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Abstract

We show that the variance of the profiles (number of nodes at each ¢éwvallddom binary search
trees exhibits asymptotically four phase transitions and a bimodal or “two-bddihigghavior, in con-
trast to the unimodality of the mean value of the profiles. Precise asymptotioxapations are de-
rived. The same types of phenomena also hold for the profiles of ranemrsive trees.

1 Introduction

Profiles (number of nodes having the same distance to th§ amminformative shape characteristics of
trees. They are directly related to the total path lengta éilnm of the distances of all nodes to the root)
and depth (the distance of a random node to the root) on theam# and can be used to derive effective
bounds for the height and width on the other hand. In termsrandhing process language, profiles
correspond to the number of descendants in each gener#imnalso have more concrete algorithmic
interpretations such as breadth-first search and applitatsee Devroye and Robson (1995), Louchard
and Szpankowski (1995), Chern and Hwang (2001). We studyisrptiper the variance of the profiles in
random binary search trees (abbreviated as BSTs). Part @fimmsris to clarify Figurel by more precise
mathematical terms.

Binary search trees. A BST 7 is a binary tree constructed from a given sequence of keysAsa=
{ai,...,a,} as follows. Ifn = 0, then7 is empty and, for convenience, we reg&rdas consisting of
only a node calle@xternal node If n > 1, then the first key:, is placed at the root (called anternal
nodg. The remaining keys are compared successively to the syptkd are directed to the left (or right)
branch if they are smaller (or larger), and keys directedhéostame branch are constructed recursively as
a BST. By construction, a query operation like& 7?” can be easily carried out in BSTs, thus the name.
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Figure 1:Profiles of BSTs: exact mean and variance of the num¥agy ;. of external nodes at levélin
random binary search trees 000 nodes.

BSTs are one of the simplest and widely used data structur€simnputer Algorithms. They also
appeared, under different guises, in other contexts subreaghing processes, population genetics, diffu-
sion models and evolutionary trees; see Aldous and Shi#3[), Aldous (1996), Barlow et al. (1997),
Majumdar and Krapivsky (2003). The large number of diverderssions and variants add significantly to
their importance in practice, in algorithm design, and ietty.

Random BSTs. Assume that the given input is a finite sequence of independed identically dis-
tributed random variables with a common continuous digtidm. The BST constructed from this random
sequence is calledrandom BSTSince only the rank and the order of the keys are relevarggaivalent
model is to assume that the input is a random permutation \eherl permutations of:. elements are
equally likely.

Many properties of random BSTs have been studied in the titerasee Gonnet and Baeza-Yates
(1990), Mahmoud (1992), Knuth (1998), Devroye (2003), Hgvand Neininger (2002) for more infor-
mation.

Profiles of random BSTs. We are concerned with the random variabls;, defined to be the number
of external nodes at levél(the root being at level 0) in a random binary search treemafdes. It is known
that
2k
:E()Q%k):: ET (nvk) (0 <k S;n), (1)

where thes(n, k)’s denote the signless Stirling numbers of the first kind:

Z s(n,k)w* =w™  (n>0),

0<k<n



with w™ denoting the rising factoriab™ := [],;_,(w + j); see Lynch (1965), Knuth (1998), Brown
and Shubert (1984), Mahmoud and Pittel (1984), Pittel (1J9Bduchard (1987), Devroye (1988). Thus
the asymptotic behaviors @(X,, ;) can be derived from known results for Stirling numbe(s, k); see
Hwang (1995), Temme (1993).

In particular, the asymptotic behaviors BfX,, ;) for varying k are well approximated by a normal
distribution, with mode near ~ 2 log n; see Chauvin et al. (2001, 2003) for more precise propeftiete
that the sequencfE(X,, ;) }« for fixed n is unimodal, by the simple fact that the generating polyrami
> E(X,x)w* has only real zeros; see Comtet (1974), Hammersley (1951).

Known results beyond mean. Almost sure convergence of,, . /E(X,, ;) and other type of results are
derived in Chauvin et al. (2001), Jabbour-Hattab (2001);ad&® the recent paper Chauvin et al. (2003).
Pittel (1984) derived the expression

BxZ) =2y ! # (VBa/y = )" H@® 4+ 0"
nk n! (27i)? ya2h=1, /1 — 42 ’

T 1<t<n

and then showed that
E(X2,) = O((logn)*?p2e-eles/270) (2 - /2 <0 <2+ V?2),

for anye > 0, where here and throughout this paper,:= k/ log n.

Global description of the phase transitions. The aim of this paper is to derive more precise asymptotic
approximations to the variané& X, ;) for all ranges of interest. We show that the asymptotic bieinav
of V(X x) exhibits phase transitions at the four poiats- 3 + 2v/2 anda = 2 + /2 (not viewable from
Figurel though). The rough picture 6f(X,, ;) is as follows; see Theoreth

— Whena is small or large, more precisely,< o < 3 — 2/2 —c ora > 3 + 2v/2 + ¢, then the variance
is of the same order as the mean

V(Xop) ~ E(X ) < E(Xo )

— Whena lies in the middle range, namely,— v/2 + ¢ < a < 2 + /2 — ¢, then the variance is of the
order of(E(X,,1))?
V(Xoge) ~ () (E(Xnk))?, 2

where
[(@)?a?(2a—1) )

P = T om)@a—az=2) ¥ ®)
I" being the Gamma function;

— Whena lies in the two intermediate rang8s- 2v2 + e < a <2 — V2 —cand2+v2+e < a <
3+ 2v/2 — ¢, then the variance is larger in order than the mean and the stare
E(Xnk), (E(Xn1))* < V(Xng) ~ E(X7,).

Note thatE(X,, ) = o(1) for « < a_ anda > a, wherea_ ~ 0.37336... anda; ~ 4.31107 ...
are the two zeros of the equatiefi—!/ = = /2 (sometimes called the binary search tree constants;
see§5.13, Finch, 2003). Als& (X, ;) < (E(X,x))* fora_ < a < ay.

To bridge the asymptotic estimates in neighboring ranges)@ed more uniform estimates. We show
that the transition is well dictated byarabolic cylinder functiorwhen o crosses3 + 2v/2, and by a
normal distribution functiorwhena crosses the other two transitional points.
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The valley. The approximationd) in the middle range is insufficient for describing the bebesof the
variance whem ~ 2 sincep(2) = ¢’(2) = 0. More precise approximations are thus needed and we derive
an asymptotic expansion f&f(X,, ;) in the middle range. In particular, the visible valley in &ig1 is
roughly due to the estimates

n2

(logn)3’

n2

N4 (Xn, LZ log nt++/21log nJ ) = (10g n)2 ’

V<Xn, [2logn+O(1) ]| ) =

Indeed, we show that , ,
21 — 27 n
V(Xnk) ~ : :
g (Xonr) 24me  (logn)?
See Sectio® for a more precise description of the valley, including aplaration of why the left “hump”
is higher than the right one.

