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Abstract

The levels of trees are nodes with the same distance to the root. We deyivetatic
approximations to the correlation coefficients of two level sizes in randeursive
trees and binary search trees, which undergo sharp sign-chahgeasowe level is fixed
and the other one is varying. We also propose a new means for desimingymptotic
estimate for the expected width, which is the number of nodes at the mostatt level.
Crucial to our methods of proof is the uniformity achieved by the singularislysis.
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1. Introduction

This paper is a sequel to Drmota and Hwang (2004) and FucHs @084) teferred to
as FHN throughout this paper due to frequent refergricewhich we addressed the limit
distributions of profiles (number of nodes at the levels)andom recursive trees and binary
search trees. In addition to the many intriguing phenomenailed there, we show in this
paper that the correlation coefficients of two level sizebath classes of trees exhibit sharp

sign-changes. The method of proof for deriving the unifostineates for covariances will be
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useful in obtaining asymptotics of the expected widths farol only almost-sure results but

no moment estimates were previously known.

Random recursive trees. Recursive trees of nodes are non-plane, rooted, labelled trees
with labels{l,...,n} (at nodes) such that the labels along any path from the root o
strictly increasing sequence. By random recursive treegsgume that all recursive treesiof
nodes are equally likely. An alternative way of construgtrandom recursive tree efhodes

is as follows. We start from a single node with labbethen at the -th insertion step, the new
labeli chooses any of the previous- 1 nodes equally likely to be its parent (and link them
by an edge), and the same procedure continues until thedrgaies: nodes. This procedure
also implies that there a@ — 1)! such trees.

Recursive trees (following Meir and Moon, 1974) also appdan other fields under dif-
ferent names: “concave node-weighted trees” in Tapia andrMy1967), “growing trees”
in Na and Rappoport (1970), “pyramid scheme” in Gastwirtd7(@), “heap-ordered trees”
in Grossman and Larson (1989), “random circuits with fanie’oin Arya et al. (1999).
They have been introduced as simple growing models for akreal-life networks like social
systems (Na and Rapoport, 1970), sales-distribution m&sa@dloon, 1974), and the Internet;
see FHN for more references. Their simple tree representatilso found applications in

many linear tree algorithms; see Mitchell et al. (1979).

Profile of random recursive trees. We consider the number of nodes, denotedrhy, at
distancek from the root in a random recursive tree:ohodes. Many properties df, 5 are
known. We briefly summarize the interesting phenomena éekilby Y, , as follows; see

Drmota and Hwang (2004) and FHN for more information.

— For large, fixedn, the mean ofl}, ;. is asymptotically unimodal itk, but the variance is

asymptoticallybimodal

— The normalized random variablés . /E(Y, x) converges in distributioto some limit law

Y(x) whenk > 1 ande := lim,_.o k/logn € [0, e).

— Convergence of all momernt$ Y, x /E(Y, ) to Y («) holds only fore € [0, 1] but not fore

outside the unit interval.
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— If « = 0 (andk > 1), then the sequence of the centered and normalized randaatvies
Yur —E(Ynx))/+/ V(Y i) converges in distribution to the standard normal law.

— If « = 1and|k —logn| — oo, then(Y, x — E(Yyk))/+/V(Yux) converges in distribution

(and with all moments) td”’(1), the same limit law as the total path lengtfy, kY, .

—If k =logn + O(1), then(Y,x — E(Ynx))/+/ V(Y ) does not converge to a fixed limit

law.

Covariance ofY, x andY, 5. The results derived in our previous papers dealt with ststahia
behaviors of ainglelevel size. We examine in this paper the asymptotics of tmeetagion
coefficient oftwo level sizes, which turns out to undergo a sharp sign-change=al (when

the other level is fixed and not near lag

To state our results, we first introduce some notation. Define

1 1
V) = — , 1.1
S (w,0) Fru+v)u+v—uv)y Tw+DHI'(w+1) (1.1)
whereT is the Gamma function and
p(s,t) == cast +c1(s +t) + co, (1.2)
with the coefficients given by
" 712
2= fp,(1,1) =22,
cri=—5 (L) =l -y)=LB3)+ 1, (1.3)
4 4
co=1rP () = (1+2y =) +2e1(1—p) — Z5.
Also define
¢y = fyla, 1) = - et
—a)2 12 —(1—1)2—u’ _ 2
4= _% 1)//2(“9 1) = _ Weth+1—o)*+(a ;)F(a(il)y) Y (e+D)—1+m /6.

Letk,h > 1, ayx := k/logn, B, := h/logn anda andpg be their limit ratio, respectively,

if exists (wherw tends to infinity).
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Theorem 1.1. If «, B € [0, 2), then the correlation coefficient &f, , andY,, ; satisfies

2k —1)2h —1 .
0, ifa=0,8%#0;
f (e, B) - :
P s Yun) ~ T, ) fB.B) o fp # 1 (1.4)
Calmh + 4 ifo# 1.8 = I;
VI @) pltn s tnp) ’ ’
p(sn,kaln,h) |f o = ﬁ — 1
VP Gnie: Sng) P s tui) ’

wheres, x := k —logn andt, 5, := h —logn.

