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Abstract

The levels of trees are nodes with the same distance to the root. We derive asymptotic

approximations to the correlation coefficients of two level sizes in random recursive

trees and binary search trees, which undergo sharp sign-changes when one level is fixed

and the other one is varying. We also propose a new means for derivingan asymptotic

estimate for the expected width, which is the number of nodes at the most abundant level.

Crucial to our methods of proof is the uniformity achieved by the singularityanalysis.
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1. Introduction

This paper is a sequel to Drmota and Hwang (2004) and Fuchs et al. (2004) (referred to

as FHN throughout this paper due to frequent reference) in which we addressed the limit

distributions of profiles (number of nodes at the levels) in random recursive trees and binary

search trees. In addition to the many intriguing phenomena unveiled there, we show in this

paper that the correlation coefficients of two level sizes inboth classes of trees exhibit sharp

sign-changes. The method of proof for deriving the uniform estimates for covariances will be
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useful in obtaining asymptotics of the expected widths for which only almost-sure results but

no moment estimates were previously known.

Random recursive trees. Recursive trees ofn nodes are non-plane, rooted, labelled trees

with labelsf1; : : : ; ng (at nodes) such that the labels along any path from the root form a

strictly increasing sequence. By random recursive trees, we assume that all recursive trees ofn

nodes are equally likely. An alternative way of constructing a random recursive tree ofn nodes

is as follows. We start from a single node with label1; then at thei -th insertion step, the new

label i chooses any of the previousi � 1 nodes equally likely to be its parent (and link them

by an edge), and the same procedure continues until the tree containsn nodes. This procedure

also implies that there are.n � 1/! such trees.

Recursive trees (following Meir and Moon, 1974) also appeared in other fields under dif-

ferent names: “concave node-weighted trees” in Tapia and Myers (1967), “growing trees”

in Na and Rappoport (1970), “pyramid scheme” in Gastwirth (1977), “heap-ordered trees”

in Grossman and Larson (1989), “random circuits with fanin one” in Arya et al. (1999).

They have been introduced as simple growing models for several real-life networks like social

systems (Na and Rapoport, 1970), sales-distribution networks (Moon, 1974), and the Internet;

see FHN for more references. Their simple tree representations also found applications in

many linear tree algorithms; see Mitchell et al. (1979).

Profile of random recursive trees. We consider the number of nodes, denoted byYn;k , at

distancek from the root in a random recursive tree ofn nodes. Many properties ofYn;k are

known. We briefly summarize the interesting phenomena exhibited by Yn;k as follows; see

Drmota and Hwang (2004) and FHN for more information.

– For large, fixedn, the mean ofYn;k is asymptotically unimodal ink, but the variance is

asymptoticallybimodal.

– The normalized random variablesYn;k=E.Yn;k/ converges in distributionto some limit law

Y .˛/ whenk � 1 and˛ WD limn!1 k= logn 2 Œ0; e/.

– Convergence of all momentsof Yn;k=E.Yn;k/ to Y .˛/ holds only for˛ 2 Œ0; 1� but not for˛

outside the unit interval.
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– If ˛ D 0 (andk � 1), then the sequence of the centered and normalized random variables

.Yn;k � E.Yn;k//=
p

V.Yn;k/ converges in distribution to the standard normal law.

– If ˛ D 1 andjk � lognj ! 1, then.Yn;k � E.Yn;k//=
p

V.Yn;k/ converges in distribution

(and with all moments) toY 0.1/, the same limit law as the total path length
P

k kYn;k .

– If k D logn C O.1/, then.Yn;k � E.Yn;k//=
p

V.Yn;k/ does not converge to a fixed limit

law.

Covariance ofYn;k and Yn;h. The results derived in our previous papers dealt with stochastic

behaviors of asingle level size. We examine in this paper the asymptotics of the correlation

coefficient oftwo level sizes, which turns out to undergo a sharp sign-change at ˛ D 1 (when

the other level is fixed and not near logn).

To state our results, we first introduce some notation. Define

f .u; v/ WD 1

�.u C v/.u C v � uv/
� 1

�.u C 1/�.v C 1/
; (1.1)

where� is the Gamma function and

p.s; t/ WD c2st C c1.s C t/C c0; (1.2)

with the coefficients given by

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

c2 WD f 00
uv.1; 1/ D 2 � �2

6
;

c1 WD � 1
2
f 000

uv2.1; 1/ D c2.1 �  / � �.3/C 1;

c0 WD 1
4
f
.4/

u2v2.1; 1/ D c2

�

1 C 2 �  2
�

C 2c1.1 �  / � �4

360
:

(1.3)

Also define

8

<

:

c3 WD f 0
v.˛; 1/ D � .˛C1/C�˛

�.˛C1/
;

c4 WD � 1
2
f 00
v2.˛; 1/ D � . .˛C1/C1�˛/2C.˛�1/2�.1�/2� 0.˛C1/�1C�2=6

2�.˛C1/
:

Let k; h � 1, ˛n;k WD k= logn, ˇn;h WD h= logn and˛ andˇ be their limit ratio, respectively,

if exists (whenn tends to infinity).
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Theorem 1.1. If ˛; ˇ 2 Œ0; 2/, then the correlation coefficient ofYn;k andYn;h satisfies

�.Yn;k ;Yn;h/ �

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

p

.2k � 1/.2h � 1/

k C h � 1
; if ˛ D ˇ D 0I

0; if ˛ D 0; ˇ 6D 0I
f .˛; ˇ/

p

f .˛; ˛/f .ˇ; ˇ/
; if ˛; ˇ 6D 1I

c3tn;h C c4
p

f .˛; ˛/p.tn;h; tn;h/
; if ˛ 6D 1; ˇ D 1I

p.sn;k ; tn;h/
p

p.sn;k ; sn;k/p.tn;h; tn;h/
; if ˛ D ˇ D 1;

(1.4)

wheresn;k WD k � logn and tn;h WD h � logn.