Numerically, the valley folV (X, ) appears only when > 357.

A “false valley”. While the valley nea® log n may be quite expected (see Chauvin et al., 2001, 2003),
the functionyp(a) also satisfiesp(1) = ¢'(1) = 0, suggesting that there may be a second valley near
a ~ 1. We show that this is indeed a “false valley” since the deswes the variance in the logarithmic
term is well “smoothed out” by other larger factors; see Qargls.

Why the valley? Structurally, the valley for the variance ndar= 2logn + O(y/logn) indicates that
there is a better concentration of external nodes near tfeesks, and indeed almost all external nodes
lie at these levels, each level having abayt/log n nodes; see also Chauvin et al. (2001). Similarly, the
“false valley” neark = log n+O(+/logn) may be ascribable to the structural change of number ofriater
nodes near there.

Methodology. Our approach is mostly analytic and relies on integral regméations for the second mo-
ments. The basic idea is to consider the bivariate gengratirction, sayFs(z, w) of E(X,, (X, x — 1)),
which satisfies a differential equation of first order. Sedythe differential equation yields an integral
representation fof,, from which we apply Cauchy’s integral expression and corplealytic tools, in-
cluding singularity analysis, saddlepoint method, andesamiform asymptotic methods (for handling the
coalescence of a saddlepoint and an algebraic singulafity approach is of some generality and may be
applied to othetog-class of trees (see Bergeron et al., 1992, Devroye, 1999).

Universality? The above interesting phenomena naturally suggest théigureare the phase transitions
and bimodality unique for BSTs? or is there some sort of usaidy for such phenomena? We will briefly
examine recursive trees in Sectigrand show that the profile variance also exhibits a bimogaéariog n
and two phase transitions. Similar behaviors are expeciedtiier {og-) class of trees liken-ary search
trees, fringe-balanced BSTs (see Devroye, 1999), but thaserelescription and general prediction are
expected to be more involved.

Limiting distribution? It is known that (see Chauvin et al. 2003)

Xn,k
E(Xnk)

= Xop  (2-V2<a<2+V2),



in probability, whereX, < U%1X, + 2(1 — U)?**71X’, U being uniformly distributed in the unit
interval andX’ 4 X, see also Jabbour-Hattab (2001). B, = X; = 1, so that the limit distribution
for (X, — E(Xnx))/v/V(X,k) in the two special cases~ 2 anda ~ 1 remains open.

Similar bimodal behaviors are observed (by Monte Carlo satnuhs) for higher absolute, central
moments ofX,, ;, for BSTs, but it does not seem easy to even conjecture thelp@é$srm of the limiting
distribution of, sayX,, 2105, (Suitably normalized); the valley near there and the pécitydof {2logn}
seem to complicate the problem proper.

Profiles of another class of trees (which we may roughly tesrh &.-class”, in contrast to oundg n-
class” of trees) have received much recent interests anldclegified (see Aldous, 1993, Drmota and
Gittenberger, 1997, Pitman 1999, Kersting, 1998), but nfaoperties of the profiles for thieg n-class
of trees (of which BST is a prototype) remain unknown and végllenging.

Outline of the paper. This paper is organized as follows. We first derive the basitimrence for the
profiles in the next section, and then the solution to the gaimg function ofm-th moments. In particular,
an exact solution for the second factorial moment is givere thén state our main results on phase
transitions and bimodality in Sectid Proofs are given in later sections, and recursive treebragély
examined in Sectiof.

2 Generating functions and integral representations

We give here a self-contained approach to computing the mtseéX,, ... Define the bivariate generating
function

Pi(zy) = E@y**)"  (k>0).

n>0

Then, by the recursive construction,

d
Xog = X1, h—1+Xn—1—1k—1,

whereP(I, = j) =n~! for0 < j <n — 1. ThusP, can be computed recursively by

Z
P —
0(2,y) =y+1—

Pea(ey) =1+ [ PRty)dt (62 0)
0

(4)

Explicit solutions (beyond the iterative integral formgy this system of equations for all seem
intractable; we consider instead the momentXpf. by expandingP;, as follows.

Puley) = 3 kB gy

m2>0

so thatM,, x(z) = >, E(Xnx(Xor — 1) - - (Xp — m + 1))2" and they satisfy, by4),

Mipa) = o Ma@ + 3 ()M sa), ©

for k > 0 andm > 1, with My x(z) = 1/(1 — z) andM,, x(0) = 0 (k > 1).
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More explicit representations for thd,,, ,'s can be derived by considering the generating function

which satisfies, byg), £},,(0,w) = 0 and

Solving this first-order differential equation yields
Fi(z,w) = (1—2)7",

and form > 2

F(z,w) = Y <7;7>(1—z)2w/z )2 M) My (H)whH dt.

1<j<m E>0

From @), it follows that
2k 1
MLk(Z) = E log : (k? Z O),

which implies (), and then, by7),

z 1
Fy(z,w) =2w(l — )™ / (1—t)*I, (4\/Elog : t) dt,
J0 -

where
2k

z
1) =2 e
k>0

is the modified Bessel function of order zero (§8€56, Abramowitz and Stegun,1965).
Before going further, we derive an explicit formula ¢X,, (X, — 1)).

Lemma 1. The second factorial moments.gf, , can be computed by

(X, o(Xop — 1)) :i—f 3 (2‘7)23 S stn—1,m) (”Z:jj__ll).