By symmetry, all cases whem, 8 € [0,2) are covered. In particular, the result here also
implies the estimates we derived f8(Y}, ) in previous papers. A comparison of the different

approaches used so far f8(Y,, x) is given in the last section.

Corollaries and intuitive interpretations.

Corollary 1.1. The correlation coefficient of, ; and Y, ; is asymptotic to zero ik =
o(logn) andk = o(h), whered < 8 < 2.

Thus the sizes at the first few levels £ o(logn)) areasymptotically independenf those at

levels that are> k.

Corollary 1.2. The correlation coefficient df, x andY,,  is asymptotic td if ()« = B # 1
(0 <o, <2);0r (ii) boths, k., t, , — oo (not necessarily at the same rate) whee= g =

1.
The first case is intuitively clear, but the second case fessparent.

Corollary 1.3. The correlation coefficient(Y, «. Y ») exhibits asymptotically a sharp sign-

change aif = 1 whena € (0, 2) is fixed andg is varying from0 to 2.

A few plots of the asymptotic correlation coefficient areegivn Figures 1, 2, 3, highlight-
ing in particular the discontinuous sign-change .at

Intuitively, the sizes of neighboring levels are expectedhéve positive correlation. The
sharp sign-change atis roughly because of the property trainost all nodes in a random
tree lie at the level& = logn + O(,/logn), each having about/\/logn nodes (by the
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FIGURE 1: Asymptotic correlation coefficient of the number of nodes at two leveksdiBcontinuity of

sign at1 is visible from both figures. Here = y/2 ~ 0.28 (left) anda = /7 ~ 1.77, andB € (0, 2).

estimate

(logn)*
k!l"(ocn,k + 1)
and the bimodal behavior of the variance near these levedd)smota and Hwang, 2004). This

E(Yni) ~ (1 =k = O(logn)),

implies that if one levek with, sayk/logn < 1 has more nodes, thén) levels near log are
likely to have more nodes, andi) levels with//logn > 1 have fewer nodes available; this
also roughly explains why,, x andY, ; are negatively correlated (see Figure 1).

Our method of proof starts from the relation
S Bttt = (T L (TP s
k,h
see below for a self-contained proof or van der Hofstad e28102). Then (1.4) is derived
by a uniform estimate for the function on the right-hand sidéhe u, v plane (by applying
the singularity analysis of Flajolet and Odlyzko, 1990) &meh by extending the saddle point
method used in Hwang (1995).

Width.  Our analytic approach is also useful in deriving a unifortineste forE (Y, x — Yu.1)?),
which turns out to be the crucial step for proving an asyniptgtproximation to the expected

width, defined to bV, := max, Y, «.
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FIGURE 2: 3-dimensional renderings of the limiting correlation coefficientsw, 8)/+/ f (o, @) f (B, B)
(left) and p(s,1)/+/ p(s, s) p(t, 1) (right).
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FIGURE 3: Asymptotic correlation coefficient whgn= 1: « = 0.1 and¢ varies (left) and = y/2 and

«a varies (right).

Theorem 1.2. The widthW,, satisfies

Wa

n/+/2mwlogn

-1, (1.6)
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FIGURE 4: The binary search tree constructed from the sequ€ncg, 1,6, 5,2}. Internal nodes are

marked by circles and external nodes by squares.

almost surely, and

E(W,) = (1 +0 ((|ogn)—1/4 log |ogn)) . (1.7)

n
V2rlogn
The almost sure convergence is proved by modifying the mgaté arguments used in Chau-
vin et al. (2001) for random binary search trees. Such argtsnéased on considering the
random polynomial_, Yn,kzk, also provide a natural interpretation of the result (se®&JFH
that the sequence of random variall®s x —E(Y,,.x))/ +/V(Ya.k) converges to the same limit
law as the total path length, := ), kX, x whenk ~ logn and|k — logn| — oc; see

Section 3 for more details.

Binary search trees. Binary search trees (abbreviated as BSTs) are rooted)ddid@hary
trees with thesearch property all labels in the left (right) subtree of any nogeare smaller
(larger) than the label of. Given a sequence of numbers, one can construct the BST by
placing the first element at the root, and then by directingcessively all smaller (larger)
numbers to the left (right) branch. Both subtrees, if nongyare recursively constructed by
the same procedure and are themselves BSTs; see Figure 4.

BSTs were first introduced in the early 1960’s by Windley (@p®ooth and Colin (1960),
Hibbard (1962), and are one of the simplest prototypicah datuctures; see Knuth (1997),
Mahmoud (1992).
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Random binary search trees. Assume that alk! permutations of: elements are equally
likely. Given a random permutation, we call the BST congtddrom the permutatioa
random BSTWe distinguish between two types of nodésternal nodesare nodes holding
labels andexternal nodesre virtual nodes added so that all internal nodes are oegue
two; see Figure 4.

