, and show that the profile variance also exhibits a bimodality nearlog n
and two phase transitions. Similar behaviors are expected for other (log-) class of trees likem-ary search
trees, fringe-balanced BSTs (see Devroye, 1999), but the precise description and general prediction are
expected to be more involved.

Limiting distribution? It is known that (see Chauvin et al. 2003)

Xn,k

E(Xn,k)
→ Xα/2 (2 −

√
2 < α < 2 +

√
2),
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in probability, whereXz
d
= zU2z−1Xz + z(1 − U)2z−1X ′

z, U being uniformly distributed in the unit

interval andX ′
z

d
= Xz; see also Jabbour-Hattab (2001). ButX1/2 = X1 = 1, so that the limit distribution

for (Xn,k − E(Xn,k))/
√

V(Xn,k) in the two special casesα ∼ 2 andα ∼ 1 remains open.
Similar bimodal behaviors are observed (by Monte Carlo simulations) for higher absolute, central

moments ofXn,k for BSTs, but it does not seem easy to even conjecture the possible form of the limiting
distribution of, sayXn,⌊2 log n⌋ (suitably normalized); the valley near there and the periodicity of {2 log n}
seem to complicate the problem proper.

Profiles of another class of trees (which we may roughly term as “
√

n-class”, in contrast to our “log n-
class” of trees) have received much recent interests and well clarified (see Aldous, 1993, Drmota and
Gittenberger, 1997, Pitman 1999, Kersting, 1998), but manyproperties of the profiles for thelog n-class
of trees (of which BST is a prototype) remain unknown and very challenging.

Outline of the paper. This paper is organized as follows. We first derive the basic recurrence for the
profiles in the next section, and then the solution to the generating function ofm-th moments. In particular,
an exact solution for the second factorial moment is given. We then state our main results on phase
transitions and bimodality in Section3. Proofs are given in later sections, and recursive trees arebriefly
examined in Section7.

2 Generating functions and integral representations

We give here a self-contained approach to computing the moments ofXn,k. Define the bivariate generating
function

Pk(z, y) :=
∑

n≥0

E(yXn,k)zn (k ≥ 0).

Then, by the recursive construction,

Xn,k
d
= XIn,k−1 + Xn−In−1,k−1,

whereP (In = j) = n−1 for 0 ≤ j ≤ n − 1. ThusPk can be computed recursively by










P0(z, y) = y +
z

1 − z
,

Pk+1(z, y) = 1 +

� z

0

P 2
k (t, y) dt (k ≥ 0).

(4)

Explicit solutions (beyond the iterative integral forms) for this system of equations for allk seem
intractable; we consider instead the moments ofXn,k by expandingPk as follows.

Pk(z, y) :=
∑

m≥0

Mm,k(z)

m!
(y − 1)m,

so thatMm,k(z) =
∑

n E(Xn,k(Xn,k − 1) · · · (Xn,k − m + 1))zn and they satisfy, by (4),

M ′
m,k+1(z) =

2

1 − z
Mm,k(z) +

∑

1≤j<m

(

m

j

)

Mj,k(z)Mm−j,k(z), (5)

for k ≥ 0 andm ≥ 1, with M0,k(z) = 1/(1 − z) andMm,k(0) = 0 (k ≥ 1).
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More explicit representations for theMm,k’s can be derived by considering the generating function

Fm(z, w) :=
∑

k≥0

Mm,k(z)wk,

which satisfies, by (5), Fm(0, w) = 0 and

∂

∂z
Fm(z, w) =

2w

1 − z
Fm(z, w) +

∑

1≤j<m

(

m

j

)

∑

k≥0

Mj,k(z)Mm−j,k(z)wk+1.

Solving this first-order differential equation yields

F1(z, w) = (1 − z)−2w, (6)

and form ≥ 2

Fm(z, w) =
∑

1≤j<m

(

m

j

)

(1 − z)−2w

� z

0

(1 − t)2w
∑

k≥0

Mj,k(t)Mm−j,k(t)w
k+1 dt. (7)

From (6), it follows that

M1,k(z) =
2k

k!
logk 1

1 − z
(k ≥ 0),

which implies (1), and then, by (7),

F2(z, w) = 2w(1 − z)−2w

� z

0

(1 − t)2wI0

(

4
√

w log
1

1 − t

)

dt, (8)

where

I0(z) =
∑

k≥0

z2k

k!k!4k

is the modified Bessel function of order zero (see§9.6, Abramowitz and Stegun,1965).
Before going further, we derive an explicit formula forE(Xn,k(Xn,k − 1)).

Lemma 1. The second factorial moments ofXn,k can be computed by

E(Xn,k(Xn,k − 1)) =
2k

n!

∑

0≤j<k

(

2j

j

)

2j
∑

k+j−1≤m<n

s(n − 1,m)

(

m − 2j − 1

k − j − 1

)

. (9)

Proof.First observe that� 1

0

(1 − t)2wI0

(

4
√

w log
1

1 − t

)

dt =
∑

j≥0

4j

j!j!
wj

� 1

0

y2w log2j(1/y) dy

=
∑

j≥0

(

2j

j

)

(4w)j

(2w + 1)2j+1

= (4w2 − 12w + 1)−1/2, (10)
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provided that| 16w
(2w+1)2

| < 1. Assume for the moment thatw lies in that region. Then, similarly as above,

(1 − z)−2w

� 1

z

(1 − t)2wI0

(

4
√

w log
1

1 − t

)

dt

= (1 − z)
∑

k≥0

(2k)!

k!k!
(4w)k

∑

0≤j≤2k

(− log(1 − z))j

j!
· 1

(2w + 1)2k+1−j

=
∑

k≥0

(

2k

k

)

(4w)k 1

2πi

�
|t|=c<|2w+1|

t−2k−1(1 − z)1−t

2w + 1 − t
dt.

But the residue of the integrand att = 2w + 1 equals(2w + 1)−2j−1(1 − z)−2w−1. It follows that

F2(z, w) =
2w

2πi

�
|t|=c

(1 − z)1−t

(t − 2w − 1)
√

t2 − 16w
dt (c > |2w + 1|)

=
2w

2πi

�
|y|=c

(1 − z)1−1/y

(1 − (2w + 1)y)
√

1 − 16wy2
dy (c < ε),

for properly chosen integration contours. The restrictionfor w can now be dropped.
By Cauchy’s integral representation

E(Xn,k(Xn,k − 1)) =
2k

(2πi)2

��
w−k

(

n−2+1/y
n

)

(1 − (w + 1)y)
√

1 − 8wy2
dy dw.