T 0<j<k J k+j—1<m<n

Proof. First observe that

/01(1—75)2“’10 <4\/_10g >dt Zﬁuﬂ/ y? log¥ (1/y) d

7>0

= 2w +1) (2w + 1)%+1
= (4w* — 12w + 1)71/2,

(6)

(7)

(8)

9)

(10)



provided that (2;‘1“1)2| < 1. Assume for the moment thatlies in that region. Then, similarly as above,

(1—2)"2 [(1 — )1, (4\/Elog - i t) dt

2k)! —log(1 — 2))’ 1
=(1- z)z%(élw)k Z ( g(" il (2w + 1)2hH+1—J

k>0 0<j<2k J:

2]{? 1 2572k71 1— 1-t
=3 () eyt — U2y
k 271 2w+1—1t

o |t|=c<|2w+1]

But the residue of the integrandiat 2w + 1 equals(2w + 1)~ ~1(1 — z)~2*~1., It follows that

2w (1—2)tt
Fy(z,w) = — dt c>2w+1
2(2,w) 2mi &éc (t —2w —1)Vt2 — 16w (e> 2w 1D
2 1— )1y
== 1-z) (c <o),

= — dy
218 Jiy=e (1 — (2w + 1)y)/1 — 16wy?

for properly chosen integration contours. The restrictammo can now be dropped.
By Cauchy’s integral representation

ok N (n—2+1/y)
(KXo = 1) (2mi)? .#w (1= (w+1)y)v/1—8wg
Thus we have
20\ 2 (")
_ ok n
E(Xpx(Xpp —1)) =2 Z <€ ) %55 B, — 1) dz, (11)
0<t<k |Z|:C>1

from which ©) follows. 1

3 Phase transitions and bimodality

Notation. For convenience, we use the sympalb] to denote the intervak + K //logn,b— K//logn]

for a sufficiently largel<’; The one-sided conventions, b] and[a, b] stand forla, b — K/+/log n] and[a +

K /+/logn, b], respectively. The generic symbadls ande always represent large and small, respectively,
constants whose values may vary from one occurrence to @motimroughout this papety = «,,; =
k/logn.

3.1 Asymptotics ofE(X,, 1)
For completeness, we first state two known expansion&(af, ;) that will be needed.

Theorem 1. Uniformly for1 < k < K logn,

E(X,x) = % (1+0 ((logn)™)); (12)



and uniformly fork — oo, k < K logn,
nafalog(a/Q)fl

E(ka) ~ m ]EO Cj]{j_j’ (13)

for some coefficients.

Proof. (Sketch) The proof of both approximations starts frdngnhd then uses the uniform approximation

1

ko (ntw—1\ _;n"" -
%:E(Xn,k)w —2 ( )—2 ) (1+0(@n™),

n

uniformly for |w| < K (by the singularity analysis of Flajolet and Odlyzko, 199Dhen

2k w—1

= — w_k_ln— nt w
B(G) = 5§ 0 s (140(7) du

and (L2) follows by expandind /T'(w) atw = a = k/logn, and by estimating the error terms properly;
see Hwang (1995) for details. The proof faB) uses the usual saddlepoint method and is simildr.

From (12), we see that the asymptotics Bf.X,, ;) /n is roughly dictated by a Poisson distribution
with mean2 logn. In particular, it is unimodal (at least for < £ < K logn), and there is no change of
asymptotic behavior in the main range of interests{( K logn).

3.2 Asymptotics ofE(X} ;)
For the second moment and the variance, the situation bescoampletely different. We give our first
approximations tdE(thk) by splitting the rangé0, K] into five non-overlapping intervals.

Global silhouette. For simplicity of presentation, we drop the error terms ia tbllowing estimates,
and we define two constants

oL V21
/M3 +2v3)
Theorem 2. (1) If a € [0, 3 — 21/2], then
2 @ )

(I if a € [3 - 2v/2,2 — /2], then

2kp2-2V2 (3~ 2/2) "

E(X; ) ~ C- ; (15)
\/k — (3 —2v2)logn
(1) if a € [2 = v/2,2 4+ V2], then
E(X2,) ~ (EX, ) o) @20 1) (16)

T(20) (4o — a2 — 2)’
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Figure 2: A plot of the limiting curve folog E(thk)/logn (upper curve) and fotog E(X,, )/ logn
(lower curve) fora in each interval (horizontal coordinate). The intervaleaso explicitly depicted by
vertical lines.

(IV) if a € [2+ V2,3 4+ 2V/2], then

2kn2422 (34 21/2) "

E(X7 ) ~ Oy ; 17)
V3 +2v2)logn — k
(V) finally, if o € [3 + 2v/2, K], then
) a
E(Xnx) ~ E(Xnk) (1 + W) . (18)

A more transparent approximation is as follows; see Figu a plot.

Corollary 1 (Phase transitions). The growth order oE(X ) satisfies

a—alog(a/2) —1, if a €[0,3 —2v2]
5 2 —2v2 —2alog(l —2712), ifae[3—-2v2,2 -2
logE(X; ;) :
Ten 2(a — alog(a/2) — 1), if o €[2—+v2,2+ 2]
oeT 2+ 2v2 — 2alog(l+ 272, ifae2+2,3+2V2
a— alog(a/2) — 1, if o € [3+2v2, K].

By continuity, the (almost) open boundarieand] in all cases are replaced by the closed dreesd]|,
respectively, as will become clear.

Transitional behaviors. These quick (and rough) estimates leave open the asyngtdtithe second
moment in the transitional rangés= (3 42v/2) log n+ O(y/logn) andk = (24 +/2) logn + O(y/logn),
which will be handled by more uniform asymptotic tools.



Let D_,(x) denote the parabolic cylinder function (see Ch. 19, Abrartmand Stegun, 1965), which
can be defined by

2
ea:/4

D_(x) = Ty

/ w2 qy (v > 0), (19)
0

and let®(x) denote the standard normal distribution function. Noté dha) is itself a special case of the
parabolic cylinder functions

D_y(z) = V21 " *®(—2).
Theorem 3. All asymptotic estimates below hold uniformly foe o((logn)'/¢). (i) If a = 3 — 2/2 +

(V2 — 1)t/+/logn, then
E(Xﬁ k) ~ 2_1/20_6'52/4D,1/2(—t)k_1/4 n2—2\/§—20¢10g(1—1/\/§); (20)
(i) if @ =2 — /2 4+ V1 — 2712t /\/log n, then
E(Xs k) -~ 21/40_@(—t)k:_1/2n2_2‘/§_20‘ Iog(l—l/\/i); (21)
(i) if @ = 24+ /2 + V1 +2-1/2t/\/log n, then
E(X2k) -~ 21/4C+<b(t>k—1/2n2+2\/§—20¢log(l—i—l/ﬂ);
(iv) finally, if « = 3 + 22 + (v/2 + 1)t//log n, then
E(XZ k) N 2’1/2C+et2/4D_l/g(t)k’w‘ n2+2\ﬁ72a log(lJrl/\/i).
In all cases, the dropped error terms are of the form
1+ t)?
1+0 :
(x/logn
These estimates complete the gap left open in The&glurthermore, one can easily check that in

the overlapping rangess( < |t| = o((logn)'/%)) the approximations in both Theorems coincide by the
following asymptotic estimates (sé&9.7, Abramowitz and Stegun, 1965)

D_(x) ~ Ve @/ (x — 00),
D_,(—x) ~ ﬁf’%ﬁﬂ (x — 00). (22)

Bimodality. Everything up to now is only unimodal. Bimodality of the varée appears in the middle
rangea € [2 — /2,2 + V2].
First, from Theoren®, we readily obtain the following estimate.