Denote byX,, x (1,.x) the number of external (internal) nodes at lévéh a random BST of
n internal nodes, the root being at level zero. Distributigraperties of both types of profile
X,k andl, ; are similar to those of,, x; see FHN for details.

An interesting property here for the covariance of two lesizés is that while the limiting
correlation coefficients of, , and/, , exhibit a sharp sign-change at= 2, the limiting
correlation coefficients ok, , and.X, , exhibit two sharp sign-changesat= 1 anda = 2.

An intuitive interpretation will be given in Section 4.

Organization of the paper. We prove in the next section Theorem 1.1 on the asymptotic
estimates of the correlation coefficients of two level simesandom recursive trees. The
width and related quantities are addressed in Section 3iliRdésr random BSTs are given in
Section 4 without proof. We then conclude the paper with aflmdmparative discussion of

the methods of proof used to derive asymptotic estimatethéovariances.

2. Correlation of two level sizes

We prove Theorem 1.1 in this section. Note that fieconvergence ot x /i, x (See
FHN) can also be applied to prove (1.4) in the case wheh ¢ {0, 2}; we give here a direct

and uniform approach applicable to all cases.

Recurrence ofY,,  andE(Y, x). Allourresults are based on the recurrence relation satisfie

by Yn,k

2
Yok = Yunitorm[1,n—1]1,k—1 + n*_uniform[l,n_l],k (n>=2k=1), (2.1)

with the initial valuest;, o = 84,1, the Kronecker symbol, where the random varialiigorm[1, n—
1] takes each of the valugs, ..., n — 1} with equal probability, and’,*, is an independent

copy ofY, x; see FHN or van der Hofstad et al. (2002).
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Let i,k := E(X, ). From (2.1), it follows that the mean satisfies
n+u-—1
Mnk = Wk]( )
n—1

= % (1 +0 ((Iogn)‘1)> , (2.2)

where[u*]F(u) denotes the coefficient of” in the Taylor expansion of” and theO-term

holds uniformly forl < k& = O(logn); see Hwang (1995).

Proof of (1.5). We now prove (1.5). By (2.1), we have the recurrence

1
BV Yup) = — 3 (B k1Y) + EQFY7))

1<j<n
1
n—1

Z (1) k=1 tn—j b+ 1 ke onj 1) -

1<j<n

Let Fy(u,v) := Y 4 B(Xpk Xy p)u*v". ThenF; (u,v) = 1 and

1 +uv u+v jru—1\(n—j+v—-1
Fy(u,v) = Fj(u, , (2.3
pn) =S Fw + S S ( o )( S ) (2.3)

1<j<n 1<j<n

forn > 2. The last sum is equal to

u-+v

[Zn]22(1 _ Z)—u—v—Z —
n—1

u+v(n+u+v—1)
n—1 n—2

The recurrence (2.3) is then either solved by considerifig,; — (n — 1) F,, and then iterating
the resulting first-order difference equation or solved bysidering the differential equation
satisfied by, F,+1z". This proves (1.5). |

An asymptotic expansion for the covariance. We now derive an asymptotic expansion for
COV(Yﬁkahﬁ)
First, by singularity analysis (see Flajolet and Odlyzk&9Q), we have

n(” + e 1) = ")(1 — 2y = % (1+ 0 (win™)).

the O-term holding uniformly for finite complex. Thus, by (1.5) and (2.2),

(logn)*
A

CoV(Yp k. Yup) = Cion(n) (1 +0 (n_1)> +o0 (sk,,, (2.4)
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uniformly for1 < k,h < Klogn, where
() = [ "] f 0+,

with f defined in (1.1).
If « + B # 0, we apply the saddle point method used in Hwang (1995) bydigsanding

f as follows

S@,v) =" for—an) ©—Bun)

£,r=0
where f; , := f;f:j’)(a,,,k, Bn,r)/(Llr!); and then integrating term by term gives the formal
expansion
Cran() ~ > frrBe(nk)E (n.h). (2.5)
£,r=0
where

Bo(n, k) := [u*)(u — ap ) n"

. .
_ (logn) ) (?)(_an’k)e—jw (£ >0).

K (logn)’

The first few values oE, are as follows.

~ = = k

Bonk) =1, Ei(nk)=0. Ba(nk)=—gorss
2%k 3k(k —2)

Bs(nh) = o——=. Ba(n.k) = ———.

