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Cuckoo hashing was introduced by Pagh and Rodler in 2001. Its main feature is that it provides

constant worst case search time. The aim of this paper is to present a precise average case analysis

of Cuckoo hashing. In particular, we determine the probability that Cuckoo hashing produces no
conflicts and and give an upper bound for the construction time, that is linear in the size of the

table. The analysis rests on a generating function approach to the so called Cuckoo Graph, a

random bipartite graph and an application of a double saddle point method to obtain asymptotic
expansions. Furthermore, we provide some results concerning the structure of these kind of random

graphs. Our results extend an analysis of Devroye and Morin in 2003. Additionally, we provide

numerical results confirming the mathematical analysis.

Categories and Subject Descriptors: E.2 [Data]: Data Storage Representations—hash table rep-

resentations; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical
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ics]: Combinatorics—Counting problems; Generating functions; G.2.2 [Discrete Mathematics]:

Graph Theory
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1. INTRODUCTION

In computer science hash tables are dictionaries, where keys are mapped to the
hash table with a so-called hash function. Basic operations on hash tables are
insertion, look-up and deletion of data records. Standard hash algorithms such
as open addressing or hashing with chaining (see e.g. [Knuth 1998],[Gonnet and
Baeza-Yates 1991] for details) are widely spread and well analyzed algorithms, but
a big drawback is their bad worst case behavior. In this paper we consider a
relatively new hash algorithm, cuckoo hashing, that provides a constant worst case
search time. The algorithm was introduced in [Pagh and Rodler 2004] and a further
analysis was done by [Devroye and Morin 2003].
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The critical point of every hash algorithm is the handling of colliding keys, that
is, different keys which are mapped to the same location of the hash table by the
hash function. The well known birthday paradox tells us, that such collisions are
likely to appear, even if we only consider sparse tables. Usually, collisions are
resolved by either allocating additional memory and linking this memory to the
table (“chaining”) or by inspecting the other memory cells in a specified order
(“open addressing”). Cuckoo hashing uses a different attempt. It restricts the
number of possible storage locations of every key x to two, h1(x) and h2(x), each
in a separate table V1 and V2, respectively, and resolves collisions in rearranging
keys. The data points are inserted sequentially, and each storage location can only
hold a single data. A new key xnew is always inserted in the first table V1 at
location v1 = h1(xnew). If v1 is already occupied by another key xold, that is,
h1(xold) = h1(xnew) = v1 then we “kick out” xold and move it to its alternate
position v2 = h2(xold) ∈ V2. If v2 is occupied by another key then we proceed with
this “kick out”-procedure until we access an empty cell. The algorithm is named
after the cuckoo, because this ejection is similar to the birds nesting habits. The
insertion procedure may of course end in an endless loop if the same keys are kicked
out again and again. In the the latter case, we perform a rehash, that is, we rebuild
the whole data structure using new hash functions and potentially also a larger
table. Figure 1 depicts the evolution of a small Cuckoo hash table.
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Fig. 1. An example of an evolving Cuckoo hash table. We start with an empty table and try to
insert the keys a to g one after the other. Each of the further pictures depicts the data structure
after the insertion of a single key. Thin lines connect the two possible storage locations h1(x) and

h2(x) of a key x. Thick lines with arrows indicate the movement of the corresponding key, caused

by the last insertion. The final picture displays the data structure after the attempt to insert g,
what is impossible, and causes and endless loop.
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There are also some generalizations of cuckoo hashing. One might use d instead
of only two tables or storage places (d-ary Cuckoo Hashing) [Fotakis et al. 2005;
Czyzowicz et al. 2006] or use cells with a storage capacity greater than one [Diet-
zfelbinger and Weidling 2007]. Implementation details are e.g. discussed in [Ross
2006; Tran and Kittitornkun 2007].