Corollary 2. The variance ofX,, ;, satisfies
V(X k) ~ () (EX, )7,

for o € [2 — V2,2 4+ V2], wherey is defined in§), andV(X,, ;) ~ E(X2,) for all other ranges.
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Observe that
e(1) =¢(2) = ¢'(1) = ¢'(2) = 0; (23)
thus the estimate3] is insufficient for an asymptotic equivalent for the vadann the central range

k = (2+ o(1))logn and in the somewhat unexpected rarkge- (1 + o(1)) logn. We need stronger
approximations.

Theorem 4. 1f a € [2 — /2,2 + /2], then

_ Hy vi(a)
V(ka) ~ n2(o¢ alog(a/2)—1) J—" (24)
= (logn)i

for some coefficients;(«); see 38) and @0) below.

In particular,v;(a) = p(a)/(2ral(a)?) also satisfies property28), andvy(«a) satisfiesv,(1) =
U2(2) = 0.

Corollary 3. If a = 2+ t/logn, wheret = o(logn), then
pl(t> n2(afalog(a/2)71) 1 + |t|
Xok) = : 1 ,
V(Xo) 7207 (logn)3 O logn
uniformly in¢, wherep, (¢) is a quadratic polynomial defined by
pi(t) == 15(21 — 27*)t* — 30 (47(1 — ) + 24¢(3) + 42y — 69) ¢
— 21" — 30 (49% — 8y + 11) m* + 180 (77* — 237 + 29) — 1440¢(3)(1 — ),  (25)

where~ denotes Euler’s constant.

The reason of writing the corollary in its form is that the iation of the order ofV(X,, ;) when
k = (2 + o(1)) logn becomes more transparent. Thusy i 2 + t/log n, wheret = o((logn)*/?), then

p1(t) n? t?
X ~ . -
V(&) 720 (logn)3 P " 2l0gn )

uniformly in ¢t. From this we can derive approximations to the scale of tree“twmps” and the valley
seen in Figurd.

Corollary 4. The largest value oV (X, ) is asymptotically achieved &t= LZ logn + +/2log nJ , and

21 — 272 n?
g (Xonr) 48me  (logn)?

on the other hand, 9
min V(Xnr) > (C+o0(1)) -

T 26
lk—21log n|=0(v/Iogn) (logn)3’ (26)

where
478 + 3787% — 9090 72 — 38205 — 8640((3)? + 19440((3) — 38205
7207 (21 — 272) '
The smallest value o¥ (X, ), for & = 2logn + O(y/logn), is asymptotically achieved only for the
subsequence af for which{2logn} — 1 — ¢,, where

3(8¢(3) = 9)
21 — 272

C:

to=—2(1—7)+ ~ 0.62126.. ..
satisfieg| (to) = 0.
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Thusthe variance can vary from?/(logn)? ton?/(logn)? whenk = 2logn + O(+/logn), and these
are precisely the orders of the peak and the valley, respelgtias shown in Figuré.

Our analysis here says that the two peaks are asymptotafaiye same order, although Figutrenay
lead one to guess that the left peak is higher. We will seetltigts indeed true by further examining the
sign of the next order term; see Sectmfor more details.

A “false valley”.
Corollary 5. If o = 1+ t/logn, wheret = o((logn)??), then

4leo(t)  n2le? 2
\V4 Xn ~ . —t%/logn
(Xn) 720 (logn)3 ‘ ’

uniformly in¢, wherew (t) is defined by

@ (t) = 60(12 — 7*)t* 4+ 120 (7*y — 12y — 6¢(3) + 12) ¢
— 7' =60 (7" +2) 7 + 720 (v’ — 27+ C(3)y + 3)..
One sees that although the order of the variance can reaabf thaX? )/ (log n)* (Whenk = logn +

O(1)) as in the casé = 2logn + O(1), there is no new “valley” generated whén= logn + O(y/logn)
since the logarithmically smaller terms are “smoothed twtan exponentially large factdf.

4 Phase transitions: Proof of Theoren®?

For more methodological interest and for shedding more lbghhow the different ranges arise, we give
in this section two proofs of Theoref The first relies essentially on the exact express®yvihich has
some elementary flavor, although the main estimate neetled o& saddlepoint method. The second uses
(8) and is analytic in nature; it can be easily extended to deasymptotic expansions.

4.1 A direct approach

We give in this section the sketch of an approach to provingofém?2 using Q). The basic idea is first to
find a good uniform estimate for the sum

' s(n—1,m) (m—2j—1 : _
k+j—1<m<n

then we evaluate the sum i
B(Xnk(Xnp —1) =28 > < / >2jsn,k,j, (27)
0<j<k J

by different means according to the rangenof
In this subsection, we always write= k/logn and\ = j/logn.

Lemma 2. Define
f(z) = fla, A 2) == 2 — 2\ log z — (v — \) log(z — 1),

12



and

A+1 A+ 1)
20 = zo(a, A) := % + \/(%) — 2.

If1+e<z <K,then
nf(ZO)_2

2ol (20 — 1)/27 f"(20) log n

Snkj ™~

uniformly ink and .
Proof. We start from the integral representation (SEB)X

1 (n+272)
L W 2=z 225+ (7 — 1)k o

1 nz—2
— 5 , (1+0(mnNH) d
2mi §£ZI=ZO (2 = 1)z2H (2 — 1)+ (1+0(n™) dz,

by singularity analysis. Observe thaf is the saddlepoint at whicli’(z,) = 0, and that the second
derivative of f

no oy 2A a— A
e =2+

remains strictly positive in the range of interest. The mesglresult follows from applying the saddlepoint

method to the integral
1 clognf(2)
L e
270 J =z 2z —1)

Middle range. Consider firstCase(lll ): o € [2 — /2,2 + v/2]. In this case terms with larggs are
dominant. Thus, we set:= k£ — j > 1. By applying Lemm& with A\ = o — r/log n,

2r(a—1) 5
20— L o(
0= (204—1)log;n+ (logn)™) .
and 2log(2 log(2 1
fla, X;20) =2+ 71 og(20) — log(2a — 1) + O ((logn)™?),
logn
we get
Snkj ~ ( ) ;
200 —1) 2T(2 — 1)y/27logn/(2a)
also

/()55

j Vkr

These estimates lead to

16* 402 " nf(eas20)-2

Vkr ; (8(2a - 1)) 20l (20 — 1)/2m logn/(2a)
a? Ak ek (log n)2*

F2a — D(da— a2 —2)  2wkn2k?