3(” ) (Iogn)3 4(]1 ) (|Ogl’1)4

Since E, (n, k) equals(logn)™" times a polynomial ink of degree|r/2], the double sum
on the right-hand side of (2.5) can be regrouped and givessampatotic expansion when
k = O(logn). The error analysis is similar to those in Hwang (1995, 198Ay we obtain
that (2.5) holds uniformly fot < k,h < 2logn — w, \/W, wy being any sequence tending
to infinity. The error ternjukv"]Ck,;, (n)O(n~") appearing in (2.4) is handled similarly and is
asymptotically negligible.

By the explicit forms of theE ,’s, we obtain the expansion

[ k+h
Contn) = 90 {fo,o o Usattns + foabus)
1
+ g (34,0024 + f0.4B2.0) + fo2@n B + 205,00k + fo.3Bn))
) ((logn)—3)}, (2.6)

which is sufficient for our use.
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Special cases. Assume thad <o, < 2. If o, B & {0, 1}, then

Joo = f(@ni:Bup) = fla.B) #0,

and we obtain o
(logn)**
Cov(Yn ks Yun) ~ f(a,ﬂ)Wa
uniformly for 1 < k,h < 2logn — w,y/logn. This proves Theorem 1.4 when g ¢ {0, 1}.
It also implies that

2k
V(Xpp) ~ f(oz,oz)(loz—:? (1 <k <2logn — w,/logn).

If « = B =1, then, by (2.6) and the following approximations

c S kln,h In,h
~ 2—, 9
(logn)? logn

wherek = logn + s, %, h = logn + t, , and the coefficients;’s are defined in (1.3), we

Sn.k
logn

Jo,0

Jo2 ~—a1 . S0~ —a S2,2 ~ co,

obtain
p(sn,kv tn,h) (log n)k+h
(logn)? K\t

wherep is given in (1.2). This also implies th&(X,, 1) ~ p(sn.i» Snx)(l0gn)2k=2/k!2,

COV(Yn,k s Yn,h) ~

If « = 0andp < (0, 1), then, similarly as above, we have

COV(Yn,k ’ Yn,h)

(|ogn)k+h—1

Tk—ymr@ Ly Ve D=y, it B #1;

(logn)k+h=2 w? 7t mly o
(k =D (B + 1) ((1 _?)Sn,h+2—y—§(3)—7+7), ifg =1,

so thatp(Y, x, Ys,n) — 0in both cases.

The case whefi = 1 anda # 1 is treated similarly.
A change of variables — wv is useful for the remaining case when= g = 0; then a
similar analysis gives
(logn)k+h—1
k—D'h—DlWk+h—1)
Alternatively, we can use the exact expression (see van dfstatl et al., 2002)

2 +h—k ; n—1+w
E(Yn,kYn,h)z Z (j]—|—h—k)[wj+h+l]( L )’
0<j<k

COV(Yn,ka Yn,h) ~ (27)

obtained from expanding the right-hand side of (1.5), aed fbroceed similarly as above (the

two terms with indices = k — 1, k suffice for obtaining (2.7)). |
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Proof of Corollary 1.3. Whene, 8 € (0,2), @ # 1, we have, by (1.4),

im_J@P oy gy YDty
=1 VT @.a)[BP) Vaf@aT@+1)

thus the sign-change follows. The case whes 1 can also be checked similarly. |

The proof of other corollaries to Theorem 1.1 is straightfand and omitted.

3. Profile and width

Profiles of trees are closely related to many other shapenedess. We discuss briefly in
this section the connection between profile and width, isgufrom deriving an asymptotic
estimate for the expected width, namely from the proof of1Then we consider the level
polynomialM,(z) := >, Y,,,kzk, which will be seen to be a convenient tool for proving (1.6)
and for bridging the limit properties of the profile and the$¢he total path length (and other
weighted path lengths).

The expected width. Since the width is defined bW, = max, Y, x, we have, by the

estimate (2.2),

E(Wy) = MaxE(Y, ) = (1 +0 ((|ogn)—1/2)) .

27 logn

However, it is less clear how to obtain a tight upper bounde &hguments introduced in
Chauvin et al. (2001) can be used to prove the almost sureeagemnce result (1.6) (see below
for a sketch of proof), but do not lead to an effective upparabfor the expected width. We
introduce a new argument, reducing the upper bound to estigidne mean and the variance
of some differences between level sizes, and show that tver loound is indeed tight.

We start with a probabilistic lemma.

Lemma 3.1. Let Z(¢) be a stochastic process on the space of continuous funatiofis 1].