By symmetry, all cases when̨; ˇ 2 Œ0; 2/ are covered. In particular, the result here also

implies the estimates we derived forV.Yn;k/ in previous papers. A comparison of the different

approaches used so far forV.Yn;k/ is given in the last section.

Corollaries and intuitive interpretations.

Corollary 1.1. The correlation coefficient ofYn;k and Yn;h is asymptotic to zero ifk D

o.logn/ andk D o.h/, where0 � ˇ < 2.

Thus the sizes at the first few levels (k D o.logn/) areasymptotically independentof those at

levels that are� k.

Corollary 1.2. The correlation coefficient ofYn;k andYn;h is asymptotic to1 if .i/ ˛ D ˇ 6D 1

.0 � ˛; ˇ < 2/; or .i i/ bothsn;k ; tn;h ! 1 (not necessarily at the same rate) when˛ D ˇ D

1.

The first case is intuitively clear, but the second case less transparent.

Corollary 1.3. The correlation coefficient�.Yn;k ;Yn;h/ exhibits asymptotically a sharp sign-

change ať D 1 when˛ 2 .0; 2/ is fixed anď is varying from0 to 2.

A few plots of the asymptotic correlation coefficient are given in Figures 1, 2, 3, highlight-

ing in particular the discontinuous sign-change at1.

Intuitively, the sizes of neighboring levels are expected to have positive correlation. The

sharp sign-change at1 is roughly because of the property thatalmost all nodes in a random

tree lie at the levelsk D logn C O.
p

logn/, each having aboutn=
p

logn nodes, (by the
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FIGURE 1: Asymptotic correlation coefficient of the number of nodes at two levels. The discontinuity of

sign at1 is visible from both figures. Herę D =2 � 0:28 (left) and˛ D
p
� � 1:77, andˇ 2 .0; 2/.

estimate

E.Yn;k/ � .logn/k

k!�.˛n;k C 1/
.1 � k D O.logn//;

and the bimodal behavior of the variance near these levels; see Drmota and Hwang, 2004). This

implies that if one levelk with, sayk= logn < 1 has more nodes, then.i/ levels near logn are

likely to have more nodes, and.i i/ levels withh= logn > 1 have fewer nodes available; this

also roughly explains whyYn;k andYn;h are negatively correlated (see Figure 1).

Our method of proof starts from the relation

X

k;h

E.Yn;kYn;h/u
kvh D n

u C v � uv

��

n C u C v � 1

n

�

�
�

n C uv � 1

n

��

I (1.5)

see below for a self-contained proof or van der Hofstad et al.(2002). Then (1.4) is derived

by a uniform estimate for the function on the right-hand sidein the u; v plane (by applying

the singularity analysis of Flajolet and Odlyzko, 1990) andthen by extending the saddle point

method used in Hwang (1995).

Width. Our analytic approach is also useful in deriving a uniform estimate forE
�

.Yn;k � Yn;h/
2
�

,

which turns out to be the crucial step for proving an asymptotic approximation to the expected

width, defined to beWn WD maxk Yn;k .
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FIGURE 2: 3-dimensional renderings of the limiting correlation coefficients:f .˛; ˇ/=
p

f .˛; ˛/f .ˇ; ˇ/

(left) andp.s; t/=
p

p.s; s/p.t; t/ (right).

–0.6

–0.4

–0.2

0

0.2

0.4

–10 –8 –6 –4 –2 2 4 6 8 10
t

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
a

FIGURE 3: Asymptotic correlation coefficient wheňD 1: ˛ D 0:1 and t varies (left) andt D =2 and

˛ varies (right).

Theorem 1.2. The widthWn satisfies

Wn

n=
p

2� logn
! 1; (1.6)
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FIGURE 4: The binary search tree constructed from the sequencef4; 3; 1; 6; 5; 2g. Internal nodes are

marked by circles and external nodes by squares.

almost surely, and

E.Wn/ D n
p

2� logn

�

1 C O
�

.logn/�1=4 log logn
��

: (1.7)

The almost sure convergence is proved by modifying the martingale arguments used in Chau-

vin et al. (2001) for random binary search trees. Such arguments, based on considering the

random polynomial
P

k Yn;kzk , also provide a natural interpretation of the result (see FHN)

that the sequence of random variables.Yn;k �E.Yn;k//=
p

V.Yn;k/ converges to the same limit

law as the total path lengthTn WD
P

k kXn;k whenk � logn and jk � lognj ! 1; see

Section 3 for more details.

Binary search trees. Binary search trees (abbreviated as BSTs) are rooted, labelled binary

trees with thesearch property: all labels in the left (right) subtree of any nodex are smaller

(larger) than the label ofx. Given a sequence of numbers, one can construct the BST by

placing the first element at the root, and then by directing successively all smaller (larger)

numbers to the left (right) branch. Both subtrees, if nonempty, are recursively constructed by

the same procedure and are themselves BSTs; see Figure 4.

BSTs were first introduced in the early 1960’s by Windley (1960), Booth and Colin (1960),

Hibbard (1962), and are one of the simplest prototypical data structures; see Knuth (1997),

Mahmoud (1992).
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Random binary search trees. Assume that alln! permutations ofn elements are equally

likely. Given a random permutation, we call the BST constructed from the permutationa

random BST. We distinguish between two types of nodes:internal nodesare nodes holding

labels andexternal nodesare virtual nodes added so that all internal nodes are of outdegree

two; see Figure 4.