a?(2a — 1) (21ogn)*\ >
- I'(2a)(4a — a2 —2) ( n k! ) '

E( Xk (Xngp — 1)) ~

13



Intermediate ranges. ForCase(IV): a € [2 + V2,3 + 2v/2], no terms are asymptotically negligible;
we thus sum all terms up and obtain

ey

\/_7”12 logn I;k vz (20 — 1)/ f"(z0)

E(Xn,k(Xn,k - 1))

whereF' (X)) := Alog 8+ f(a, A; z0(cr, \)). Sincef’(a, A, zp(a, X)) = 0, we getF’(\) = log8 — 2log z +
log(z — 1); and, consequently;”(\y) = 0 for z(a, Ag) = 2(2 + v/2), which implies that\, = v/2(3 +
2v/2 — a). Itfollows thatF'(\g) = 4 + 2v/2 — alog(3 + 2v/2), F"(N\) = —v2/(5 +4v2 + a), and

(e, A3 2(2 +V2)) = (17f 24)(5 4+ 4v2 + a);

we obtain, by standard application of the saddlepoint negtho

2k 2mlogn
E(X,x(Xpi — 1)) ~ nt o)
( ,k( k )) \/iZOF(ZO . 1)71’712 logn \/_)\OF”()\O)fN(ZO)

an2+2ﬂ(3 + 2\/5)%
VErTogn(2 — VIT(3+2v2)y/V2(3 + 2v2 — )

This proves 7). The proof forCase(ll ) is similar.

Extremal ranges. CasgV): a € [3 + 2v/2, K]. In this case, the terms with smallare dominant. For
every finitej > 0, we have {; = o + 1)

1 n*2 z—1\’
Sy~ — d
ksj omi ﬁzl—m F(Z _ 1)Z2k+1 ( 22 ) o

(2logn)*ka 2j 20\’
E(Xonx(Xnp = 1)) ~ nk!(a+1)'(a) ]ZZ; <j ) <(Oé + 1)2>
_a(2logn)* 8av e
~ {a+ Dl(a)nk! (1 Tt 1>2)
a(2logn)*

I'(a)va2 — 6a + 1nk!

na—l—a log v

(a+ DI («)y/2mlogn/«a
’ )
(a+1)l(e)

a(logn)*
a+ 1)«

ot 1>2)
(afn ) nk!”

Consequently,

Case(l) is similar.

14



4.2 An analytic approach

This approach relies o8 and the convergence or divergence of the integral

1—-1

1 on (aymles ) a. (28)
fra-omn( )

plays a crucial®le in determining the different ranges.
We first give the main idea of this approach using mostly Istigrieasoning; the technical justification
and detailed estimates of the error terms will be providéstla

A sketch of proof. We need the asymptotics of the modified Bessel function{8d& Abramowitz and
Stegun, 1965)

eZ

2Tz

the O-term being uniform folfz| — oo in the region—=/2 < arg(z) < 7/2.

Iy(z) = (1 + O(]z]’l)) , (29)

Small or large «.  First if the integral 28) is convergent, then (se&Q))

1 1

Fy(z,w) ~ 2w(l — z)_Qw/ (1—t)*I, (4\/Elog : t) dt
; _
B 2w

C VAuw? — 12w+ 1

(1—2)7 (30)

so we expect that (by singularity analysis and then by saddie method)

E(Xpp(Xnp — 1)) = [w*2"]Fa(2,w) (31)
] 2wn?*~t
v Vaw? — 12w + 1T (2w)
N a ‘ (2logn)k’ (32)

Va2 —6a+1T(a) nk!

wherea > 0 has to satisfyy? — 6a + 1 > 0. This gives rise to the first two rangesc [0, 3 — 2v/2) and
a € (3 +2v2, K], and the estimated 4) and (L8).

Middle range. On the other hand, if the integré&) diverges, then by29)

i 1
Fo(z,w) ~ 2w(l — 2)2“’/ (1—1)*1I, (4\/Elog . t) dt
o _

N 2w(l — z)72w [# (log
0

/8T /w

- V2myw(4y/w — 2w — 1) <log -z

-1/2
1 — )2 4w g
) -0

—1/2
) (1 — )~ 4Vott, (33)

15



Thus we expect that (again by singularity analysis and tlyesalddlepoint method)

E(Xni( X — 1)) ~ [wh] wnVe2(logn)~1/2
nk(Xnk W(Zl\/_ — 2w — DI (4y/w — 1)
~ CK (2 lOgn)
(4CY —a? — 2)F(2a — 1) 712(/{}')2 )

which yields the second pairs of transitional points since

do—a?—2>0 iff ae(2—V2,24+V2).
Intermediate ranges. Observe that the error term iB@) is of the form (by 29))

! 1
(1— z)-mw)/ (1—t)*I, (4\/mog — t) dt

¢ (vilf )24wf—+11| <10g : >/>

(see also33)) whose contribution td&(.X,, (X, — 1)) is roughly of the order

V-2 (2log n)?*
1 —-1/2 _ A Sorlit =
[w ]4\F Sw—108") O( n2k2 )

essentially the same order @ X, x))>.

Thus we can use the estima0( whenk lies in the intervals ofCases(ll ) and (IV); but instead
of applying the saddlepoint method asG@ases(l) and(V), we use again singularity analysis since the
singularities atv = % + /2 in (30) is dominating.

ConsiderCase(ll ). Let 3 := 3/2 — v/2. We have, by 30),

2w n2w71

Vi — 2w+ 1 [(2w)
25712571 N n2(w7ﬁ)

> avaires) U Vi el

223 5 —kt1/2 o
vy (5 \/5) (k — 2B logn) 2,

which, in view of (L2), implies (L5).
Case(IV) is similar.

E(Xno(Xng — 1)) ~ [w']

4.3 Technical justification and error estimates

We start from deriving a different integral representafimnt;, suitable for all ranges.

Lemma 3.
2 1 1— 2)"2w _ (] — —4\/wv+1
Fy(z,w) = 22 / (-2 (1=2) do. (34)
T Jo1 V1I—=022w + 1 — 4y/wv)

16



Note that this representation is well-defined for @ll(including at the zeros of the factors in the
denominator).
Proof. By the integral representation fég(z) (see p. 376 of Abramowitz and Stegun, 1964)

1 ™
]O(Z) — _/ BZCOStdt,
0

™

and by @), we have

™

2 z i
Fy(z,w) = —w(1—z)ZW/O (1—t)2“’/0 (1 )~ Vmeosy gy gy

t)>e= Ve dt do,

2w 1 2w/
—Z
\/1—112

which yields 84). 1
Note that whenv ¢ [3/2 — v/2,3/2 + /2] we can split the integraB@) and obtain

2w dv
Bz w) = —-(1 -2 /_1 VI— 022w + 1 — 4y/wv)
2w 1 (1 — 2)~tVmot! o
T Jo1 V1 —v?(dywo — 2w — 1)
2w(l — z)~2v 2w (! (1 — z)~4wvtl

VIR w1l 7 ) VI (A — 2w — 1)

Roughly, wherk lies in the middle range, the main contribution comes fromghcond integral, which
becomes asymptotically negligible fbroutside that range.