Assume that there exist constaints 0 andé > 1 such that
P(Z(0) = Z@)| = 8) = 0 (In —l’s7), (3.1)
uniformly for allz;, #, € [0, 1]. Then we have

IP’( max |Z(s) — Z(t)| = 5) -0 (89—154). (3.2)

|s—t|<e



Correlation and width in random trees 13

Proof. We modify the proof of Theorem 12.3 in Billingsley (1968)rstj the assumption (3.1)
is exactly (12.50) from Billingsley (1968) witli'(r) = ¢. It follows that fore > 0 (and1/¢ is
an integer; compare with (12.57) there)
3 p( sup  |Z(s) = Z(je)| = 5) = 0(89—154).
j<1/e jess=<(j+1e

Similarly, we obtain

3 ]P’( sup  |Z(s) = Z((j + De)| = 5) -0 (89—15—*).
j<1/e jess<(j+1e

Now, suppose that there existt € [0, 1] with |s —¢]| < e and|Z(s) — Z(¢)| = 8. Then there
existsj < 1/e withmax(|s — je|, |t — je|) <eand maX|Z(s) — Z(je)|,|Z(t) — Z(je)|) =

8/2. Consequently

jes<s=<(j+1)e

IP’( max |Z(s) — Z(1)| 28) < Z IP’( sup  |Z(s) — Z(je)] 28/2)

s—t|<e
! ! j<l/e

+ > IP’( sup | Z(s)— Z((j + De)| zwz)

i<ije  \esss(i+De

=0 (se_IS_)‘) .

This proves (3.2) for alt such thatl /¢ is an integer. However, the general case also follows

from the O-estimate. |
Lemma 3.2. Let A := h — k and ?n’k = Yyx — E(Ynx). Then, uniformly fork,h =
logn + o(logn),

E ((?n,k - ?,,,,,)2) -0 (nzAz(Iogn)_3) . (3.3)

Proof.We may apply the results in previous section for the covagantY), x andY,, , in some
ranges, but they do not lead to a uniform estimate in ternis f2|? in the whole range when
a=p=1.

We give here a self-contained proof of (3.3). Assume, withass of generality, that > k.
By (2.4), we have

E (Vo = Vu)?) = (5091 = 20" + ") £ om+ (14 007h)

+ 0 (Sk,hn(logn)_l/z) .



14 M. Drmota and H.-K. Hwang

It suffices to find upper bounds for the dominant term

J = ([ukvk] — [kt + [u”vh]) f(u, v+

_ (21)2 f/ e—ikx—iky (1 _ Ze—iAy + e—iA(x+y)> f (eix’eiy) nei"‘-i-eiy dx dy,
us D

whereD := [, 7]*>. Now

1 —2e7TAY 4 o7 IAHY) — (1 - e_iAy)z + eIy (e‘mx -1+ iAX)

— iy (e—"Ay 14 iAy) + e Ay — i Ax)

01+ 02— 03+ Qs

Let

Im= (271)2/ Ome K5Ik (1 D) ne" M ddy  (m=1.....4),

By the elementary inequalitigs’® — 1| < |w| for realw and1 — cosw > csw? for |w| < 7,

wherecs := 2/72, we have

=25 [ 21 e st o gy,

This, together with the uniform bound

| (e™,e”)| = O(xy).
for x, y € D, yield
5= 0 (w282 [[ fxlly s vy
—0 (n2A2(logn)—3) .
Similarly, by the inequalitye’™ — 1 —iw| < |w|?/2 for realw, we have
|21, 13| = O (n*A%(logn) ™).
For the last integral,, we use the expansion

f(e™,e”) = ci’xy + O (Ixyllx + y)),
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and obtain/y, = Js + Jg, Where
Js = % //;31«30} _x)xye—ikx—iky—myne"x+e"y dx dy,
Jo= 0 (w1al [[[ pvldel + pha-es " dvy)
-0 (n2|A|(|ogn)—3) .

For Js, we use the expansion
e =1+ 0(|Ally),

and the relation
//D(y — x)xpe Rt et g gy, =,
(by symmetry), so that
55 =0 (wa? [[ 1l + st avay
-0 (nZAZ(Iogn)’3) :
uniformly for k, h = logn + o(logn). This completes the proof of (3.3).1

Lemma 3.3. Uniformly fork, 7 = logn + o(logn),
Bk = Y| = 0 (nlalGogm™):; (34)
and uniformly fork = logn + O(1) andh = logn + o((logn)?/?),

(B k) = B ~ —omee (1 = 7?20 (35)

2m logn
Proof. Assume thatk — logn| < |h — logn|. By Cauchy’s integral formula

e hx (1 —e_iAx) F(%l:ix) (1 + O(n_l)) dx.

In the first case wheh, i = logn + o(logn), we apply the the inequality — e 4% < |Ax|

1 b1
B(Yha) ~ E(un) = 5- [

-7

and the same arguments as above, yielding
[E(¥4) = E(Xn)| = O (1AIn(ogm) ™).

uniformly in k, h. This proves (3.4).
The approximation (3.5) follows from a straightforward hpgtion of the usual saddle-

point method. |l
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An upper bound for the expected width. Letky = |[logn]. Take
A= L(Iogn)l/“*E"J and L := L(Iogn)”“J,
where&, € (0, 1/2) will be specified below. We use the following upper bound