The paper is organized as follows. In Section 2 we introduce a bipartite graph (the
Cuckoo graph) that is associated to the Cuckoo hash process and is fundamental for
the analysis. The asymptotic results of the paper are then collected and discussed
in Section 3. The proofs are given in Sections 4–7. Finally, in Section 8 we discuss a
simplified version of Cuckoo hashing. Some technical proofs are put to an Appendix.

2. THE CUCKOO GRAPH

We model Cuckoo hashing with help of a labeled bipartite multigraph. The two
(labeled) vertex sets V1, V2 represent the two hash tables. In the context of Cuckoo
hashing we will assume that V1 and V2 have equal size |V1| = |V2| = m. An
asymmetric variant is discussed in [Kutzelnigg 2008]. Further, let h1, h2 denote the
two hash function with ranges V1 and V2, respectively. The insertion of a key x is
encoded by an edge (h1(x), h2(x)) ∈ V1 × V2. It is also convenient to use labeled
edges where the labels represent the evolution of the hash table, that is, the edge
with label j corresponds to the j-th key that is inserted in the table. Note that
repeated edges are possible.

This multigraph will be called Cuckoo graph. Interestingly the structure of this
graph determines whether the insertion algorithm can resolve all conflicts or not.
It is is obviously necessary that every component of the Cuckoo graph has the less
or equal edges than vertices. This means that all components are either trees or
unicyclic (i.e. they contain exactly one cycle). On the other hand, it is easy to see
that an endless loop in the insertion algorithms cannot occur in a tree or unicyclic
component (see [Devroye and Morin 2003] for further details). It is common to
call a component of a graph complex if it is neither a tree nor unicyclic. Thus, a
Cuckoo graph is proper if and only if it contains no complex component.

Because of this close relation between the hash algorithm and the corresponding
graph we can analyze Cuckoo hashing by considering bipartite multigraphs. In par-
ticular, if we are interested in the average case analysis of Cuckoo hashing, we can
work with random bipartite multigraphs. For example, the probability that Cuckoo
hashing works successfully with n keys and table size m equals the probability that
a random bipartite multigraph with 2 × m vertices and n edges has no complex
component. Further, structural knowledge of tree and unicyclic components pro-
vides information about the running time. For instance, the insertion cost of a key
x such that the edge (h1(x), h2(x)) is contained in a tree component is bounded by
the diameter of this component.

3. RESULTS

Our analysis is based on the assumption, that the storage locations for the keys
x form a sequence (h1(x), h2(x)) of independent uniform random pairs of integers
drawn from {1, 2, . . . ,m} × {1, 2, . . . ,m}. Further, if a rehash is necessary, we
assume that all new hash values are independent from all previous attempts. One

ACM Journal Name, Vol. V, No. N, Month 20YY.



4 · M. Drmota and R. Kutzelnigg

might argue that this model is out of touch with reality. However, recall that
uniform hashing (using a similar independence assumption), and double hashing
(using very simple hash functions) behave practically identical [Gonnet and Baeza-
Yates 1991]. Unfortunately, this simple hash functions do not work well for Cuckoo
hashing. But it is sufficient to use polynomial hash functions with pseudo random
behavior [Dietzfelbinger et al. 1992],[Dietzfelbinger and Woelfel 2003]. See also our
experimental data.

Theorem 1. Suppose that ε ∈ (0, 1) is fixed. Then the probability p(n, m) that
a Cuckoo hash of n = b(1 − ε)mc data points into two tables of size m succeeds,
(that is, the corresponding Cuckoo graph contains no complex component,) is equal
to

p(n, m) = 1− (2ε2 − 5ε + 5)(1− ε)3

12(2− ε)2ε3

1
m

+O
(

1
m2

)
.

This probability decreases to

p(n, n) =

√
2
3

+ O(1), (1)

if n equals m.

There are several related results in the literature. For example, Lemma 2.1 of [Kalu-
gin 1991] already states that the amount of graphs containing complex components
tends to zero, but it does not provide an asymptotic approximation. Lemma 2 of
[Devroye and Morin 2003] claims the bound 1 − O(1/m), but does not provide a
detailed expansion. Further, a formula corresponding to (1) also holds for usual
random multigraphs [Janson et al. 1993], see also Section 8.