Denote byXn;k (In;k) the number of external (internal) nodes at levelk in a random BST of

n internal nodes, the root being at level zero. Distributional properties of both types of profile

Xn;k andIn;k are similar to those ofYn;k ; see FHN for details.

An interesting property here for the covariance of two levelsizes is that while the limiting

correlation coefficients ofIn;k andIn;h exhibit a sharp sign-change at˛ D 2, the limiting

correlation coefficients ofXn;k andXn;h exhibit two sharp sign-changes at˛ D 1 and˛ D 2.

An intuitive interpretation will be given in Section 4.

Organization of the paper. We prove in the next section Theorem 1.1 on the asymptotic

estimates of the correlation coefficients of two level sizesin random recursive trees. The

width and related quantities are addressed in Section 3. Results for random BSTs are given in

Section 4 without proof. We then conclude the paper with a brief comparative discussion of

the methods of proof used to derive asymptotic estimates forthe variances.

2. Correlation of two level sizes

We prove Theorem 1.1 in this section. Note that theL2-convergence ofYn;k=�n;k (see

FHN) can also be applied to prove (1.4) in the case when˛; ˇ 62 f0; 2g; we give here a direct

and uniform approach applicable to all cases.

Recurrence ofYn;k andE.Yn;k/. All our results are based on the recurrence relation satisfied

by Yn;k

Yn;k
DD YuniformŒ1;n�1�;k�1 C Y �

n�uniformŒ1;n�1�;k .n � 2I k � 1/; (2.1)

with the initial valuesYn;0 D ın;1, the Kronecker symbol, where the random variableuniformŒ1; n�

1� takes each of the valuesf1; : : : ; n � 1g with equal probability, andY �
n;k

is an independent

copy ofYn;k ; see FHN or van der Hofstad et al. (2002).
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Let�n;k WD E.Xn;k/. From (2.1), it follows that the mean satisfies

�n;k D Œuk �

�

n C u � 1

n � 1

�

D .logn/k

k!�.˛n;k C 1/

�

1 C O
�

.logn/�1
��

; (2.2)

whereŒuk �F.u/ denotes the coefficient ofun in the Taylor expansion ofF and theO-term

holds uniformly for1 � k D O.logn/; see Hwang (1995).

Proof of (1.5). We now prove (1.5). By (2.1), we have the recurrence

E.Yn;kYn;h/ D 1

n � 1

X

1�j<n

�

E.Yj ;k�1Yj ;h�1/C E.Y �
j ;kY �

j ;h/
�

C 1

n � 1

X

1�j<n

�

�j ;k�1�n�j ;h C �j ;k�n�j ;h�1

�

:

Let Fn.u; v/ WD
P

k;h E.Xn;kXn;h/u
kvh. ThenF1.u; v/ D 1 and

Fn.u; v/ D 1 C uv

n � 1

X

1�j<n

Fj .u; v/C u C v

n � 1

X

1�j<n

�

j C u � 1

j � 1

��

n � j C v � 1

n � j � 1

�

; (2.3)

for n � 2. The last sum is equal to

u C v

n � 1
Œzn�z2.1 � z/�u�v�2 D u C v

n � 1

�

n C u C v � 1

n � 2

�

:

The recurrence (2.3) is then either solved by consideringnFnC1 � .n�1/Fn and then iterating

the resulting first-order difference equation or solved by considering the differential equation

satisfied by
P

n FnC1zn. This proves (1.5).

An asymptotic expansion for the covariance. We now derive an asymptotic expansion for

Cov.Yn;k ;Yn;h/.

First, by singularity analysis (see Flajolet and Odlyzko, 1990), we have

n

�

n C w � 1

n

�

D nŒzn�.1 � z/�w D nw

�.w/

�

1 C O
�

jwj2n�1
��

;

theO-term holding uniformly for finite complexw. Thus, by (1.5) and (2.2),

Cov.Yn;k ;Yn;h/ D Ck;h.n/
�

1 C O
�

n�1
��

C O

 

ık;h

.logn/k

k!

!

; (2.4)
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uniformly for 1 � k; h � K logn, where

Ck;h.n/ WD Œukvh�f .u; v/nuCv;

with f defined in (1.1).

If ˛ C ˇ 6D 0, we apply the saddle point method used in Hwang (1995) by firstexpanding

f as follows

f .u; v/ D
X

`;r�0

f`;r .u � ˛n;k/
`.v � ˇn;h/

r ;

wheref`;r WD f
.`Cr/

u`vr .˛n;k ; ˇn;h/=.`!r !/; and then integrating term by term gives the formal

expansion

Ck;h.n/ �
X

`;r�0

f`;r„`.n; k/„r .n; h/; (2.5)

where

„`.n; k/ WD Œuk �.u � ˛n;k/
`nu

D .logn/k

k!

X

0�j�`

�

`

j

�

.�˛n;k/
`�j k � � � .k � j C 1/

.logn/j
.` � 0/:

The first few values of„r are as follows.

„0.n; k/ D 1; „1.n; k/ D 0; „2.n; k/ D � k

.logn/2
;

„3.n; k/ D 2k

.logn/3
; „4.n; k/ D 3k.k � 2/

.logn/4
:

Since„r .n; k/ equals.logn/�r times a polynomial ink of degreebr=2c, the double sum

on the right-hand side of (2.5) can be regrouped and gives an asymptotic expansion when

k D O.logn/. The error analysis is similar to those in Hwang (1995, 1997), and we obtain

that (2.5) holds uniformly for1 � k; h � 2 logn � !n

p

logn, !n being any sequence tending

to infinity. The error termŒukvh�Ck;h.n/O.n
�1/ appearing in (2.4) is handled similarly and is

asymptotically negligible.

By the explicit forms of the„`’s, we obtain the expansion

Ck;h.n/ D .logn/kCh

k!h!