W, < max Yn,k0+jA + max |Yn,k — Yn,h|
0=|jI=L lk—h|<A

+ max |[E(Y,x—Y, + Y,
k—h|ZA | ( nk n,h)| Z nk
|k—kq|>(logn)1/2+&n

— Wn(l) + Wn(Z) + Wn(3) + Wn(4)'
We show that, when taking expectation, the téfyq,, in W,,(l) is dominant and all other terms

are asymptotically of smaller order th&iY,, x,)-
We start fromw,(*). By (2.2),

EW®) = 0 ( Z (|02:1)k)

|k—kq|=(logn)1/2+én

=0 (ne_(log")zgn/2(|Ogn)_g") ;

see Hwang (1997). If we choose

__ logloglogn
" loglogn

then
E(Wn(4)) =0 (n(logn)_l) .
For W), we have, by (3.4) fok, h = logn + O(LA) and by (2.2) fork, i outside this
range,
J— — —1
Jmax [E(Y, =Ygl = 0 (nAdlogn)™)

=0 (n(logn)_3/4+$”> .

We then apply Lemmas 3.1 and 3.2 to prove that

@ _ n A 1/2
E(W, )—0< oo ((logn)g/z_gn) . (3.6)

We first defineY, (), —1 <t < 1, by

- (logn)' &
Ya(t) =Yy kg trttogmy /260 —— ——
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whent(logn)!/2tén is an integer, and by linear interpolation otherwise. By bear.2, we

have
E((Ya(s) = Ya (1)) = 0 (s =1?).

uniformly for s, ¢ € [—1, 1]. By Chebyshev inequality,
P(IY(s) = Ya0)] = w) = 0 (s = )*w™2).

Taken, := A(logn)~!/2=% |t follows, by Lemma 3.1, that

IP( max |Yu(s) — Yu(t)| = w) -0 (n,,w_2),

[s—t|<nn

and, consequently,

E( max |Y,,(s)—Y,,(t)|) =/:OIP’( max |Y,(s) — Y,(?)] zw) dw

[s—t|<nn [s—t|<nn
-0 (nl/z)
n .

This and the definition of;, () imply (3.6), which can be written as
E(W,®) = 0 (n(logn)™>/*+2+).
Thus it remains to find an upper bound Wi’,(l). By Cauchy-Schwarz inequality, we obtain

EW ) <E Y Ykorin- ]
ljlIsL

1/2
< Z (E(Ynz,k0+jA)) P(Ypiorjn = WD)/2
l/I=L
n

< —_
/2w logn

n
+0 Y PWakgrin = W'* .
viegn | 47<,

Here we used the estimates

1
Yoseg4i A =Wi ]

+0 (n(logn)—l)

(]E(Y,f,ko))”2 " o0 (n(logn)—l) ,

V2w logn

1/2
and (]E(Ynz’k)) = O(n/+/logn); see Drmota and Hwang (2004).
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SetD; := Yy ky — Yuko+ja fOr 1 < |j| < L. Then we have

P(Ypko+ja = WD) <P(D; <0)

<P(|D; —E(D))| = E(D)))
V(Dj)
~(EWD)*
by Chebyshev inequality.

By Lemma 3.2, we have
I12
V(D) = O (Wﬁ/\z).
This and (3.5) imply that

P(D; <0)'/2 =0 (% (1- e—f'zAz/(z'Og"))_l) :
n

for1 <|j| < L; and it follows that

A (F 252 -1
. 1/2 _ _,—x2A%/(2logn)
E P(D; <0)"*=0 (logn /1 b (1 e ) dx)

1<[j|=L

=0 (A‘l(logn)2§") .

Thus

n

V2mlogn

Collecting these estimates gives

EW,") < + 0 (n(logn)=/4+6).

EW, < — (1 + 0 ((Iogn)_l/4 log Iogn)) ,

~ /2mlogn
g

which proves (1.7).

A possible refinement of the error term in (1.7). If we had the estimates
E ((7,1,,( —?,,,,,)2'") -0 (nZ'"AZ'"(logn)—”") m=2,3,...),

for k., ~ logn, then the error termO(logn)~'/*loglogn) in the approximation to the
expected width would be improved ©((logn)~'/21¢) for somee > 0, which is, up to
(logn)?, expected to be the right-order. A proof of these momenitnegés would be to apply
induction and the approach used in FHN, but the details woeldery messy.
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Asymptotics of the level polynomials. The proof of the almost sure convergence (1.6)
follows from the same martingale arguments introduced iau®m et al. (2001). Thus we
only sketch a few steps of the proof here.

We observe first that the normalized random funcidy (z) := M, (z)/E(M,(z)) (where
My(z) =) Yn,kzk) is a martingale. Roughly, this reflects the constructiaat the new-

coming key has the same probability of being attached to &tlyeoexisting nodes. Also by

2.2)
sone = (1),

By the martingale convergence theorem (see Hall and Hey@®0)1 M, («) converges
almost surely to a limit\ («) for any finitea > 0. Then by the recursive definition (2.1) of

Y, .k, we deduce, similar to contraction method (see FHN), that

M(@) Z aUM (@) + (1 — U)* M(a)*,

where M (x)* Zz M () and M (), M(a)*, U are independent. This implies thaf («) Zz

Y (@) for everya > 0.