We provide experimental data in Table I to examine the practicality of the derived
approximations. A pseudo random number generator is used to create hash values
that satisfy the postulated conditions of randomness.

m
ε = 0.4 ε = 0.2 ε = 0.1 ε = 0.06 ε = 0.04

res. exp. res. exp. res. exp. res. exp. res. exp.

5 · 103 38 36.5 649 672 5070 7606 14467 25624

104 16 18.2 288 336 3046 3803 9954 19857

5 · 104 1 3.65 62 67.2 676 761 3127 4008 8439
105 1 1.82 31 33.6 362 380 1753 2004 5210 7202

5 · 105 0 0.36 7 6.72 76 76.1 398 401 1284 1440

Table I. Comparison of simulation result (res.) and expected number of failures (exp.) during the
construction of 5 · 105 cuckoo hash tables.

Our second result concerns the construction time Tm,n of a hash table of size
2 ×m and n keys. Our measure is, of course, the number of insertions n plus the
number of “kick out”-steps. Note that it is no loss of generality to assume that
we can successfully fill the table. The probability to fail is O(1/m). In this case
we just choose new hash functions and rebuild the table. The construction time
of this table is again bounded by O(m) and, thus, the total expected error in the
construction time will be O(1).
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Theorem 2. Under the assumptions of Theorem 1, the expected construction
time of a Cuckoo hash table is bounded above by

E Tm,n ≤ min
(

4,
− log ε

1− ε

)
n +O(1),

where the constant implied by O(1) depends on ε.

We obtain these two bounds using different estimators for the insertion cost in a
tree component, namely the component size and the diameter. The latter estimator
provides of course the “better” bound 4n +O(1), but as long as ε is not close to 0
even the constant 4 is a exaggerated estimate, as can be seen in Table II. See the
proof of this theorem for more details.

[Devroye and Morin 2003] and [Pagh and Rodler 2004]1 give the upper bound
O(n) for the construction time, if ε greater zero is fixed.

m ε = 0.4 ε = 0.2 ε = 0.1 ε = 0.06 ε = 0.04

5 · 103 1.2721 1.3829 1.5108 1.6791 1.8663

104 1.2718 1.3782 1.4832 1.6151 1.7809
5 · 104 1.2717 1.3753 1.4511 1.5196 1.6154

105 1.2717 1.3749 1.4469 1.5006 1.5697

5 · 105 1.2717 1.3746 1.4430 1.4820 1.5147
− log ε
1−ε

1.5272 2.0118 2.5584 2.9930 3.3530

sample size: 5 · 105

Table II. Insertion costs of cuckoo hashing.

Finally we present results on the structure of the Cuckoo graph.

Theorem 3. Suppose that ε ∈ (0, 1) is fixed and that n = b(1 − ε)mc. Then a
random labeled bipartite multigraph with 2 × m vertices and n edges satisfies the
following properties.

(1 ) The number of unicyclic components Cuc
mn,k with cycle length 2k has in limit a

Poisson distribution Po(λk) with parameter

λk =
1
2k

(1− ε)2k
,

and the number of unicyclic components Cuc
mn =

∑
k≥1 Cuc

mn,k has in limit a
Poisson distribution Po(λ), too, with parameter

λ = −1
2

log
(
1− (1− ε)2

)
.

(2 ) The number of tree components Tmn,k with k vertices satisfy a central limit
theorem of the form

Tmn,k − µ m√
σ2m

→ N(0, 1),

1This analysis is even based on using universal hash functions and thus, weaker conditions on

randomness.
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where

µ = 2
kk−2(1− ε)k−1ek(ε−1)

k!
and

σ2 = µ− 2e2k(ε−1)k2k−4(1− ε)2k−3(k2ε2 + k2ε− 4kε + 2)
(k!)2

.