�

f0;0 � 1

logn
.f2;0˛n;k C f0;2ˇn;h/

C 1

.logn/2

�

3.f4;0˛
2
n;k C f0;4ˇ

2
n;h/C f2;2˛n;kˇn;h C 2.f3;0˛n;k C f0;3ˇn;h/

�

C O
�

.logn/�3
�

�

; (2.6)

which is sufficient for our use.
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Special cases. Assume that0 � ˛; ˇ < 2. If ˛; ˇ 62 f0; 1g, then

f0;0 D f .˛n;k ; ˇn;h/ ! f .˛; ˇ/ 6D 0;

and we obtain

Cov.Yn;k ;Yn;h/ � f .˛; ˇ/
.logn/kCh

k!h!
;

uniformly for 1 � k; h � 2 logn � !n

p

logn. This proves Theorem 1.4 when̨; ˇ 62 f0; 1g.

It also implies that

V.Xn;k/ � f .˛; ˛/
.logn/2k

k!2
.1 � k � 2 logn � !n

p

logn/:

If ˛ D ˇ D 1, then, by (2.6) and the following approximations

f0;0 � c2

sn;k tn;h

.logn/2
; f0;2 � �c1

sn;k

logn
; f2;0 � �c1

tn;h

logn
; f2;2 � c0;

wherek D logn C sn;k , h D logn C tn;h and the coefficientscj ’s are defined in (1.3), we

obtain

Cov.Yn;k ;Yn;h/ � p.sn;k ; tn;h/

.logn/2
� .logn/kCh

k!h!
;

wherep is given in (1.2). This also implies thatV.Xn;k/ � p.sn;k ; sn;k/.logn/2k�2=k!2.

If ˛ D 0 andˇ 2 .0; 1/, then, similarly as above, we have

Cov.Yn;k ;Yn;h/

�

8

ˆ

ˆ

<

ˆ

ˆ

:

� .logn/kCh�1

.k � 1/!h!�.ˇ C 1/
. .ˇ C 1/ � 1 C  / ; if ˇ 6D 1I

.logn/kCh�2

.k � 1/!h!�.ˇ C 1/

��

1 � �2

6

�

sn;h C 2 �  � �.3/ � �2

4
C �2

6

�

; if ˇ D 1;

so that�.Yn;k ;Yn;h/ ! 0 in both cases.

The case wheň D 1 and˛ 6D 1 is treated similarly.

A change of variablesu 7! wv is useful for the remaining case when˛ D ˇ D 0; then a

similar analysis gives

Cov.Yn;k ;Yn;h/ � .logn/kCh�1

.k � 1/!.h � 1/!.k C h � 1/
: (2.7)

Alternatively, we can use the exact expression (see van der Hofstad et al., 2002)

E.Yn;kYn;h/ D
X

0�j�k

�

2j C h � k

j C h � k

�

ŒwjChC1�

�

n � 1 C w

n � 1

�

;

obtained from expanding the right-hand side of (1.5), and then proceed similarly as above (the

two terms with indicesj D k � 1; k suffice for obtaining (2.7)).
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Proof of Corollary 1.3. When˛; ˇ 2 .0; 2/, ˛ 6D 1, we have, by (1.4),

lim
ˇ!1

f .˛; ˇ/
p

f .˛; ˛/f .ˇ; ˇ/
D sign.1 � ˇ/  .˛ C 1/ � ˛ C 

p

c2f .˛; ˛/ �.˛ C 1/
I

thus the sign-change follows. The case when˛ D 1 can also be checked similarly.

The proof of other corollaries to Theorem 1.1 is straightforward and omitted.

3. Profile and width

Profiles of trees are closely related to many other shape parameters. We discuss briefly in

this section the connection between profile and width, starting from deriving an asymptotic

estimate for the expected width, namely from the proof of (1.7). Then we consider the level

polynomialMn.z/ WD
P

k Yn;kzk , which will be seen to be a convenient tool for proving (1.6)

and for bridging the limit properties of the profile and thoseof the total path length (and other

weighted path lengths).

The expected width. Since the width is defined byWn D maxk Yn;k , we have, by the

estimate (2.2),

E.Wn/ � max
k

E.Yn;k/ D n
p

2� logn

�

1 C O
�

.logn/�1=2
��

:

However, it is less clear how to obtain a tight upper bound. The arguments introduced in

Chauvin et al. (2001) can be used to prove the almost sure convergence result (1.6) (see below

for a sketch of proof), but do not lead to an effective upper bound for the expected width. We

introduce a new argument, reducing the upper bound to estimating the mean and the variance

of some differences between level sizes, and show that the lower bound is indeed tight.

We start with a probabilistic lemma.

Lemma 3.1. Let Z.t/ be a stochastic process on the space of continuous functionson Œ0; 1�.

Assume that there exist constants� � 0 and� > 1 such that

P .jZ.t1/ � Z.t2/j � ı/ D O
�

jt1 � t2j�ı��
�

; (3.1)

uniformly for all t1; t2 2 Œ0; 1�. Then we have

P

�

max
js�t j�"

jZ.s/ � Z.t/j � ı

�

D O
�

"��1ı��
�

: (3.2)
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Proof.We modify the proof of Theorem 12.3 in Billingsley (1968). First, the assumption (3.1)

is exactly (12.50) from Billingsley (1968) withF.t/ D t . It follows that for" > 0 (and1=" is

an integer; compare with (12.57) there)

X

j<1="

P

 

sup
j"�s�.jC1/"

jZ.s/ � Z.j "/j � ı

!

D O
�

"��1ı��
�

:

Similarly, we obtain

X

j<1="

P

 

sup
j"�s�.jC1/"

jZ.s/ � Z..j C 1/"/j � ı

!