Interestingly, this limit relation also extends to completues ofw.

Lemma 3.4. For any compact set ifz € C : |z — 1| < 1}, the martingaleM,,(z) converges

almost surely, uniformly and il to its limit M (z) (which is also an analytic function).

The key step of the proof is to use an explicit expressiontfio¥f,, (z;) M, (z2)) (see (1.5)),
and to use Kolmogorov’s criterion, coupling with vector tivegale theorems. Finally, one
recoversy, ; almost surely (and uniformly fof — e < k/logn < 1 + ¢ for somee > 0) via
Cauchy’s integral formula

1
Yok = — M,(z)z7* 1 dz
2mi lz|=0p i

~ L M) E(My(2))z7*" dz
2mi lzl=apn i

1
~ M(eng) —— gﬁ E(My(2))="*" dz
’ 2mi ‘Z|:0‘n,k

~ M(a) E(Yy k).

We omit all technical details. Note that the radiys, := k/logn in the contour integration

is a natural choice because it is the saddle point of theriatet (M, (z))z—%~!. SinceM (z)



20 M. Drmota and H.-K. Hwang

is almost surely an analytic function aid(1) = 1, it follows that

W, = mkaxYn,k ~ mkaxE(Yn,k) ~

n

almost surely. This completes the proof of (1.6)I

Total path length.
Corollary 3.1. LetT, denote the total path length in a random recursive tree obdes. Then

M. (1) is a martingale and

M, (1) = = Y'(1),

T, —E(T,) 2
n
almost surely and irl,.

Proof.SinceT;, = Y ; kY, x, we haveM,(1) = (T, — E(T,))/n by the definition ofdM,,(z).

From Lemma 3.4, it follows that

M, (1) = L 272 M,(z) dz

271 Jiz—1)1=8<1
1
- — z2M(z)dz
271 Jiz—11=6<1
=M'(1)=Y'(1),

almost surely. 1
The result is already known; see Mahmoud (1991) and DobraFih(1999). However,

the approach here also gives
MDAy > MMy (m=>1),
almost surely and il.,. In particular, whemn = 2, we have

S~ )Tk i)~ SE(T) (T~ EAT)) = M (1)
k

Note that]\l,f’")(l) is also a martingale fan > 1.

4. Profile of random binary search trees

We give in this section the corresponding results for thdileoof random BSTs. The

proofs are similar to those for random recursive trees aadtars omitted. Recall that), x
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and/, ; denote the number of external nodes and internal nodesaisgy, at level in a
random BST of: elements.
4.1. External nodes

It is known since Lynch (1965) that

Satot = (") = o
k

n
see also Francon (1977) or Mahmoud (1992).

Lemma4.l. Forn >0

2uv n+2u+2v-—2
ZE(Xn,an,h)ukvh =
— 2u +2v—2uv —1 n

2u+2v—4uv—1(n+2uv—1
2u +2v—2uv —1 ’

n
This simplifies Lemma 4 in Chauvin et al. (2001).
From this lemma, we deduce, by singularity analysis (sefelelsand Odlyzko, 1990), that

(2log n)k)

(X Xn) = 2 kol (w072 (14 0 (n7") ) + 0 (5,(,,1 o

uniformly fora, B € [2 — v/2 +&,2 + /2 — ¢] for anye > 0, where

uv 1
Qu+2v—uv—2Tw+v—1) TwTl()

¢(u,v) := 4.1

Theorem 4.1. For a, B € (2 — +/2,2 + +/2), the correlation coefficienp(X, x, X,.1) is
asymptotic to

¢ (a. B)
Vo(a.a)p(B.B)
¢;,(O[, IB)tn, - %¢):)/2 (Cl, ﬁ)
Vo, ) pB, Bitnns tus)

p(ot, ,3; Sn,k» ln,h)
\/p(a? o] sn,k’ Sn,k)p(ﬁv /35 Z‘n,hv tn,h)

ifa, B &{1,2};

if o & {1,2},8 € {1,2};

if a, B €{l,2},
where

. . L o . Jyw
PG50 1= G0, st = 5 (781, O +L62 (. 05) + 7,2, 0.

Unlike the profile of recursive trees, the limiting corrétat coefficients ofp(X, k. Xu.1)

undergo two sharp sign-changed &nd2; see Figures 5 and 6.
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1ﬁ\ i /__\
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0.4
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—~0.6
—-0.84

FIGURE 5: Two sharp sign-changes fgn(«, 8)/ /¢ (o, ®)p (B, B): a = 0.7 (left) anda = 1.5 (right).