Furthermore, mean and variance are asymptotically given by E Tmn,k = µ m +
O(1) and Var Tmn,k = σ2m +O(1) as m →∞, respectively.

(3 ) The number of vertices V c
mn contained in cycles has a limiting distribution V c

with characteristic function

E eisV c

=

√
1− (1− ε)2

1− e2is(1− ε)2
,

mean and variance satisfy

lim
m→∞

E V c
mn = E V c =

(1− ε)2

1− (1− ε)2
,

and

lim
m→∞

Var V c
mn = Var V c =

2(1− ε)2

(1− (1− ε)2)2
.

(4 ) Furthermore, the expected value of the number of vertices V uc
mn in unicyclic

components is asymptotically given by

lim
m→∞

E V uc
mn =

(1− ε)2

ε (1− (1− ε)2)
,

and its variance by

lim
m→∞

Var V uc
mn =

(1− ε)2(ε2 − 3ε + 4)
ε2 (1− (1− ε)2)2

.

Note that the second statement of Theorem 3.(1) is closely related to [Kalugin
1991, Theorem 2]. Further note that the parameters of the Poisson distributions
are related by ∑

k≥1

1
2k

(1− ε)2k = −1
2

log
(
1− (1− ε)2

)
.

Instead of considering the “symmetric” case where the graph possesses an equal
number of vertices of both types, we can also analyze asymmetric graphs (see
[Kutzelnigg 2008; 2009]) or a non-bipartite version (see Section 8) an obtain similar
results.

4. COUNTING SPARSE BIPARTITE GRAPHS

In this section, we establish a framework of generating functions and give the proof
of the first part of Theorem 1. The construction is similar to the multigraph process
in [Janson et al. 1993], but we are dealing with bipartite graphs.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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We start counting all bipartite graphs without restrictions to the type of their
components. Let Gm1,m2,n denote the set of all vertex and edge labeled bipartite
multi graphs (V1, V2, E) with |V1| = m1, |V2| = m2, and |E| = n. By definition it
is clear that the number of all graphs of the family Gm1,m2,n equals

#Gm1,m2,n = mn
1mn

2 . (2)

In particular, we are interested in the case m1 = m2 = m and n = b(1 − ε)mc,
where ε ∈ (0, 1). This means that the graph is relatively sparse. However, for
technical reasons it is necessary to take all possible bipartite graphs into account.

Next, let G◦
m1,m2,n denote those graphs in Gm1,m2,n without complex compo-

nents, that is, all components are either trees or unicyclic. Further,

g◦(x, y, v) =
∑

m1,m2,n

#G◦
m1,m2,n

xm1

m1!
ym2

m2!
vn

n!

denotes the corresponding generating function. Our next goal is to describe this
generating function. For this purpose we will first consider bipartite trees.

We call a tree bipartite if the vertices are partitioned into two classes V1 (“black”
vertices) and V2 (“white” vertices) such that no vertex has a neighbor of the same
class. They are called labeled if the vertices of type 1, that is vertices in V1, are
labeled by 1, 2, . . . , |V1| and the vertices of type 2 are labeled by 1, 2, . . . , |V2|.

Let T1 denote the set of bipartite rooted trees, where the root is contained in V1,
T2 the set of bipartite rooted trees, where the root is contained in V2, and T̃ the
class of unrooted bipartite trees. Furthermore, let t1,m1,m2 and t2,m1,m2 denote the
number of trees in T1 and T2, respectively, with m1 vertices of type of type 1 and
m2 of type 2. Similarly we define t̃m1,m2 . The corresponding generating functions
are defined by

t1(x, y) =
∑

m1,m2≥0

t1,m1,m2

xm1

m1!
ym2

m2!
,

t2(x, y) =
∑

m1,m2≥0

t2,m1,m2

xm1

m1!
ym2

m2!
,

and by

t̃(x, y) =
∑

m1,m2≥0

t̃m1,m2

xm1

m1!
ym2

m2!
.