D O
�

"��1ı��
�

:

Now, suppose that there exists; t 2 Œ0; 1� with js � t j � " andjZ.s/ � Z.t/j � ı. Then there

existsj < 1=" with max.js � j "j; jt � j "j/ < " and max.jZ.s/� Z.j "/j; jZ.t/� Z.j "/j/ �

ı=2. Consequently

P

�

max
js�t j�"

jZ.s/ � Z.t/j � ı

�

�
X

j<1="

P

 

sup
j"�s�.jC1/"

jZ.s/ � Z.j "/j � ı=2

!

C
X

j<1="

P

 

sup
j"�s�.jC1/"

jZ.s/ � Z..j C 1/"/j � ı=2

!

D O
�

"��1ı��
�

:

This proves (3.2) for all" such that1=" is an integer. However, the general case also follows

from theO-estimate.

Lemma 3.2. Let � WD h � k and Y n;k WD Yn;k � E.Yn;k/. Then, uniformly fork; h D

logn C o.logn/,

E

�

.Y n;k � Y n;h/
2
�

D O
�

n2�2.logn/�3
�

: (3.3)

Proof.We may apply the results in previous section for the covariance ofYn;k andYn;h in some

ranges, but they do not lead to a uniform estimate in terms ofjk �hj2 in the whole range when

˛ D ˇ D 1.

We give here a self-contained proof of (3.3). Assume, without loss of generality, thath � k.

By (2.4), we have

E

�

.Y n;k � Y n;h/
2
�

D
�

Œukvk � � 2Œukvh�C Œuhvh�
�

f .u; v/nuCv
�

1 C O.n�1/
�

C O
�

ık;hn.logn/�1=2
�

:
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It suffices to find upper bounds for the dominant term

J WD
�

Œukvk � � 2Œukvh�C Œuhvh�
�

f .u; v/nuCv

D 1

.2�/2

“

D

e�ikx�iky
�

1 � 2e�i�y C e�i�.xCy/
�

f
�

eix ; eiy
�

neixCeiy

dx dy;

whereD WD Œ��; ��2. Now

1 � 2e�i�y C e�i�.xCy/ D
�

1 � e�i�y
�2

C e�i�y
�

e�i�x � 1 C i�x
�

� e�i�y
�

e�i�y � 1 C i�y
�

C e�i�y .i�y � i�x/

DW Q1 C Q2 � Q3 C Q4:

Let

Jm WD 1

.2�/2

“

D

Qme�ikx�ikyf
�

eix ; eiy
�

neixCeiy

dx dy .m D 1; : : : ; 4/:

By the elementary inequalitiesjeiw � 1j � jwj for realw and1 � cosw � c5w
2 for jwj � � ,

wherec5 WD 2=�2, we have

jJ1j � n2�2

.2�/2

“

D

y2
ˇ

ˇf
�

eix ; eiy
�
ˇ

ˇ n�c5.x
2Cy2/ dx dy:

This, together with the uniform bound

ˇ

ˇf
�

eix ; eiy
�
ˇ

ˇ D O.jxyj/;

for x;y 2 D, yield

jJ1j D O

�

n2�2

“

D

jxjjyj3n�c5.x
2Cy2/ dx dy

�

D O
�

n2�2.logn/�3
�

:

Similarly, by the inequalityjeiw � 1 � iwj � jwj2=2 for realw, we have

jJ2j; jJ3j D O
�

n2�2.logn/�3
�

:

For the last integralJ4, we use the expansion

f
�

eix ; eiy
�

D c2i2xy C O .jxyjjx C yj/ ;
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and obtainJ4 D J5 C J6, where

J5 WD c2�

.2�/2

“

D

i3.y � x/xye�ikx�iky�i�yneixCeiy

dx dy;

J6 D O

�

n2j�j
“

D

jxyj.jxj C jyj/2n�c5.x
2Cy2/ dx dy

�

D O
�

n2j�j.logn/�3
�

:

For J5, we use the expansion

e�i�y D 1 C O.j�jjyj/;

and the relation
“

D

.y � x/xye�ik.xCy/neixCeiy

dx dy D 0;

(by symmetry), so that

J5 D O

�

n2�2

“

D

jxjjyj2.jxj C jyj/n�c5.x
2Cy2/ dx dy

�

D O
�

n2�2.logn/�3
�

;

uniformly for k; h D logn C o.logn/. This completes the proof of (3.3).

Lemma 3.3. Uniformly fork; h D logn C o.logn/,

ˇ

ˇE.Yn;k � Yn;h/
ˇ

ˇ D O
�

nj�j.logn/�1
�

I (3.4)

and uniformly fork D logn C O.1/ andh D logn C o..logn/2=3/,

ˇ

ˇE.Yn;k/ � E.Yn;h/
ˇ

ˇ � n
p

2� logn

�

1 � e�.k�h/2=.2 logn/
�

: (3.5)

Proof.Assume thatjk � lognj � jh � lognj. By Cauchy’s integral formula

E.Yn;k/ � E.Yn;h/ D 1

2�

Z �

��

e�ikx
�

1 � e�i�x
� neix

�.1 C eix/

�

1 C O.n�1/
�

dx:

In the first case whenk; h D logn C o.logn/, we apply the the inequalityj1 � e�i�x j � j�xj

and the same arguments as above, yielding

ˇ

ˇE.Yn;k/ � E.Yn;h/
ˇ

ˇ D O
�

j�jn.logn/�1
�

;

uniformly in k; h. This proves (3.4).