Proposition 1. Uniformly fora < K,

" 2] By 42w / ! N e, (35)
w z Z, w — v
2 VI— 022w+ 1 — 4ywv) \I'2w) T(4y/wv —1) b
where ( v ( Jou
2logn 2logn
T1:O( 2k \/_1 Wklogn)

Proof. By singularity analysis (see Flajolet and Odlyzko, 1990) haee

[2"](1—2)™ = ?Z) (1 + “’(“’2—;1) +0 (n_2)> 7

uniformly for |w| < K. Note that if4\/wv ~ 2w + 1, then

(1 - Z)—Qw o (1 . Z)—4\/Ev+1

n _ 2%(111)—11
Sl T O og7).
Thus
211) 1 n2w—1 n4\/ﬁv—2
"E _ dv + T,

17



where
T, =0 (nm(w)_2 logn + n* V@) =3 o0 n> :

Now by Cauchy’s integral formula
[w*] Ty = O (Tl_kn%_Q logn 4 r5 *n*V" 3 log n)
-0 (nafalog(a/2)72 logn + n2(o¢7a10g(o</2)71)72 lOg Tl) 7
by takingr; = /2 andr, = («/2)2. Thus @5) follows. 1

Caseql)and (V). ConsiderfirsCase(l). With the uniform estimate36) at hand, we obtain the leading
term in (L4) by expanding the factor

2w

) = e T 1T (2w)’

atw = «/2 and then use saddlepoint method; see Hwang (1995) for sidelails. It remains to show,
again by 85), that the integral

92 1 1 n4\/ﬁv72
T3 := — — wk/ dv dw,
T 270 Jip)r 1 V1= 022w 4+ 1 — 4y/wo)T (dy/wv — 1)
wherer := («a/2)?, satisfies
(2logn)?*

uniformly for a € [0, 3 — 2/2]. Indeed, we prove that this estimate holds uniformly|for- (2 4 1/2)| >

K+/logn.

By the elementary inequality — cost > 2t2 /72 for |t| < 7, we have

ARG dvrvcos(t/2) < 2av—avt?/n? _ 2kv—kvt?/n? (Jt] <),

so that the major contribution t6; comes from the ranges
l—-e<v<1 and {w=re": |t|<e},
the integrals over the remaining ranges being bounded dbove

9] (n2(a—a log(a/2)—1)—a) .

Thus when2r + 1 —4y/r| = |a® —4a +2|/2 > ¢

9 —2k,,—2 (logn)—3/5
T, =0 (O;/_)4 n 5 62kkt2/ﬂ-2/ w22k 40, At
|ox a+ 2| Ji<e 0

0 ((a/2>—%e%n—2) |

la? — da + 2|k

from which we obtain §6). By examining further the second order terms (s2® below), we can take

e = K/+/log n. This proves 14).
The estimate8) is similar.

18



Cases(ll ) and (IV). Consider firstCase(ll ). Since there is a singularity at = 3 := 3/2 — /2, we
apply again singularity analysis to the integral

1
T, = — H(w)w "2~ dw
21 |w|=r
1 h(w) —k, 2w—1
= — ———w "n*" " dw, (37)
270 Jjp)=r VO —w

where0 < r < 4 and

2 6 —w
Mw) = ram \/4w2 12wt 1

the principal branch being taken so thatv) > 0 for 0 < w < . The integration circle is then deformed
into the one shown in Figur®& where the smaller circle (left) is described ay— 5| = 1/k.

C

Oé/2 w v

. 7
O \12/ %,

Figure 3:The Hankel type contours used for proving the estimatesise(l1).
The contribution tdl; from the outer circle is easily seen to be of order
O na—alog(a/l)—l .
(28 — a)logn
For the integral along the contotits, we make the change of variables— (1 — v/k), so thatHg is
transformed intd+, (also shown in Figur&). Then

T4 _ ]{J_I/Qﬁ_ﬁ+1/2n2ﬁ_l . QL/ h (ﬁ (1 o ’U/k')) v—1/2€v(1—2ﬁ/a) (1 + O<|U|2k3_1)) dw
e Ho
a—alog(a/1)—1
+0 [ —
(260 — ) logn
h(3) 12 e _ 1
_ E1/25-8+1/2,26-1 (1 4 7
V(1 —=28/a) b (e —20)2k

from which (15) follows since3'/? = 1—-27/2 andh(B) = 27%/*/I'(2/3); see Flajolet and Odlyzko (1990)
for similar details. The error term yields exactly the lefndarya > (3 — 2v/2) logn + K+/log n; the
right boundary(2 — v/2) logn — K+/Iog n comes from 85).

For the estimatel(7), the proof is similar. Note that sindé(w) has a singularity ab = /3, we have to
start from @5) and then proceed similarly.
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Middle range. We use again35). The same observation that the major contribution conma fr ~ 1
andw near the positive real line is still needed since there magbevable singularity for some The
integrals are estimated similarly as above, and we needamnipre precise approximation Q. Since
an asymptotic expansion f@g is derived in the next section, we drop the details for degylL6) here to
avoid repetition.

5 An asymptotic expansion forV(X, ;) in the middle range
We first prove in this section the following expansion }Eir:Xik).

Lemma4. If a € [2 — /2,2 + /2], then

E<X72L7k) ~ n2(a—alog(a/2)—1) Z 7 (OZ) - (38)

for some coefficients; («).