Lemma 1. The generating functions t1(x, y), t2(x, y), and t̃(x, y) are given by

t1(x, y) = xet2(x,y), t2(x, y) = yet1(x,y) (3)

and by
t̃(x, y) = t1(x, y) + t2(x, y)− t1(x, y)t2(x, y).

Furthermore we have

t1,m1,m2 = mm2
1 mm1−1

2 , t2,m1,m2 = mm2−1
1 mm1

2

and
t̃m1,m2 = mm2−1

1 mm1−1
2 .
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The explicit formula for t̃m1,m2 is originally due to [Scoins 1962].
Note that t1(x, y) = t2(y, x) and that t1(x, x) equals the usual tree function

t(x) =
∑

n≥1 nn−1xn/n! that is given by t(x) = xet(x). Thus, t1(x, y) and t2(x, y)
are surely analytic functions for |x| < e−1 and |y| < e−1. This is due to the fact
that the radius of convergence of t(x) equals 1/e.

The partial derivatives of the functions t̃(x, y) and t1(x, y) are given by

∂

∂x
t̃(x, y) =

t1(x, y)
x

,
∂

∂y
t̃(x, y) =

t2(x, y)
y

,

and
∂

∂x
t1(x, y) =

t1(x, y)
x(1− t1(x, y)t2(x, y))

,
∂

∂y
t1(x, y) =

t1(x, y) t2(x, y)
y(1− t1(x, y)t2(x, y))

.

Further, the generating function of (usual) unrooted labeled trees is given by t(x)−
t(x)2/2. The relation (1) is a generalization of this result.

Proof. The functional equations (3) are obvious by their recursive descrip-
tion. Next, note that the partial derivations of t̃(x, y) and t1(x, y) + t2(x, y) −
t1(x, y)t2(x, y) are equal, thus (1) holds.

There is also a combinatorial interpretation of (1). Consider a rooted tree, pos-
sessing a black root labeled by 1, as an unrooted tree. Next, examine an unordered
pair (t1, t2) of trees from T1×T2, and join the roots by an edge. If the black vertex
labeled by 1 is contained in t1, consider the root of t2 as new root, and we obtain a
tree possessing a white root and at least one black vertex. Otherwise, consider the
root of t1 as new root, and we obtain a tree with a black vertex not labeled by 1.

Lagrange inversion applied to t1(x, y) = x exp
(
yet1(x,y)

)
yields:

[xm1ym2 ]t1(x, y) = [ym2 ]
1

m1
[um1−1]

(
eyeu

)m1

= [ym2 ]
1

m1
[um1−1]

∑
k≥0

∑
l≥0

mk
1yk

k!
ulkl

l!

= [ym2 ]
1

m1

∑
k≥0

mk
1yk

k!
km1−1

(m1 − 1)!
=

mm2
1 mm1−1

2

m1!m2!

Furthermore, t̃m1,m2 = t1,m1,m2/m1 = t2,m1,m2/m2 since there are exactly m1 ways
to choose the root of type 1 in an unrooted tree with m1 vertices of type 1.

With help of these functions, we can describe the generating function g◦(x, y, v).

Lemma 2. The generating function g◦(x, y, v) is given by

g◦(x, y, v) =
e

1
v t̃(xv,yv)√

1− t1(xv, yv)t2(xv, yv)
.

Proof. We have to count graphs where each component is either an unrooted
tree (that is counted by t̃(x, y)) or a graph with exactly one cycle.

Of course, a cycle has to have an even number of vertices (say 2k), where k
vertices are black and the other k vertices are white. A cyclic vertex of black color
can be considered as the root of a rooted tree of type 1 and similarly, a white cyclic
ACM Journal Name, Vol. V, No. N, Month 20YY.
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vertex can be considered as the root of a rooted tree of type 2. Note that we have
to divide the product of the generating functions t1(x, y)kt2(x, y)k by 2k to account
for cyclic order and change of orientation. Hence, the corresponding generating
functions of a unicyclic graph with 2k cyclic points is given by

1
2k

t1(x, y)kt2(x, y)k.