The approximation (3.5) follows from a straightforward application of the usual saddle-

point method.
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An upper bound for the expected width. Let k0 D blognc. Take

ƒ WD
j

.logn/1=4C�n
k

and L WD
j

.logn/1=4
k

;

where�n 2 .0; 1=2/ will be specified below. We use the following upper bound

Wn � max
0�jj j�L

Yn;k0Cjƒ C max
jk�hj�ƒ

jY n;k � Y n;hj

C max
jk�hj�ƒ

jE.Yn;k � Yn;h/j C
X

jk�k0j�.logn/1=2C�n

Yn;k

DW W .1/
n C W .2/

n C W .3/
n C W .4/

n :

We show that, when taking expectation, the termYn;k0
in W

.1/
n is dominant and all other terms

are asymptotically of smaller order thanE.Yn;k0
/.

We start fromW
.4/

n . By (2.2),

E.W .4/
n / D O

0

@

X

jk�k0j�.logn/1=2C�n

.logn/k

k!

1

A

D O
�

ne�.logn/2�n=2.logn/��n
�

I

see Hwang (1997). If we choose

�n WD log log logn

log logn
;

then

E.W .4/
n / D o

�

n.logn/�1
�

:

For W
.3/

n , we have, by (3.4) fork; h D logn C O.Lƒ/ and by (2.2) fork; h outside this

range,

max
jh�kj�ƒ

jE.Yn;h � Yn;k/j D O
�

nƒ.logn/�1
�

D O
�

n.logn/�3=4C�n
�

:

We then apply Lemmas 3.1 and 3.2 to prove that

E.W .2/
n / D O

 

n
p

logn

�

ƒ

.logn/3=2��n

�1=2
!

: (3.6)

We first defineYn.t/, �1 � t � 1, by

Yn.t/ D Y n;k0Ct.logn/1=2C�n

.logn/1��n

n
;
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whent.logn/1=2C�n is an integer, and by linear interpolation otherwise. By Lemma 3.2, we

have

E..Yn.s/ � Yn.t//
2/ D O

�

.s � t/2
�

;

uniformly for s; t 2 Œ�1; 1�. By Chebyshev inequality,

P.jYn.s/ � Yn.t/j � w/ D O
�

.s � t/2w�2
�

:

Take�n WD ƒ.logn/�1=2��n . It follows, by Lemma 3.1, that

P

�

max
js�t j��n

jYn.s/ � Yn.t/j � w

�

D O
�

�nw
�2
�

;

and, consequently,

E

�

max
js�t j��n

jYn.s/ � Yn.t/j
�

D
Z 1

0

P

�

max
js�t j��n

jYn.s/ � Yn.t/j � w

�

dw

D O
�

�1=2
n

�

:

This and the definition ofYn.t/ imply (3.6), which can be written as

E.W .2/
n / D O

�

n.logn/�9=8C2�n
�

:

Thus it remains to find an upper bound forW
.1/

n . By Cauchy-Schwarz inequality, we obtain

E.W .1/
n / � E

X

jj j�L

Yn;k0Cjƒ � 1
ŒYn;k0CjƒDW

.1/
n �

�
X

jj j�L

�

E.Y 2
n;k0Cjƒ/

�1=2

P.Yn;k0Cjƒ D W .1/
n /1=2

� n
p

2� logn
C O

�

n.logn/�1
�

C O

0

@

n
p

logn

X

1�jj j�L

P.Yn;k0Cjƒ D W .1/
n /1=2

1

A :

Here we used the estimates

�

E.Y 2
n;k0

/
�1=2

D n
p

2� logn
C O

�

n.logn/�1
�

;

and
�

E.Y 2
n;k
/
�1=2

D O.n=
p

logn/; see Drmota and Hwang (2004).
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SetDj WD Yn;k0
� Yn;k0Cjƒ for 1 � jj j � L. Then we have

P.Yn;k0Cjƒ D W .1/
n / � P.Dj � 0/

� P
�

jDj � E.Dj /j � E.Dj /
�

� V.Dj /

.E.Dj //2
;

by Chebyshev inequality.

By Lemma 3.2, we have

V.Dj / D O

�

n2

.logn/3
j 2ƒ2

�

:

This and (3.5) imply that

P.Dj � 0/1=2 D O

� jj jƒ
logn

�

1 � e�j2ƒ2=.2 logn/
��1

�

;

for 1 � jj j � L; and it follows that

X

1�jj j�L

P.Dj � 0/1=2 D O

 

ƒ

logn

Z L

1

x
�

1 � e�x2ƒ2=.2 logn/
��1

dx

!

D O
�

ƒ�1.logn/2�n
�

:

Thus

E.W .1/
n / � n

p

2� logn
C O

�

n.logn/�3=4C�n
�

:

Collecting these estimates gives

EWn � n
p

2� logn

�

1 C O
�

.logn/�1=4 log logn
��

;

which proves (1.7).

A possible refinement of the error term in (1.7). If we had the estimates

E

�

.Y n;k � Y n;h/
2m
�

D O
�

n2m�2m.logn/�3m
�

.m D 2; 3; : : : /;

for k; h � logn, then the error termO.logn/�1=4 log logn/ in the approximation to the

expected width would be improved toO..logn/�1=2C"/ for some" > 0, which is, up to

.logn/", expected to be the right-order. A proof of these moment estimates would be to apply

induction and the approach used in FHN, but the details wouldbe very messy.
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Asymptotics of the level polynomials. The proof of the almost sure convergence (1.6)

follows from the same martingale arguments introduced in Chauvin et al. (2001). Thus we

only sketch a few steps of the proof here.