Thus we have

E(Xn,k(Xn,k − 1)) = 2k
∑

0≤ℓ<k

(

2ℓ

ℓ

)

2ℓ

2πi

�
|z|=c>1

(

n+z−2
n

)

z2ℓ+1(z − 1)k−ℓ
dz, (11)

from which (9) follows.

3 Phase transitions and bimodality

Notation. For convenience, we use the symbol[[a, b]] to denote the interval[a+K/
√

log n, b−K/
√

log n]
for a sufficiently largeK; The one-sided conventions[a, b]] and[[a, b] stand for[a, b−K/

√
log n] and[a +

K/
√

log n, b], respectively. The generic symbolsK andε always represent large and small, respectively,
constants whose values may vary from one occurrence to another. Throughout this paper,α = αn,k =
k/ log n.

3.1 Asymptotics ofE(Xn,k)

For completeness, we first state two known expansions forE(Xn,k) that will be needed.

Theorem 1. Uniformly for1 ≤ k ≤ K log n,

E(Xn,k) =
(2 log n)k

nk!Γ(α)

(

1 + O
(

(log n)−1
))

; (12)
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and uniformly fork → ∞, k ≤ K log n,

E(Xn,k) ∼
nα−α log(α/2)−1

√
2πk Γ(α)

∑

j≥0

cjk
−j, (13)

for some coefficientscj.

Proof.(Sketch) The proof of both approximations starts from (1) and then uses the uniform approximation

∑

k

E(Xn,k)w
k = 2k

(

n + w − 1

n

)

= 2k nw−1

Γ(w)

(

1 + O(n−1)
)

,

uniformly for |w| ≤ K (by the singularity analysis of Flajolet and Odlyzko, 1990). Then

E(Xn,k) =
2k

2πi

�
|w|=α

w−k−1 nw−1

Γ(w)

(

1 + O(n−1)
)

dw,

and (12) follows by expanding1/Γ(w) at w = α = k/ log n, and by estimating the error terms properly;
see Hwang (1995) for details. The proof for (13) uses the usual saddlepoint method and is similar.

From (12), we see that the asymptotics ofE(Xn,k)/n is roughly dictated by a Poisson distribution
with mean2 log n. In particular, it is unimodal (at least for0 ≤ k ≤ K log n), and there is no change of
asymptotic behavior in the main range of interests (k ≤ K log n).

3.2 Asymptotics ofE(X2

n,k)

For the second moment and the variance, the situation becomes completely different. We give our first
approximations toE(X2

n,k) by splitting the range[0, K] into five non-overlapping intervals.

Global silhouette. For simplicity of presentation, we drop the error terms in the following estimates,
and we define two constants

C± :=

√
2 ± 1

2
√

π
√

2 Γ(3 ± 2
√

2)
.

Theorem 2. (I) If α ∈ [0, 3 − 2
√

2]], then

E(X2
n,k) ∼ E(Xn,k)

(

1 +
α√

α2 − 6α + 1

)

; (14)

(II) if α ∈ [[3 − 2
√

2, 2 −
√

2]], then

E(X2
n,k) ∼ C−

2kn2−2
√

2
(

3 − 2
√

2
)−k

√

k − (3 − 2
√

2) log n
; (15)

(III) if α ∈ [[2 −
√

2, 2 +
√

2]], then

E(X2
n,k) ∼ (EXn,k)

2 Γ(α)2α2(2α − 1)

Γ(2α)(4α − α2 − 2)
; (16)
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Figure 2: A plot of the limiting curve forlog E(X2
n,k)/ log n (upper curve) and forlog E(Xn,k)/ log n

(lower curve) forα in each interval (horizontal coordinate). The intervals are also explicitly depicted by
vertical lines.

(IV) if α ∈ [[2 +
√

2, 3 + 2
√

2]], then

E(X2
n,k) ∼ C+

2kn2+2
√

2
(

3 + 2
√

2
)−k

√

(3 + 2
√

2) log n − k
; (17)

(V) finally, if α ∈ [[3 + 2
√

2, K], then

E(X2
n,k) ∼ E(Xn,k)

(

1 +
α√

α2 − 6α + 1

)

. (18)

A more transparent approximation is as follows; see Figure2 for a plot.

Corollary 1 (Phase transitions). The growth order ofE(X2
n,k) satisfies

log E(X2
n,k)

log n
→























α − α log(α/2) − 1, if α ∈ [0, 3 − 2
√

2]

2 − 2
√

2 − 2α log(1 − 2−1/2), if α ∈ [3 − 2
√

2, 2 −
√

2]

2(α − α log(α/2) − 1), if α ∈ [2 −
√

2, 2 +
√

2]

2 + 2
√

2 − 2α log(1 + 2−1/2), if α ∈ [2 +
√

2, 3 + 2
√

2]

α − α log(α/2) − 1, if α ∈ [3 + 2
√

2, K].

By continuity, the (almost) open boundaries[[ and]] in all cases are replaced by the closed ones[ and],
respectively, as will become clear.

Transitional behaviors. These quick (and rough) estimates leave open the asymptotics of the second
moment in the transitional rangesk = (3±2

√
2) log n+O(

√
log n) andk = (2±

√
2) log n+O(

√
log n),

which will be handled by more uniform asymptotic tools.
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Let D−ν(x) denote the parabolic cylinder function (see Ch. 19, Abramowitz and Stegun, 1965), which
can be defined by

D−ν(x) =
e−x2/4

Γ(ν)

� ∞

0

uν−1e−xu−u2/2 du (ν > 0), (19)

and letΦ(x) denote the standard normal distribution function. Note that Φ(x) is itself a special case of the
parabolic cylinder functions

D−1(x) =
√

2π ex2/4Φ(−x).

Theorem 3. All asymptotic estimates below hold uniformly fort = o((log n)1/6). (i) If α = 3 − 2
√

2 +
(
√

2 − 1)t/
√

log n, then

E(X2
n,k) ∼ 2−1/2C−et2/4D−1/2(−t)k−1/4 n2−2

√
2−2α log(1−1/

√
2); (20)

(ii) if α = 2 −
√

2 +
√

1 − 2−1/2t/
√

log n, then

E(X2
n,k) ∼ 21/4C−Φ(−t)k−1/2n2−2

√
2−2α log(1−1/

√
2); (21)

(iii) if α = 2 +
√

2 +
√

1 + 2−1/2t/
√

log n, then

E(X2
n,k) ∼ 21/4C+Φ(t)k−1/2n2+2

√
2−2α log(1+1/

√
2);

(iv) finally, if α = 3 + 2
√

2 + (
√

2 + 1)t/
√

log n, then

E(X2
n,k) ∼ 2−1/2C+et2/4D−1/2(t)k

−1/4 n2+2
√

2−2α log(1+1/
√

2).