Proof. Since
E(X7 ) = E(Xpk(Xnk — 1)) + O(E(Xnr)),

and by the estimatel ) and the analysis in the last section, we need to evaluaietigral

1 €
Ty = 57 ol w_k_1n4ﬁ_2/ G(w,u)u_1/2n_4ﬁ“ du dw,
|arg(w)] < 0
where 5
G(w,u) = v

V2 — u(dyw(l —u) — 2w — DI (4y/w(l —u) — 1)

By applying Laplace’s method (or Watson’s lemma; see Won§91%or the inner integral, we obtain

LGy +1/2) L —k—j/2—5/4, d\/w—2
Ts Z (4logmn)it1/2 "o ||w|:((a)/‘2<)2 gj(w)w n dw,
arg(w)|<e

where ¢(w) := 4y/w — 2w — 1)
gi(w) := [w]G(w, u)

_ V2w (4y/w)i—m 20\ (e e DAV@ 1)
" Ve 1) 2 s Zm( ) e

Then a straightforward application of saddlepoint mettezdis to 88). Note that

nj(a) = O (]4@ —ao? - 2\*2j*1) , (39)

whena — 2 £ /2 (from inside the interval2 — /2,2 + v/2)), implying that the asymptotic expansion
(38) is meaningful in the regiof2 — v/2,2 +v2]. 1

Note that the asymptotic expansid@s) can also be derived in a more straightforward way by stgrtin
from (8) and applying the expansion for the modified Bessel funcsee{9.7, Abramowitz and Stegun,
1965).
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Proof of Theorem4. From the asymptotic expansiohd), we obtain

(E(Xn,k:))z ~n 2(a—alog(a/2)— Z (5]( ) ’ (40)

= log n)J

for some coefficients;(«). Then combining40) and @8) leads to 4) with v;(a) = n;(a) — &;(a). 1

Calculations of the coefficients. The coefficients in the expansior&8f and @0) can be easily computed
with the assistance of any symbolic softwares, but are veallenging by hand. For example, when
a =2+ t/logn, we can rewrite Z4) as

pi(t)

V(X)) ~ Y 2 41

(Xok) ~ 2 Gog it (41)
>1

wherep;(t) is a polynomial of degreg + 1 given byp;(t) := > ;< ,<; iy UJ(QZ_E(Q)#/E!. Since the coeffi-

cients of(logn)~* and(log n)~2 are both zero in the expansion, we need explicit coefficiehts(«) for

j =1,2,3in order to get the form fop, (¢).

In particular, writingg(z) := —2? + 4z — 2 anda := 2« — 1, we have
(@)= — >
YT arg(a)r (@)
_ _—1 a2 2 11 = 2 2 1 /1-\2
na(ar) = 2rg(a)’T(a) (—60%q(a)*y' (@) + 60’ q(@) (@)

—24a(a — 1)g(@)y(@) + o' + 160° — 520* + 320+ 4)

36atq(a)*h(@)* + 48a’q(a)’qi () ()’
—12a%¢(a)? [18a%q(a)*' (@) — a(o)] V(@ )?
+48aq(a) [3a’q(a)’" (@) — 3a*qi(a)q
—36a’q(a)*" (@) + 48c3q(a)3q ()Y (@)
—12a%¢(e)?g2(@)¥' (@) + 108a’q(a)'9'(
l44raq(a)T (@)

where is the logarithmic derivative of the Gamma function and

(o) =a® —10a +8

@(a) = a* +16a° + 32a% — 112a + 76
gs(a) = 7a° + 3a* — 68a® + 108a* — 52 — 4

)

n3(a) =

qu(a) = a® + 320" — 856a° — 1600a° + 89200 + 11264a° 4 464002 + 256¢ + 16.
And the first thre€; (a)’s are given by (se€l@))
__ 1 _ 60’Y(a) — 6a*p(a)? —

G0 = rrr YT T parrer
—18at)™ () + 2403 (3arp(a) — 2)9" ()
+72aM) (a)? — 12a(120%)(a)? — 1200 () + 1) ()

£4(a) +36at () — 483 (a)? + 122 (a)? + 1

3\ &) =

14470l (ar)?
The exact forms of; andn; are less important; the special property we need is that{igeree4)
uli) = v =@ =0 (i=1.2).
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0.015
0.01

0.005 -

o | 1’2 1a 16 18 2—2.2 2a 26 2.8\

—0.005
1

Figure 4:A plot of the two functions; () (smaller amplitude) and,(«), where the horizontal line is the
value ofa. There are additional zeros for the latter besidesnd 2, but they are minor.

Order of the two “humps”. By the expansionsi(l) and

2o — alog(a/2) ~Dlogn =), —— Szl)?(ltg npt

whena = 1 +t/log n, we have, when = o((logn)%/?),
n? 2 p2<t>
AV Xn ~ —t?/(2logn) t ra\"; . .
(Xn) 7207 (log n)36 pilt) + logn *

Sincep; (t) is a quadratic polynomial, the asymptotic maximum of thétdgand side is easily seen to be
reached at = ++/2logn + O(1), and

2

_ 2 _ 2
V(Xn,k> _ 671 n (21 2w logn + M\ /logn + O(l)) ,

(logn)? 247 27

fort = ++/2logn + O(1). This roughly explains why the left “hump” is higher than tfight “hump”.
Expansions fory = 1 + o(1) are similar.

The valley. Whenk = |2logn |, we have

pi({2logn})  n?
V(Xn) 7207 (logn)3
Sincep, (t) is concave upward, the minimum of({2logn}) is asymptotically achieved at the subse-
quence of: for which {2logn} — 1 — t,.
Note that the range ir26) whereV(X,, ) > (C+o(1))n?/(log n)® can be extended from(+/logn) to
tn, Wheret,, — oo is given byt2e~'n/2lem) — ' which (expressible in terms of Lambertg-function)

satisfies asymptotically,

loglog 1 O(1
tn, = \/QIOgnloglogn(1+ ogloglogn + O ))

log logn
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6 Transitional behaviors

We prove Theorer in this section. By analogy, we prove only the first two estigsg®0) and @1).

The first phase transition at3 — 2v/2. Recall thatD, (z) denotes the parabolic cylinder functions (see
(19) and Ch. 19, Abramowitz and Stegun, 1965). Defihe- 3/2 — /2. To describe the transitional
behavior g0) of E(Xﬁ’k) near the pointv = 3 — 21/2, it suffices to evaluate the integr] defined in 87)
and prove the following estimate.

Lemma5. If a« = 208 + y/26t/+/logn, then

_ h(ﬁ)\/B t2/4 —1/4 —k_a—1 |t| + |75|3
Trﬁe Dy jo(—t)E (f2) <1+0< NG )) (42)

uniformly fort = o((logn)'/S.

Estimates uniformly valid in a wider interval afcan be derived by standard tools for handling coales-
cence of algebraic singularities and saddlepoints; sestBlriand Handelsman (1975). We content here
with the above estimates using the following simpler mettiogroof.