We observe first that the normalized random functionMn.z/ WD Mn.z/=E.Mn.z// (where

Mn.z/ WD
P

k Yn;kzk ) is a martingale. Roughly, this reflects the construction that the new-

coming key has the same probability of being attached to any of the existing nodes. Also by

(2.2)

E.Mn.z// D
�

n � 1 C z

n � 1

�

:

By the martingale convergence theorem (see Hall and Heyde, 1980), Mn.˛/ converges

almost surely to a limitM.˛/ for any finite˛ > 0. Then by the recursive definition (2.1) of

Yn;k , we deduce, similar to contraction method (see FHN), that

M.˛/
DD ˛U ˛M.˛/C .1 � U /˛M.˛/�;

whereM.˛/�
DD M.˛/ andM.˛/;M.˛/�;U are independent. This implies thatM.˛/

DD

Y .˛/ for every˛ > 0.

Interestingly, this limit relation also extends to complexvalues of̨ .

Lemma 3.4. For any compact set infz 2 C W jz � 1j < 1g, the martingaleMn.z/ converges

almost surely, uniformly and inL2 to its limit M.z/ (which is also an analytic function).

The key step of the proof is to use an explicit expression forE.Mn.z1/Mn.z2// (see (1.5)),

and to use Kolmogorov’s criterion, coupling with vector martingale theorems. Finally, one

recoversYn;k almost surely (and uniformly for1 � " � k= logn � 1 C " for some" > 0) via

Cauchy’s integral formula

Yn;k D 1

2� i

I

jzjD˛n;k

Mn.z/z
�k�1 dz

� 1

2� i

I

jzjD˛n;k

M.z/E.Mn.z//z
�k�1 dz

� M.˛n;k/
1

2� i

I

jzjD˛n;k

E.Mn.z//z
�k�1 dz

� M.˛/E.Yn;k/:

We omit all technical details. Note that the radius˛n;k WD k= logn in the contour integration

is a natural choice because it is the saddle point of the integrandE.Mn.z//z
�k�1. SinceM.z/
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is almost surely an analytic function andM.1/ D 1, it follows that

Wn D max
k

Yn;k � max
k

E.Yn;k/ � n
p

2� logn
;

almost surely. This completes the proof of (1.6).

Total path length.

Corollary 3.1. LetTn denote the total path length in a random recursive tree ofn nodes. Then

M0
n.1/ is a martingale and

M
0
n.1/ D Tn � E.Tn/

n

D! Y 0.1/;

almost surely and inL2.

Proof.SinceTn D
P

k kYn;k , we haveM0
n.1/ D .Tn � E.Tn//=n by the definition ofMn.z/.

From Lemma 3.4, it follows that

M
0
n.1/ D 1

2� i

Z

jz�1jDı<1

z�2
Mn.z/dz

! 1

2� i

Z

jz�1jDı<1

z�2M.z/dz

D M 0.1/ D Y 0.1/;

almost surely.

The result is already known; see Mahmoud (1991) and Dobrow and Fill (1999). However,

the approach here also gives

M
.m/
n .1/ ! M .m/.1/ .m � 1/;

almost surely and inL2. In particular, whenm D 2, we have

1

n

X

k

k.k � 1/.Yn;k � �n;k/ � 2

n
E.Tn/.Tn � E.Tn// ! M 00.1/:

Note thatM .m/
n .1/ is also a martingale form � 1.

4. Profile of random binary search trees

We give in this section the corresponding results for the profiles of random BSTs. The

proofs are similar to those for random recursive trees and are thus omitted. Recall thatXn;k
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andIn;k denote the number of external nodes and internal nodes, respectively, at levelk in a

random BST ofn elements.

4.1. External nodes

It is known since Lynch (1965) that

X

k

E.Xn;k/u
k D

�

n C 2u � 1

n

�

.n � 0/I

see also Françon (1977) or Mahmoud (1992).

Lemma 4.1. For n � 0

X

k;h

E.Xn;kXn;h/u
kvh D 2uv

2u C 2v � 2uv � 1

�

n C 2u C 2v � 2

n

�

C 2u C 2v � 4uv � 1

2u C 2v � 2uv � 1

�

n C 2uv � 1

n

�

:

This simplifies Lemma 4 in Chauvin et al. (2001).

From this lemma, we deduce, by singularity analysis (see Flajolet and Odlyzko, 1990), that

E.Xn;kXn;h/ D 2kChŒukvh��.u; v/nuCv�2
�

1 C O
�

n�1
��

C O

 

ık;h

.2 logn/k

k!n

!

;

uniformly for ˛; ˇ 2 Œ2 �
p

2 C "; 2 C
p

2 � "� for any" > 0, where

�.u; v/ WD uv

.2u C 2v � uv � 2/�.u C v � 1/
� 1

�.u/�.v/
: (4.1)

Theorem 4.1. For ˛; ˇ 2 .2 �
p

2; 2 C
p

2/, the correlation coefficient�.Xn;k ;Xn;h/ is

asymptotic to
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�.˛; ˇ/
p

�.˛; ˛/�.ˇ; ˇ/
; if ˛; ˇ 62 f1; 2gI

�0
v.˛; ˇ/tn;h � 1

2
�00
v2.˛; ˇ/

p

�.˛; ˛/p.ˇ; ˇI tn;h; tn;h/
; if ˛ 62 f1; 2g; ˇ 2 f1; 2gI

p.˛; ˇI sn;k ; tn;h/
p

p.˛; ˛I sn;k ; sn;k/p.ˇ; ˇI tn;h; tn;h/
; if ˛; ˇ 2 f1; 2g;

where

p.j ; `I s; t/ WD �00
uv.j ; `/st � 1

2

�

j�000
u2v
.j ; `/t C `�000

uv2.j ; `/s
�

C j `

4
�
.4/

u2v2.j ; `/:

Unlike the profile of recursive trees, the limiting correlation coefficients of�.Xn;k ;Xn;h/

undergo two sharp sign-changes at1 and2; see Figures 5 and 6.
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FIGURE 5: Two sharp sign-changes for�.˛; ˇ/=
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Width. The same arguments as above lead to

E.max
k

Xn;k/ D n
p

4� logn

�

1 C O
�

.logn/�1=4 log logn
��

:



Correlation and width in random trees 23

This result is new. The corresponding almost sure convergence was established in Chauvin et

al. (2001).