In all cases, the dropped error terms are of the form

1 + O

(

1 + |t|3√
log n

)

.

These estimates complete the gap left open in Theorem2; furthermore, one can easily check that in
the overlapping ranges (K ≤ |t| = o((log n)1/6)) the approximations in both Theorems coincide by the
following asymptotic estimates (see§19.7, Abramowitz and Stegun, 1965)







D−ν(x) ∼ x−νe−x2/4 (x → ∞),

D−ν(−x) ∼
√

2π

Γ(ν)
xν−1ex2/4 (x → ∞).

(22)

Bimodality. Everything up to now is only unimodal. Bimodality of the variance appears in the middle
rangeα ∈ [[2 −

√
2, 2 +

√
2]].

First, from Theorem2, we readily obtain the following estimate.

Corollary 2. The variance ofXn,k satisfies

V(Xn,k) ∼ ϕ(α)(EXn,k)
2,

for α ∈ [[2 −
√

2, 2 +
√

2]], whereϕ is defined in (3), andV(Xn,k) ∼ E(X2
n,k) for all other ranges.
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Observe that
ϕ(1) = ϕ(2) = ϕ′(1) = ϕ′(2) = 0; (23)

thus the estimate (3) is insufficient for an asymptotic equivalent for the variance in the central range
k = (2 + o(1)) log n and in the somewhat unexpected rangek = (1 + o(1)) log n. We need stronger
approximations.

Theorem 4. If α ∈ [[2 −
√

2, 2 +
√

2]], then

V(Xn,k) ∼ n2(α−α log(α/2)−1)
∑

j≥1

υj(α)

(log n)j
, (24)

for some coefficientsυj(α); see (38) and (40) below.

In particular,υ1(α) = ϕ(α)/(2παΓ(α)2) also satisfies property (23), andυ2(α) satisfiesυ2(1) =
υ2(2) = 0.

Corollary 3. If α = 2 + t/ log n, wheret = o(log n), then

V(Xn,k) =
p1(t)

720π
· n2(α−α log(α/2)−1)

(log n)3

(

1 + O

(

1 + |t|
log n

))

,

uniformly int, wherep1(t) is a quadratic polynomial defined by

p1(t) := 15(21 − 2π2)t2 − 30
(

4π2(1 − γ) + 24ζ(3) + 42γ − 69
)

t

− 2π4 − 30
(

4γ2 − 8γ + 11
)

π2 + 180
(

7γ2 − 23γ + 29
)

− 1440ζ(3)(1 − γ), (25)

whereγ denotes Euler’s constant.

The reason of writing the corollary in its form is that the variation of the order ofV(Xn,k) when
k = (2 + o(1)) log n becomes more transparent. Thus, ifα = 2 + t/ log n, wheret = o((log n)3/2), then

V(Xn,k) ∼
p1(t)

720π
· n2

(log n)3
exp

(

− t2

2 log n

)

,

uniformly in t. From this we can derive approximations to the scale of the two “humps” and the valley
seen in Figure1.

Corollary 4. The largest value ofV(Xn,k) is asymptotically achieved atk =
⌊

2 log n ±
√

2 log n
⌋

, and

max
k≥0

V(Xn,k) ∼
21 − 2π2

48πe
· n2

(log n)2
;

on the other hand,

min
|k−2 log n|=O(

√
log n)

V(Xn,k) ≥ (C + o(1))
n2

(log n)3
, (26)

where

C =
4π6 + 378π4 − 9090π2 − 38205 − 8640ζ(3)2 + 19440ζ(3) − 38205

720π(21 − 2π2)
.

The smallest value ofV(Xn,k), for k = 2 log n + O(
√

log n), is asymptotically achieved only for the
subsequence ofn for which{2 log n} → 1 − t0, where

t0 = −2(1 − γ) +
3(8ζ(3) − 9)

21 − 2π2
≈ 0.62126 . . .

satisfiesp′1(t0) = 0.

11



Thusthe variance can vary fromn2/(log n)2 to n2/(log n)3 whenk = 2 log n + O(
√

log n), and these
are precisely the orders of the peak and the valley, respectively, as shown in Figure1.

Our analysis here says that the two peaks are asymptoticallyof the same order, although Figure1 may
lead one to guess that the left peak is higher. We will see thatthis is indeed true by further examining the
sign of the next order term; see Section5 for more details.

A “false valley”.

Corollary 5. If α = 1 + t/ log n, wheret = o((log n)2/3), then

V(Xn,k) ∼
4t̟(t)

720π
· n2 log 2

(log n)3
e−t2/ log n,

uniformly int, where̟(t) is defined by

̟(t) := 60(12 − π2)t2 + 120
(

π2γ − 12γ − 6ζ(3) + 12
)

t

− π4 − 60
(

γ2 + 2
)

π2 + 720
(

γ2 − 2γ + ζ(3)γ + 3
)

.

One sees that although the order of the variance can reach that of E(X2
n,k)/(log n)2 (whenk = log n +

O(1)) as in the casek = 2 log n + O(1), there is no new “valley” generated whenk = log n + O(
√

log n)
since the logarithmically smaller terms are “smoothed out”by an exponentially large factor4t.

4 Phase transitions: Proof of Theorem2

For more methodological interest and for shedding more light on how the different ranges arise, we give
in this section two proofs of Theorem2. The first relies essentially on the exact expression (9), which has
some elementary flavor, although the main estimate needed relies on saddlepoint method. The second uses
(8) and is analytic in nature; it can be easily extended to derive asymptotic expansions.

4.1 A direct approach

We give in this section the sketch of an approach to proving Theorem2 using (9). The basic idea is first to
find a good uniform estimate for the sum

Sn,k,j :=
∑

k+j−1≤m<n

s(n − 1,m)

n!

(

m − 2j − 1

k − j − 2

)

(0 ≤ j < k);

then we evaluate the sum

E(Xn,k(Xn,k − 1)) = 2k
∑

0≤j<k

(

2j

j

)

2jSn,k,j, (27)

by different means according to the range ofα.
In this subsection, we always writeα = k/ log n andλ = j/ log n.

Lemma 2. Define
f(z) = f(α, λ; z) := z − 2λ log z − (α − λ) log(z − 1),

12



and

z0 = z0(α, λ) :=
α + λ + 1

2
+

√

(

α + λ + 1

2

)2

− 2λ.

If 1 + ε ≤ z0 ≤ K, then

Sn,k,j ∼
nf(z0)−2

z0Γ(z0 − 1)
√

2πf ′′(z0) log n
,

uniformly ink andj.