Proof. Assume first thaty < 2(3. By the change of variables — «a(1 + iv/vk) /2, we deduce that

vk —v?/2 3
Ty = h(a/2)(a/2) F 1/ 2pe— 110 if et <1 L0 (Ivl + [ )) W
27 J—evie N AVE — i VE
+ 0 ((a/2) Fno179),

whereA := 24/a — 1 and 4 means that an indentation (upward) of the integration patheeded if
A = 0. For the integral on the right-hand side, we use the integmksentation (see p. 688, Abramowitz
and Stegun, 1964)

1 0o —v2/2 z2/4

€ €

E D_l/g(l')

and the estimate2®). The estimate4?2) then follows by the expansion

dv =

(r € R),

21 J_oo VT — v

AVk=—-t+0 (*(logn)~ /%) . 1

The second phase transition at = 2 — /2. From the proof of 88), we have

T — i w*kfln‘lﬁ*?M 1+0 1 dw
° T 2mi Jlwl=(a/2)? 4 /wlogn |k(w)[logn

|arg(w)|<e

n”’ 1 g(u) 2k, 4 1
— — “2kpiu (140 d
Jlogn  2mi /|u|=a/2 u— (=2t ( * (|4u—2u2 - 1|10gn>) "

|arg(u)|<e

where
(u) = V2u(u — (1 — 271/2))
= mdu =20 — )T (du— 1)’

We need to prove the following estimate, which implia$)(
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Lemma6. If o =2 — /2 + V1 — 2-1/2t/\/logn, then

2 1+ [t
Ty = g(a/2)e! /QCID(—t)(log n)_l/2n2_a_2a1°g(a/2) (1 + 0 ( +lo—|gll)) , (43)

uniformly fort = o((logn)/

Proof. The proof follows, mutatis mutandisthe same pattern as fo#44), starting with the change of
variablesv = «a(1 + iv/v/2k)/2. The main difference is that

1 [ e /2

dv = e 2®(—x) (x € R),

2 J_ o —x

where the integration path has to be indented suitably dashwhenz = 0. Note that

1o 2—2
g1 =2 /)_QV%F(?,—N?)'

7 Profiles of recursive trees

We briefly discuss the profiles of random recursive treesigigction.

One way of constructing a random recursive treeiafodes is as follows. One starts from a root
node holding the key; at stage (: = 2,...,n) a new node holding is attached uniformly at random to
one of the previous nodes. The process stops after neslénserted. By construction, the values of the
nodes along any path from the root to a node forms an incrgasiguence. For a survey of probabilistic
properties of recursive trees, see Smythe and Mahmoud (1995

Let X,, » denote the number afternal nodesat levelk in a random recursive tree efnodes. Then
(see van der Hofstad et al., 2002)

d *
Xk = Xunifn-1s-1 T X unifn_ e

where X, is an independent copy of,, , and unifi,» — 1] takes any of the values ifil,...,n — 1}
with equal probabilityl /(n — 1).
From this recursive decomposition, we deduce that

yz
PO(Zay) :1_‘_1—27

P —1
Pen(zy) =1+ zexp (/ %dt) (k> 0),
0

whereP;(z,y) := Y., E(y*+)z". Adopting the same set of symbols used for BSTs, we obtain

Fi(z,w) = 2(1 — 2)~ 7",

so that (nkt1)
s(n, kK +
R i

Similarly, for the second factorial moment,

Fy(z,w) = 2v/wz(1 — z)~ " /Oz(l — )7t (2@ log : it) dt,
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where
2m—+1

1 z
hiz) = 2 Z ml(m + 1)l4m

m>

denotes the modified Bessel function of first order. Note thiafuf| > 4

4
wy/1—4/w(l+/1—4/w)

The same set of tools used for BSTs also applies here; thet@nabytext is indeed much simpler
since it is known that (see van der Hofstad et al., 2002)

9 27\ s(n,k+j+1
s = 3 ()

0<j<k

2\/6/01(1 — )7t (2@ log %_t) dt =

compare 9).
The asymptotic behaviors &f( X7 ;) can be summarized as follows. Let= £/ log n.

If o € [0,2], then
(log n)*

(1= a/2)T (20 + A2’ (44)

E(Xik) ~

if « =2+1t/y/logn, then

1

B(Xop)* ~ 24\/7

()24 knt,

uniformly for t = o((logn)'/%);

if o« € [2,4], then

B(XZ,) ~ —— 4 "Fnt
’ 24/ (4logn — k)

if « =4+ 2t/\/logn, then

1 2
E X2 ~ t /2D_ t k_1/44_k 4’
( n,k) 24\/%6 1/2( ) n
uniformly for t = o((logn)'/%);
— if « € [4, K], then
4 1 k
B(X2) ~ 1+ logn)”_
’ ay/T—4/a(l+ /1 —4/a) ) T'(a+1)k!
From (@4) and the following estimate for the mean
(logn)*
E(ka) F(Oz ‘I’ 1)]6' (Oé € [07 K])7
we obtain, fora € [0, 2],
(logn)**
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where
1 1

(1—a/2T2a+1) T(a+1)%

The functionp(a) satisfiesp(1) = ¢'(1) = 0, and the same type of bimodal behavior occurs when
a = 1+ O(1/y/logn), with the variance varying from?/(logn)?3 to n?/(log n)? there. Finer results as
those for BSTs can be derived; we omit all details here. Istergly, V(X,, ;) starts to exhibit the bimodal
behavior forn = 33, much smaller than that for BSTs.

pla) =

8 Conclusions

In this paper, we added several new aspects to the usualmtastof the profiles of BSTs as some fig-like
shaped>. In addition to the new phenomena of phase transitions anddlity exhibited by the variance
of the profiles, several parameters on trees have close ciommeto profiles, especially the mean values.
For example, one of the most studied parameters is the hightlefined to be the length of the longest
path from the root. The second momentsXof, for BSTs were originally studied to derive better bounds
for some estimates required for the hight; see Pittel (L984)eed, already the mean &f, ;. can be used
to derive useful estimate on the average height as follofv®eyvroye (1987). By the inequality

P(H, > k) <Y E(X.,)

ji>k

and (L), we obtain

> P(H, > j) <Z .]—k;+1 s(n, )

j=k i>k
ok _
_ 2 wfk(w—i-l) (w+n l)dw
270 Jii=a n!(1—2/w)?

=0 (k—l/Qna—alog(a/Q)—l) ]

Choosek, = o, logn — o'loglogn + O(1), wherea, > 1 solves the equation*~Y/? = 2/2 and
o =ay /(204 —2),s0that ., P(H, > j) = O(1). And it follows that

E(H,) <Y P(H, >j)+ Y P(H, > j)

J<ko Jj=ko

< ko + O(1).

This upper bound is, up to the constant of the second-orda; the right order; see Drmota (2003) and
the references there for further information. Unfortuhatthe second moment oX, ;. is not sufficient

to prove tight lower bound foE(H,,); see Pittel (1984). See also Chern and Hwang (2001) for other
applications of the mean profile.
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