4.2. Internal nodes

For internal nodes, we have

E.In;k/ D Œuk �
1 �

�

nC2u�1
n

�

1 � 2u
D 2k Œuk �

1 �
�

nCu�1
n

�

1 � u
I

see Brown and Shubert (1984) or Mahmoud (1992).

Lemma 4.2. For n � 0

X

k;h

E.In;kIn;h/u
kvh D 1

.1 � 2u/.1 � 2v/

�

1 �
�

n C 2u � 1

n

�

�
�

n C 2v � 1

n

��

C 2uv

.1 � 2u/.1 � 2v/.2u C 2v � 2uv � 1/

�

n C 2u C 2v � 2

n

�

� 1

2u C 2v � 2uv � 1

�

n C 2uv � 1

n

�

:

From this lemma, it follows, again by singularity analysis,that

E.Xn;kXn;h/ D 2kChŒukvh�'.u; v/nuCv�2
�

1 C O
�

n�1
��

C O

 

.2 logn/k

k!n
C .2 logn/h

h!n

!

;

uniformly for ˛; ˇ 2 Œ2 �
p

2 C "; 2 C
p

2 � "� (for any" > 0), where

'.u; v/ WD �.u; v/

.1 � u/.1 � v/ ;

� being defined in (4.1).

Theorem 4.2. For ˛; ˇ 2 .2 �
p

2; 2 C
p

2/, the correlation coefficient�.Xn;k ;Xn;h/ is

asymptotic to
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

'.˛; ˇ/
p

'.˛; ˛/'.ˇ; ˇ/
; if ˛; ˇ 62 f2gI

'0
v.˛; 2/tn;h � 1

2
'00
v2.˛; 2/

p

'.˛; ˛/q.tn;h; tn;h/
; if ˛ 6D 2; ˇ D 2I

q.sn;k ; tn;h/
p

q.sn;k ; sn;k/q.tn;h; tn;h/
; if ˛ D ˇ D 2;

where

q.s; t/ WD '00
uv.2; 2/st �

�

'000
uv2.2; 2/s C '000

u2v
.2; 2/t

�

C '
.4/

u2v2.2; 2/:
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Figure 7 depicts the single sign-change of the limiting correlation coefficients'.˛; ˇ/=
p

'.˛; ˛/'.ˇ; ˇ/;

compare Figures 5 and 6.

Note that'.1; 1/ D c2 D 2 ��2=6. Thus�.In;k ; In;h/ ! 1 when.i/ k; h � ˛ logn where

˛ 6D 2 and.i i/ k; h � 2 logn andjk � 2 lognj; jh � 2 lognj ! 1.
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FIGURE 7: Asymptotic correlation coefficients:̨ D 1:5 andˇ varies (left), and a3-dimensional plot

(right) for ˛; ˇ 2 .2 �
p

2; 2 C
p

2/.

An intuitive interpretation of the sign-change. For internal nodes, the behavior and the

corresponding intuitive interpretation of the limiting correlation coefficients are similar to

those ofYn;k (of recursive trees). The double sign-change of the limit of�.Xn;k ;Xn;h/ is

roughly explained as follows. Observe first that

E.In;k/ �

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

2k � E.Xn;k/

1 � ˛n;k

; if 1 � k � logn � .logn/2=3�";

2kˆ

 

logn � k
p

logn

!

; if jk � lognj � .logn/2=3�";

E.Xn;k/

˛n;k � 1
; if k � logn C .logn/2=3�";

for any" > 0, whereˆ.x/ is the standard normal distribution function; see FHN. Thissays

roughly that levels up to.1 � "/ logn are full of internal nodes (since in this rangeE.Xn;k/ D

o.2k/) with less room for external nodes; outside this range, the number of internal nodes at
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each level is asymptotically of the same order as that of external nodes. Thus ifXn;k with, say

˛ 2 .1; 2/ has more nodes, then this means that there are also more internal nodes at this and

neighboring levels, which implies that there are fewer nodes available at levels� .1 � "/ logn

and levels� .2C"/ logn, similar to the interpretation given in Introduction for recursive trees.

5. Conclusions

We discovered in this paper the sharp sign-change phenomenain the correlation coefficients

of two level sizes in random recursive trees and random BSTs.Such sign-changes are consis-

tent with the bimodality of the variance in the middle range (k � logn for recursive trees and

k � 2 logn for BSTs).

We conclude this paper with a brief comparison of the different approaches we used for

the variance (and covariance) of profiles. In Hwang and Drmota (2004), we introduced two

approaches forV.Xn;k/ andV.Yn;k/, one based on explicit integral representations in terms

of Bessel functions and the other on explicit expressions interms of Stirling numbers of the

first kind. But extending the two approaches toV.In;k/ is not easy. In FHN, we used an ap-

proach based on recurrence and asymptotic transfer, which applies well to all three profiles we

discussed in this paper. But getting more terms in the asymptotic expansions by this approach

is effortful. The approach we present in this paper is not only more general (applicable to

covariance and to more profiles) but also useful in deriving asymptotic expansions if needed.

Note that by theL2-convergence of the normalized profiles (established by, say the contraction

method), the leading estimates for the variance or covariance can also be derived by the fixed-

point equation of the limit laws. But this approach fails forthe ranges when the limit laws are

degenerate.

The major open question here is: what is the limit distribution (if it exists) of the width? Is

it the same as the limit law of total path length (in both classof random trees considered in this

paper)?
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