Proof.We start from the integral representation (see (11))

Sn,k,j =
1

2πi

�
|z|=z0

(

n+z−2
n

)

z2j+1(z − 1)k−j
dz

=
1

2πi

�
|z|=z0

nz−2

Γ(z − 1)z2j+1(z − 1)k−j

(

1 + O(n−1)
)

dz,

by singularity analysis. Observe thatz0 is the saddlepoint at whichf ′(z0) = 0, and that the second
derivative off

f ′′(z) =
2λ

z2
+

α − λ

(z − 1)2

remains strictly positive in the range of interest. The required result follows from applying the saddlepoint
method to the integral

1

2πi

�
|z|=z0

elog nf(z)

zΓ(z − 1)
dz.

Middle range. Consider firstCase(III ): α ∈ [[2 −
√

2, 2 +
√

2]]. In this case terms with largej’s are
dominant. Thus, we setr := k − j ≥ 1. By applying Lemma2 with λ = α − r/ log n,

z0 = 2α − 2r(α − 1)

(2α − 1) log n
+ O

(

(log n)−2
)

,

and

f(α, λ; z0) = 2α + r
2 log(2α) − log(2α − 1)

log n
+ O

(

(log n)−2
)

,

we get

Sn,k,j ∼
(

4α2

2α − 1

)r
nf(α,α;z0)−2

z0Γ(z0 − 1)
√

2π log n/(2α)
;

also

2j

(

2j

j

)

∼ 8k−r

√
kπ

.

These estimates lead to

E(Xn,k(Xn,k − 1)) ∼ 16k

√
kπ

∑

r≥1

(

4α2

8(2α − 1)

)r
nf(α,α;2α)−2

z0Γ(z0 − 1)
√

2π log n/(2α)

=
α2

Γ(2α − 1)(4α − α2 − 2)
· 4ke2k(log n)2k

2πkn2k2k

∼ α2(2α − 1)

Γ(2α)(4α − α2 − 2)
·
(

(2 log n)k

n k!

)2

.
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Intermediate ranges. For Case(IV ): α ∈ [[2 +
√

2, 3 + 2
√

2]], no terms are asymptotically negligible;
we thus sum all terms up and obtain

E(Xn,k(Xn,k − 1)) ∼ 2k

√
2πn2 log n

∑

1≤j<k

nF (λ)

√
λz0Γ(z0 − 1)

√

f ′′(z0)
,

whereF (λ) := λ log 8 + f(α, λ; z0(α, λ)). Sincef ′(α, λ, z0(α, λ)) = 0, we getF ′(λ) = log 8− 2 log z +
log(z − 1); and, consequently,F ′(λ0) = 0 for z0(α, λ0) = 2(2 +

√
2), which implies thatλ0 =

√
2(3 +

2
√

2 − α). It follows thatF (λ0) = 4 + 2
√

2 − α log(3 + 2
√

2), F ′′(λ0) = −
√

2/(5 + 4
√

2 + α), and

f ′′(α, λ0; 2(2 +
√

2)) =
1

4
(17

√
2 − 24)(5 + 4

√
2 + α);

we obtain, by standard application of the saddlepoint method,

E(Xn,k(Xn,k − 1)) ∼ 2k

√
2z0Γ(z0 − 1)πn2 log n

√

2π log n

−λ0F ′′(λ0)f ′′(z0)
nF (λ0)

=
2kn2+2

√
2(3 + 2

√
2)−k

√
2π log n(2 −

√
2)Γ(3 + 2

√
2)

√√
2(3 + 2

√
2 − α)

.

This proves (17). The proof forCase(II ) is similar.

Extremal ranges. Case(V): α ∈ [[3 + 2
√

2, K]. In this case, the terms with smallj are dominant. For
every finitej ≥ 0, we have (z0 = α + 1)

Sn,k,j ∼
1

2πi

�
|z|=z0

nz−2

Γ(z − 1)z2k+1

(

z − 1

z2

)j

dz

∼
(

α

(α + 1)2

)j
nα−1−α log α

(α + 1)Γ(α)
√

2π log n/α

∼
(

α

(α + 1)2

)j
α(log n)k

(α + 1)Γ(α)nk!
.

Consequently,

E(Xn,k(Xn,k − 1)) ∼ (2 log n)kα

nk! (α + 1)Γ(α)

∑

j≥0

(

2j

j

)(

2α

(α + 1)2

)j

=
α(2 log n)k

(α + 1)Γ(α)nk!

(

1 − 8α

(α + 1)2

)−1/2

=
α(2 log n)k

Γ(α)
√

α2 − 6α + 1nk!
.

Case(I) is similar.
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4.2 An analytic approach

This approach relies on (8) and the convergence or divergence of the integral� 1

0

(1 − t)2wI0

(

4
√

w log
1

1 − t

)

dt, (28)

plays a crucial r̂ole in determining the different ranges.
We first give the main idea of this approach using mostly heuristic reasoning; the technical justification

and detailed estimates of the error terms will be provided later.

A sketch of proof. We need the asymptotics of the modified Bessel function (see§9.6, Abramowitz and
Stegun, 1965)

I0(z) =
ez

√
2πz

(

1 + O(|z|−1)
)

, (29)

theO-term being uniform for|z| → ∞ in the region−π/2 < arg(z) ≤ π/2.

Small or large α. First if the integral (28) is convergent, then (see (10))

F2(z, w) ∼ 2w(1 − z)−2w

� 1

0

(1 − t)2wI0

(

4
√

w log
1

1 − t

)

dt

=
2w√

4w2 − 12w + 1
(1 − z)−2w; (30)

so we expect that (by singularity analysis and then by saddlepoint method)

E(Xn,k(Xn,k − 1)) = [wkzn]F2(z, w) (31)

∼ [wk]
2wn2w−1

√
4w2 − 12w + 1 Γ(2w)

∼ α√
α2 − 6α + 1 Γ(α)

· (2 log n)k

nk!
, (32)

whereα > 0 has to satisfyα2 − 6α + 1 > 0. This gives rise to the first two rangesα ∈ [0, 3 − 2
√

2) and
α ∈ (3 + 2

√
2, K], and the estimates (14) and (18).

Middle range. On the other hand, if the integral (28) diverges, then by (29)

F2(z, w) ∼ 2w(1 − z)−2w

� z

0

(1 − t)2wI0

(

4
√

w log
1

1 − t

)

dt

∼ 2w(1 − z)−2w

√

8π
√

w

� z

0

(

log
1

1 − t

)−1/2

(1 − t)2w−4
√

w dt

∼ w
√

2π
√

w(4
√

w − 2w − 1)

(

log
1

1 − z

)−1/2

(1 − z)−4
√

w+1. (33)
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Thus we expect that (again by singularity analysis and then by saddlepoint method)

E(Xn,k(Xn,k − 1)) ∼ [wk]
wn4

√
w−2(log n)−1/2

√

2π
√

w(4
√

w − 2w − 1)Γ(4
√

w − 1)

∼ α2

(4α − α2 − 2)Γ(2α − 1)
· (2 log n)2k

n2(k!)2
,

which yields the second pairs of transitional points since

4α − α2 − 2 > 0 iff α ∈ (2 −
√

2, 2 +
√

2).