FIGURE 6: 3-dimensional renderings of the limiting correlation coefficientsg € (2 — +/2,2 + +/2) \
{1,2} (left) anda = 1, B = 2 (right).

Width. The same arguments as above lead to

E(MaxX, ) = (1 +0 ((Iogn)‘l/4 log Iogn)) .

n
V4w logn
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This result is new. The corresponding almost sure convesyess established in Chauvin et
al. (2001).

4.2. Internal nodes

For internal nodes, we have

1 — n+2u—1 1— n+u—1
S

see Brown and Shubert (1984) or Mahmoud (1992).

Lemma4.2. Forn >0

kL g 2u—1\  (n42v—1
;E(In,kln,h)u v = (1_2u)(1_2v) (1 ( n ) ( n ))

2uv n+2u+2v-2
1 —=2u)(1 —2v)Qu 4+ 2v—2uv —1)

1 n—+2uv—1
2u+2v—2uv—1 n '

From this lemma, it follows, again by singularity analyseat

+ ( "

k h
E(Xpx Xop) = 2k oo (u, v)nt+=2 (1 L0 (n—1>) L0 ((2 IZ?nn) " (2 Iz'in) )

uniformly fora, B € [2 — v/2 + &,2 + /2 — €] (for anye > 0), where

¢ (u,v)

P = Ay

¢ being defined in (4.1).

Theorem 4.2. For o, 8 € (2 — +/2,2 + +/2), the correlation coefficienp(Xp k., Xu.p) IS

asymptotic to

(. p)
Vola,a)e(B,B)’
0@, 2tup — 30! (20, 2)

\/(p(Oé, O‘)Q(ln,ha tn,h)
q(sn,kv tn,h)

Vs Sni)qnps tug)

ifo, B &{2}

ifo #£2,8=2;

ifo =B =2,

where

q(s.1) = ¢y, (2,251 — (@15 (2.2)s + ¢4, (2. 21) + 63 ,(2.2).
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Figure 7 depicts the single sign-change of the limiting elation coefficients(«, 8)/ /¢ (o, ¢)p(B,
compare Figures 5 and 6.

Note thatp(1, 1) = ¢; = 2—nx2/6. Thusp(I,x, Inn) — 1 when(i) k,h ~ o logn where
a #2and(ii) k,h ~ 2logn and|k — 2logn|, |h — 2logn| — oo.

FIGURE 7: Asymptotic correlation coefficientst = 1.5 and 8 varies (left), and &-dimensional plot

(right) fora, € 2 — v/2,2 + V/2).

An intuitive interpretation of the sign-change. For internal nodes, the behavior and the
corresponding intuitive interpretation of the limiting reelation coefficients are similar to
those ofY,, x (of recursive trees). The double sign-change of the limip@X, «, X, 1) is

roughly explained as follows. Observe first that

T if 1 <k <logn— (logn)2/3—¢,
I —k )

E(lyk) ~ | 2°@ (09’”—) . if [k —logn| < (logm)*/*~*,

—nr if K > logn + (logn)?/3¢,

for anye > 0, where®(x) is the standard normal distribution function; see FHN. ™ags
roughly that levels up t6l — ¢) logn are full of internal nodes (since in this rangeéx,, x) =

0(2%)) with less room for external nodes; outside this range, timaber of internal nodes at
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each level is asymptotically of the same order as that ofeateodes. Thus ik, ; with, say
a € (1,2) has more nodes, then this means that there are also momaintedes at this and
neighboring levels, which implies that there are fewer soglailable at levels: (1 —¢) logn

and levels> (2 +¢) logr, similar to the interpretation given in Introduction foctesive trees.

5. Conclusions

We discovered in this paper the sharp sign-change phenam#recorrelation coefficients
of two level sizes in random recursive trees and random BSilish sign-changes are consis-
tent with the bimodality of the variance in the middle range logn for recursive trees and
k ~ 2logn for BSTS).

We conclude this paper with a brief comparison of the diffé@pproaches we used for
the variance (and covariance) of profiles. In Hwang and Dan(@004), we introduced two
approaches foW (X, x) andV (Y, ), one based on explicit integral representations in terms
of Bessel functions and the other on explicit expressiorterims of Stirling numbers of the
first kind. But extending the two approachesW@/,, i) is not easy. In FHN, we used an ap-
proach based on recurrence and asymptotic transfer, wppllea well to all three profiles we
discussed in this paper. But getting more terms in the asyioxpansions by this approach
is effortful. The approach we present in this paper is noy enbre general (applicable to
covariance and to more profiles) but also useful in derivisygrptotic expansions if needed.
Note that by thd_,-convergence of the normalized profiles (established theacontraction
method), the leading estimates for the variance or covegiaan also be derived by the fixed-
point equation of the limit laws. But this approach fails foe ranges when the limit laws are
degenerate.

The major open question here is: what is the limit distriif it exists) of the width? Is
it the same as the limit law of total path length (in both clalssindom trees considered in this

paper)?
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