Intermediate ranges. Observe that the error term in (30) is of the form (by (29))

(1 − z)−2ℜ(w)

� 1

z

(1 − t)2wI0

(

4
√

w log
1

1 − t

)

dt

= O

(

(1 − z)−4
√

w+1

|4√w − 2w − 1|

(

log
1

1 − z

)−1/2
)

,

(see also (33)) whose contribution toE(Xn,k(Xn,k − 1)) is roughly of the order

[wk]
n4

√
w−2

4
√

w − 2w − 1
(log n)−1/2 = O

(

(2 log n)2k

n2k!2

)

,

essentially the same order as(E(Xn,k))
2.

Thus we can use the estimate (30) whenk lies in the intervals ofCases(II ) and (IV ); but instead
of applying the saddlepoint method as inCases(I) and(V), we use again singularity analysis since the
singularities atw = 3

2
±

√
2 in (30) is dominating.

ConsiderCase(II ). Let β := 3/2 −
√

2. We have, by (30),

E(Xn,k(Xn,k − 1)) ∼ [wk]
2w√

4w2 − 12w + 1
· n2w−1

Γ(2w)

∼ 2βn2β−1

√

8
√

2β Γ(2β)
[wk]

n2(w−β)

√

1 − w/β

∼ n2−2
√

2

√

2π
√

2 Γ(3 − 2
√

2)

(

3

2
−
√

2

)−k+1/2

(k − 2β log n)−1/2,

which, in view of (12), implies (15).
Case(IV ) is similar.

4.3 Technical justification and error estimates

We start from deriving a different integral representationfor F2 suitable for all ranges.

Lemma 3.

F2(z, w) =
2w

π

� 1

−1

(1 − z)−2w − (1 − z)−4
√

wv+1

√
1 − v2(2w + 1 − 4

√
wv)

dv. (34)
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Note that this representation is well-defined for allw (including at the zeros of the factors in the
denominator).
Proof.By the integral representation forI0(z) (see p. 376 of Abramowitz and Stegun, 1964)

I0(z) =
1

π

� π

0

ez cos t dt,

and by (8), we have

F2(z, w) =
2w

π
(1 − z)−2w

� z

0

(1 − t)2w

� π

0

(1 − t)−4
√

w cos y dy dt

=
2w

π
(1 − z)−2w

� 1

−1

1√
1 − v2

� z

0

(1 − t)2w−4
√

wv dt dv,

which yields (34).
Note that whenw 6∈ [3/2 −

√
2, 3/2 +

√
2] we can split the integral (34) and obtain

F2(z, w) =
2w

π
(1 − z)−2w

� 1

−1

dv√
1 − v2(2w + 1 − 4

√
wv)

+
2w

π

� 1

−1

(1 − z)−4
√

wv+1

√
1 − v2(4

√
wv − 2w − 1)

dv

=
2w(1 − z)−2w

√
4w2 − 12w + 1

+
2w

π

� 1

−1

(1 − z)−4
√

wv+1

√
1 − v2(4

√
wv − 2w − 1)

dv.

Roughly, whenk lies in the middle range, the main contribution comes from the second integral, which
becomes asymptotically negligible fork outside that range.

Proposition 1. Uniformly forα ≤ K,

[wkzn]F2(z, w) = [wk]
2w

π

� 1

−1

1√
1 − v2(2w + 1 − 4

√
wv)

(

n2w−1

Γ(2w)
− n4

√
wv−2

Γ(4
√

wv − 1)

)

dv + T1, (35)

where

T1 = O

(

(2 log n)k

n2k!

√
k log n +

(2 log n)2k

n3k!2
k log n

)

.

Proof.By singularity analysis (see Flajolet and Odlyzko, 1990), wehave

[zn](1 − z)−ω =
nω−1

Γ(ω)

(

1 +
ω(ω − 1)

2n
+ O

(

n−2
)

)

,

uniformly for |ω| ≤ K. Note that if4
√

wv ∼ 2w + 1, then

[zn]
(1 − z)−2w − (1 − z)−4

√
wv+1

2w + 1 − 4
√

wv
= O

(

n2ℜ(w)−1 log n
)

.

Thus

[zn]F2(z, w) =
2w

π

� 1

−1

1√
1 − v2(2w + 1 − 4

√
wv)

(

n2w−1

Γ(2w)
− n4

√
wv−2

Γ(4
√

wv − 1)

)

dv + T2,
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where
T2 = O

(

n2ℜ(w)−2 log n + n4ℜ(
√

w)−3 log n
)

.

Now by Cauchy’s integral formula

[wk]T2 = O
(

r−k
1 n2r1−2 log n + r−k

2 n4
√

r−3 log n
)

= O
(

nα−α log(α/2)−2 log n + n2(α−α log(α/2)−1)−2 log n
)

,

by takingr1 = α/2 andr2 = (α/2)2. Thus (35) follows.

Cases(I) and (V). Consider firstCase(I). With the uniform estimate (35) at hand, we obtain the leading
term in (14) by expanding the factor

H(w) :=
2w√

4w2 − 12w + 1 Γ(2w)
,

at w = α/2 and then use saddlepoint method; see Hwang (1995) for similar details. It remains to show,
again by (35), that the integral

T3 :=
2

π
· 1

2πi

�
|w|=r

w−k

� 1

−1

n4
√

wv−2

√
1 − v2(2w + 1 − 4

√
wv)Γ(4

√
wv − 1)

dv dw,

wherer := (α/2)2, satisfies

T3 = O

(

(2 log n)2k

n2k!2

)

, (36)

uniformly for α ∈ [0, 3− 2
√

2]]. Indeed, we prove that this estimate holds uniformly for|α− (2±
√

2)| ≥
K
√

log n.
By the elementary inequality1 − cos t ≥ 2t2/π2 for |t| ≤ π, we have

n4ℜ(
√

w)v = n4
√

rv cos(t/2) ≤ n2αv−αvt2/π2

= e2kv−kvt2/π2

(|t| ≤ π),

so that the major contribution toT3 comes from the ranges

1 − ε ≤ v ≤ 1 and {w = reit : |t| ≤ ε},

the integrals over the remaining ranges being bounded aboveby

O
(

n2(α−α log(α/2)−1)−ε
)

.

Thus when|2r + 1 − 4
√

r| = |α2 − 4α + 2|/2 ≥ ε

T3 = O

(

(α/2)−2kn−2

|α2 − 4α + 2|

�
|t|≤ε

e2k−kt2/π2

� (log n)−3/5

0

u−1/2e−2ku du dt

)

= O

(

(α/2)−2ke2kn−2

|α2 − 4α + 2|k

)

,

from which we obtain (36). By examining further the second order terms (see (39) below), we can take
ε = K/

√
log n. This proves (14).

The estimate (18) is similar.
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Cases(II ) and (IV ). Consider firstCase(II ). Since there is a singularity atw = β := 3/2 −
√

2, we
apply again singularity analysis to the integral

T4 :=
1

2πi

�
|w|=r

H(w)w−k−1n2w−1 dw

=
1

2πi

�
|w|=r

h(w)√
β − w

w−kn2w−1 dw, (37)

where0 < r < β and

h(w) :=
2

Γ(2w)

√

β − w

4w2 − 12w + 1
,

the principal branch being taken so thath(w) > 0 for 0 < w < β. The integration circle is then deformed
into the one shown in Figure3, where the smaller circle (left) is described by|w − β| = 1/k.

b

β

C

Hβ

1/k

w

b

α/2

w 7→ β(1 − v
k
)

b

v

H0
0

Figure 3:The Hankel type contours used for proving the estimate inCase(II).

The contribution toT4 from the outer circleC is easily seen to be of order

O

(

nα−α log(α/1)−1

√

(2β − α) log n

)

.

For the integral along the contourHβ, we make the change of variablesw 7→ β(1 − v/k), so thatHβ is
transformed intoH0 (also shown in Figure3). Then

T4 = k−1/2β−β+1/2n2β−1 · 1

2πi

�
H0

h (β (1 − v/k)) v−1/2ev(1−2β/α)
(

1 + O(|v|2k−1)
)

dv

+ O

(

nα−α log(α/1)−1

√

(2β − α) log n

)

=
h(β)

√

π(1 − 2β/α)
k−1/2β−β+1/2n2β−1

(

1 + O

(

1

(α − 2β)2k

))

,

from which (15) follows sinceβ1/2 = 1−2−1/2 andh(β) = 2−3/4/Γ(2β); see Flajolet and Odlyzko (1990)
for similar details. The error term yields exactly the left boundaryα ≥ (3 − 2

√
2) log n + K

√
log n; the

right boundary(2 −
√

2) log n − K
√

log n comes from (35).
For the estimate (17), the proof is similar. Note that sinceH(w) has a singularity atw = β, we have to

start from (35) and then proceed similarly.
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Middle range. We use again (35). The same observation that the major contribution comes from v ∼ 1
andw near the positive real line is still needed since there may beremovable singularity for somev. The
integrals are estimated similarly as above, and we need onlya more precise approximation toT3. Since
an asymptotic expansion forT3 is derived in the next section, we drop the details for deriving (16) here to
avoid repetition.

5 An asymptotic expansion forV(Xn,k) in the middle range

We first prove in this section the following expansion forE(X2
n,k).

Lemma 4. If α ∈ [[2 −
√

2, 2 +
√

2]], then

E(X2
n,k) ∼ n2(α−α log(α/2)−1)

∑

j≥1

ηj(α)

(log n)j
, (38)

for some coefficientsηj(α).

Proof.Since
E(X2

n,k) = E(Xn,k(Xn,k − 1)) + O(E(Xn,k)),

and by the estimate (12) and the analysis in the last section, we need to evaluate theintegral

T5 :=
1

2πi

�
|w|=(α/2)2

| arg(w)|≤ε

w−k−1n4
√

w−2

� ε

0

G(w, u)u−1/2n−4
√

wu du dw,

where

G(w, u) :=
2w

π
√

2 − u(4
√

w(1 − u) − 2w − 1)Γ(4
√

w(1 − u) − 1)
.

By applying Laplace’s method (or Watson’s lemma; see Wong, 1989) for the inner integral, we obtain

T5 ∼
∑

j≥0

Γ(j + 1/2)

(4 log n)j+1/2
· 1

2πi

�
|w|=(α/2)2

| arg(w)|≤ε

gj(w)w−k−j/2−5/4n4
√

w−2 dw,

where (κ(w) := 4
√

w − 2w − 1)

gj(w) := [uj]G(w, u)

=

√
2 w

πΓ(4
√

w − 1)

∑

0≤m≤j

(4
√

w)j−m

κ(w)j−m+1

∑

0≤ℓ≤m

(

2ℓ

ℓ

)

8−ℓ[um−ℓ]
Γ(4

√
w − 1)

Γ(4
√

w − 1 − 4
√

wu)
.

Then a straightforward application of saddlepoint method leads to (38). Note that

ηj(α) = O
(

|4α − α2 − 2|−2j−1
)

, (39)

whenα → 2 ±
√

2 (from inside the interval(2 −
√

2, 2 +
√

2)), implying that the asymptotic expansion
(38) is meaningful in the region[[2 −

√
2, 2 +

√
2]].

Note that the asymptotic expansion (38) can also be derived in a more straightforward way by starting
from (8) and applying the expansion for the modified Bessel function (see§9.7, Abramowitz and Stegun,
1965).
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Proof of Theorem4. From the asymptotic expansion (13), we obtain

(E(Xn,k))
2 ∼ n2(α−α log(α/2)−1)

∑

j≥1

ξj(α)

(log n)j
, (40)

for some coefficientsξj(α). Then combining (40) and (38) leads to (24) with υj(α) = ηj(α) − ξj(α).

Calculations of the coefficients. The coefficients in the expansions (38) and (40) can be easily computed
with the assistance of any symbolic softwares, but are very challenging by hand. For example, when
α = 2 + t/ log n, we can rewrite (24) as

V(Xn,k) ∼
∑

j≥1

pj(t)

(log n)j+2
, (41)

wherepj(t) is a polynomial of degreej + 1 given bypj(t) :=
∑

0≤ℓ≤j+1 υ
(ℓ)
j+2−ℓ(2)tℓ/ℓ!. Since the coeffi-

cients of(log n)−1 and(log n)−2 are both zero in the expansion, we need explicit coefficientsof υj(α) for
j = 1, 2, 3 in order to get the form forp1(t).

In particular, writingq(x) := −x2 + 4x − 2 andᾱ := 2α − 1, we have

η1(α) =
α

2πq(α)Γ(ᾱ)
,

η2(α) =
−1

12πq(α)3Γ(ᾱ)

(

−6α2q(α)2ψ′(ᾱ) + 6α2q(α)2ψ(ᾱ)2

−24α(α − 1)q(α)ψ(ᾱ) + α4 + 16α3 − 52α2 + 32α + 4
)

,

η3(α) =













36α4q(α)4ψ(ᾱ)4 + 48α3q(α)3q1(α)ψ(ᾱ)3

−12α2q(α)2 [18α2q(α)2ψ′(ᾱ) − q2(α)] ψ(ᾱ)2

+48αq(α) [3α3q(α)3ψ′′(ᾱ) − 3α2q1(α)q(α)2ψ′(ᾱ) − q3(α)] ψ(ᾱ)
−36α4q(α)4ψ′′′(ᾱ) + 48α3q(α)3q1(α)ψ′′(ᾱ)
−12α2q(α)2q2(α)ψ′(ᾱ) + 108α4q(α)4ψ′(ᾱ)2 + q4(α)













144παq(α)5Γ(ᾱ)

whereψ is the logarithmic derivative of the Gamma function and

q1(α) = α2 − 10α + 8

q2(α) = α4 + 16α3 + 32α2 − 112α + 76

q3(α) = 7α5 + 3α4 − 68α3 + 108α2 − 52α − 4

q4(α) = α8 + 320α7 − 856α6 − 1600α5 + 8920α4 + 11264α3 + 4640α2 + 256α + 16.

And the first threeξj(α)’s are given by (see (13))

ξ1(α) =
1

2παΓ(α)2
, ξ2(α) = −6α2ψ′(α) − 6α2ψ(α)2 − 1

12πα2Γ(α)2
,

ξ3(α) =





−18α4ψ′′′(α) + 24α3(3αψ(α) − 2)ψ′′(α)
+72α4ψ′(α)2 − 12α(12α2ψ(α)2 − 12αψ(α) + 1)ψ′(α)
+36α4ψ(α)4 − 48α3ψ(α)3 + 12α2ψ(α)2 + 1





144πα3Γ(α)2
.

The exact forms ofξj andηj are less important; the special property we need is that (seeFigure4)

υ1(i) = υ′
1(i) = υ2(i) = 0 (i = 1, 2).
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Figure 4:A plot of the two functionsυ1(α) (smaller amplitude) andυ2(α), where the horizontal line is the
value ofα. There are additional zeros for the latter besides1 and2, but they are minor.

Order of the two “humps”. By the expansions (41) and

2(α − α log(α/2) − 1) log n =
∑

j≥2

(−1)j−1tj

j(j − 1)2j−2(log n)j−1
,

whenα = 1 + t/ log n, we have, whent = o((log n)2/3),

V(Xn,k) ∼
n2

720π(log n)3
e−t2/(2 log n)

(

p1(t) +
p2(t)

log n
+ · · ·

)

.

Sincep1(t) is a quadratic polynomial, the asymptotic maximum of the right-hand side is easily seen to be
reached att = ±

√
2 log n + O(1), and

V(Xn,k) = e−1 n2

(log n)3

(

21 − 2π2

24π
log n ∓

√
2(21 − 2π2)

72π

√

log n + O(1)

)

,

for t = ±
√

2 log n + O(1). This roughly explains why the left “hump” is higher than theright “hump”.
Expansions forα = 1 + o(1) are similar.

The valley. Whenk = ⌊2 log n⌋, we have

V(Xn,k) ∼
p1({2 log n})

720π
· n2

(log n)3
.

Sincep1(t) is concave upward, the minimum ofp1({2 log n}) is asymptotically achieved at the subse-
quence ofn for which{2 log n} → 1 − t0.

Note that the range in (26) whereV(Xn,k) ≥ (C+o(1))n2/(log n)3 can be extended fromO(
√

log n) to
tn, wheretn → ∞ is given byt2ne

−t2n/(2 log n) = C, which (expressible in terms of Lambert’sW -function)
satisfies asymptotically,

tn =
√

2 log n log log n

(

1 +
log log log n + O(1)

log log n

)

.
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6 Transitional behaviors

We prove Theorem3 in this section. By analogy, we prove only the first two estimates (20) and (21).

The first phase transition at 3 − 2
√

2. Recall thatDν(z) denotes the parabolic cylinder functions (see
(19) and Ch. 19, Abramowitz and Stegun, 1965). Defineβ = 3/2 −

√
2. To describe the transitional

behavior (20) of E(X2
n,k) near the pointα = 3− 2

√
2, it suffices to evaluate the integralT4 defined in (37)

and prove the following estimate.

Lemma 5. If α = 2β +
√

2βt/
√

log n, then

T4 =
h(β)

√
β√

2π
et2/4D−1/2(−t)k−1/4 (α/2)−knα−1

(

1 + O

( |t| + |t|3√
k

))

, (42)

uniformly fort = o((log n)1/6.

Estimates uniformly valid in a wider interval ofα can be derived by standard tools for handling coales-
cence of algebraic singularities and saddlepoints; see Bleistein and Handelsman (1975). We content here
with the above estimates using the following simpler methodof proof.
Proof.Assume first thatα < 2β. By the change of variablesw 7→ α(1 + iv/

√
k)/2, we deduce that

T4 = h(α/2)(α/2)−k+1/2nα−1k−1/4 · 1

2π

$ ε
√

k

−ε
√

k

e−v2/2

√

∆
√

k − iv

(

1 + O

( |v| + |v|3√
k

))

dv

+ O
(

(α/2)−knα−1−ε
)

,

where∆ := 2β/α − 1 and
#

means that an indentation (upward) of the integration path is needed if
∆ = 0. For the integral on the right-hand side, we use the integralrepresentation (see p. 688, Abramowitz
and Stegun, 1964)

1

2π

$ ∞

−∞

e−v2/2

√
x − iv

dv =
ex2/4

√
2π

D−1/2(x) (x ∈ R),

and the estimates (22). The estimate (42) then follows by the expansion

∆
√

k = −t + O
(

t2(log n)−1/2
)

.

The second phase transition atα = 2 −
√

2. From the proof of (38), we have

T5 =
1

2πi

�
|w|=(α/2)2

| arg(w)|≤ε

w−k−1n4
√

w−2 g0(w)
√

π
√

4
√

w log n

(

1 + O

(

1

|κ(w)| log n

))

dw

=
n−2

√
log n

· 1

2πi

�
|u|=α/2

| arg(u)|≤ε

g(u)

u − (1 − 2−1/2)
u−2kn4u

(

1 + O

(

1

|4u − 2u2 − 1| log n

))

du,

where

g(u) :=

√
2u(u − (1 − 2−1/2))√

π(4u − 2u2 − 1)Γ(4u − 1)
.

We need to prove the following estimate, which implies (21).
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Lemma 6. If α = 2 −
√

2 +
√

1 − 2−1/2t/
√

log n, then

T5 = g(α/2)et2/2Φ(−t)(log n)−1/2n2−α−2α log(α/2)

(

1 + O

(

1 + |t|3√
log n

))

, (43)

uniformly fort = o((log n)1/6

Proof. The proof follows,mutatis mutandis, the same pattern as for (42), starting with the change of
variablesv = α(1 + iv/

√
2k)/2. The main difference is that

1

2π

& ∞

−∞

e−v2/2

iv − x
dv = ex2/2Φ(−x) (x ∈ R),

where the integration path has to be indented suitably downward whenx = 0. Note that

g(1 − 2−1/2) =

√

2 −
√

2

2
√

2πΓ(3 − 2
√

2)
.

7 Profiles of recursive trees

We briefly discuss the profiles of random recursive trees in this section.
One way of constructing a random recursive tree ofn nodes is as follows. One starts from a root

node holding the key1; at stagei (i = 2, . . . , n) a new node holdingi is attached uniformly at random to
one of the previous nodes. The process stops after noden is inserted. By construction, the values of the
nodes along any path from the root to a node forms an increasing sequence. For a survey of probabilistic
properties of recursive trees, see Smythe and Mahmoud (1995).

Let Xn,k denote the number ofinternal nodesat levelk in a random recursive tree ofn nodes. Then
(see van der Hofstad et al., 2002)

Xn,k
d
= Xunif[1,n−1],k−1

+ X∗
n−unif[1,n−1],k

,

whereX∗
n,k is an independent copy ofXn,k and unif[1, n − 1] takes any of the values in{1, . . . , n − 1}

with equal probability1/(n − 1).
From this recursive decomposition, we deduce that











P0(z, y) = 1 +
yz

1 − z
,

Pk+1(z, y) = 1 + z exp

(� z

0

Pk(t, y) − 1

t
dt

)

(k ≥ 0),

wherePk(z, y) :=
∑

n E(yXn,k)zn. Adopting the same set of symbols used for BSTs, we obtain

F1(z, w) = z(1 − z)−1−w,

so that

E(Xn,k) =
s(n, k + 1)

(n − 1)!
.

Similarly, for the second factorial moment,

F2(z, w) = 2
√

wz(1 − z)−1−w

� z

0

(1 − t)w−1I1

(

2
√

w log
1

1 − t

)

dt,
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where

I1(z) :=
1

2

∑

m≥0

z2m+1

m!(m + 1)!4m

denotes the modified Bessel function of first order. Note that for |w| > 4

2
√

w

� 1

0

(1 − t)w−1I1

(

2
√

w log
1

1 − t

)

dt =
4

w
√

1 − 4/w(1 +
√

1 − 4/w)
.

The same set of tools used for BSTs also applies here; the analytic context is indeed much simpler
since it is known that (see van der Hofstad et al., 2002)

E(X2
n,k) =

∑

0≤j≤k

(

2j

j

)

s(n, k + j + 1)

(n − 1)!
;

compare (9).
The asymptotic behaviors ofE(X2

n,k) can be summarized as follows. Letα := k/ log n.

– If α ∈ [0, 2]], then

E(X2
n,k) ∼

(log n)2k

(1 − α/2)Γ(2α + 1)k!2
; (44)

– if α = 2 + t/
√

log n, then

E(Xn,k)
2 ∼ 1

24
√

π
Φ(t)k−1/24−kn4,

uniformly for t = o((log n)1/6);

– if α ∈ [[2, 4]], then

E(X2
n,k) ∼

1

24
√

π(4 log n − k)
4−kn4;

– if α = 4 + 2t/
√

log n, then

E(X2
n,k) ∼

1

24
√

2π
et2/2D−1/2(t)k

−1/44−kn4,

uniformly for t = o((log n)1/6);

– if α ∈ [[4, K], then

E(X2
n,k) ∼

(

1 +
4

α
√

1 − 4/α(1 +
√

1 − 4/α)

)

(log n)k

Γ(α + 1)k!
.

From (44) and the following estimate for the mean

E(Xn,k) ∼
(log n)k

Γ(α + 1)k!
(α ∈ [0, K]),

we obtain, forα ∈ [0, 2]],

V(Xn,k) ∼ ϕ(α)
(log n)2k

k!k!
,
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where

ϕ(α) =
1

(1 − α/2)Γ(2α + 1)
− 1

Γ(α + 1)2
.

The functionϕ(α) satisfiesϕ(1) = ϕ′(1) = 0, and the same type of bimodal behavior occurs when
α = 1 + O(1/

√
log n), with the variance varying fromn2/(log n)3 to n2/(log n)2 there. Finer results as

those for BSTs can be derived; we omit all details here. Interestingly,V(Xn,k) starts to exhibit the bimodal
behavior forn = 33, much smaller than that for BSTs.

8 Conclusions

In this paper, we added several new aspects to the usual description of the profiles of BSTs as some fig-like
shape . In addition to the new phenomena of phase transitions and bimodality exhibited by the variance
of the profiles, several parameters on trees have close connections to profiles, especially the mean values.
For example, one of the most studied parameters is the hightHn, defined to be the length of the longest
path from the root. The second moments ofXn,k for BSTs were originally studied to derive better bounds
for some estimates required for the hight; see Pittel (1984). Indeed, already the mean ofXn,k can be used
to derive useful estimate on the average height as follows; cf. Devroye (1987). By the inequality

P(Hn ≥ k) ≤
∑

j≥k

E(Xn,j),

and (1), we obtain

∑

j≥k

P(Hn ≥ j) ≤
∑

j≥k

2j

n!
(j − k + 1)s(n, j)

=
2k

2πi

�
|w|=α

w−k (w + 1) · · · (w + n − 1)

n!(1 − 2/w)2
dw

= O
(

k−1/2nα−α log(α/2)−1
)

.

Choosek0 = α+ log n − α′ log log n + O(1), whereα+ > 1 solves the equatione(z−1)/z = z/2 and
α′ = α+/(2α+ − 2), so that

∑

j≥k0
P (Hn ≥ j) = O(1). And it follows that

E(Hn) ≤
∑

j≤k0

P(Hn ≥ j) +
∑

j≥k0

P(Hn ≥ j)

≤ k0 + O(1).

This upper bound is, up to the constant of the second-order term, the right order; see Drmota (2003) and
the references there for further information. Unfortunately, the second moment ofXn,k is not sufficient
to prove tight lower bound forE(Hn); see Pittel (1984). See also Chern and Hwang (2001) for other
applications of the mean profile.
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