Consequently the generating function of a connected graph with exactly one cycle
is given by

c(x, y) =
∑
k≥1

1
2k

t1(x, y)kt2(x, y)k =
1
2

log
1

1− t1(x, y)t2(x, y)
.

Since a cyclic component of size m1 +m2 has exactly the same number of edges and
since there are (m1 + m2)! possible labels, the corresponding generating function
that takes the number of edges into account in given by c(xv, yv).

Similarly, a tree of size m1+m2 has exactly n = m1+m2−1 edges. Consequently
the generating function t̃(xv, yv)/v corresponds to a bipartite unrooted tree.

Finally the generating function g◦(x, y, v) is given by

g◦(x, y, v) = e
1
v t̃(xv,yv)+c(xv,yv) =

e
1
v t̃(xv,yv)√

1− t1(xv, yv)t2(xv, yv)
,

which completes the proof of the lemma.

Corollary 1. The number of graphs #G◦
m1,m2,n is given by

#G◦
m1,m2,n =

m1! m2! n!
(m1 + m2 − n)!

[xm1ym2 ]
t̃(x, y)m1+m2−n√
1− t1(x, y)t2(x, y)

. (4)

Hence, by Cauchy’s formula

#G◦
m,m,n =

−(m!)2 n!
4π2(2m− n)!

∮ ∮
t̃(x, y)2m−n√

1− t1(x, y)t2(x, y)
dx

xm+1

dy

ym+1
. (5)

This is in fact an integral that can be asymptotically evaluated with help of a double
saddle point method, see Lemma 3.

Lemma 3. Let f(x, y) and g(x, y) be analytic functions locally around (x, y) =
(0, 0) such that all coefficients [xm1ym2 ]f(x, y) and [xm1ym2 ]g(x, y) are non negative
and that there exists M such that all indices (m1, m2) with m1, m2 ≥ M can be
represented as a finite linear combination of the set {(m1, m2)|[xm1ym2 ]f(x, y) > 0}
with positive integers as coefficients.

Let R1 and R2 be compact intervals of the positive real line such that R = R1×R2

is contained in the regions of convergence of f(x, y) and g(x, y). Furthermore set

S =
{(

x

f(x, y)
∂

∂x
f(x, y),

y

f(x, y)
∂

∂y
f(x, y)

)
: (x, y) ∈ R

}
.

Then we have

[xm1ym2 ]g(x, y)f(x, y)k =
g(x0, y0)f(x0, y0)k

2πxm1
0 ym2

0 k
√

∆

(
1 +

H

24∆3

1
k

+O
(

1
k2

))
,

ACM Journal Name, Vol. V, No. N, Month 20YY.
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uniformly for (m1/k,m2/k) ∈ S, where x0 and y0 are uniquely determined by

m1

k
=

x0

f(x0, y0)

[
∂

∂x
f(x, y)

]
(x0,y0)

,
m2

k
=

y0

f(x0, y0)

[
∂

∂y
f(x, y)

]
(x0,y0)

and the constants ∆ and H are given in the following way: Let κij and κij be the
cummulants

κij =
[

∂i

∂ui

∂j

∂vj
log f(x0e

u, y0e
v)
]
(0,0)

, κij =
[

∂i

∂ui

∂j

∂vj
log g(x0e

u, y0e
v)
]
(0,0)

.

Then ∆ = κ20κ02 − κ2
11 holds and H is given by

H = α + β + β̂ + γκ10 + γ̂κ01 + δκ10κ01 + ηκ2
10 + η̂κ2

01 + 4ηκ20 + 4η̂κ02 + 4δκ11,

where

α = 54κ21κ11κ12κ20κ02 + 6κ22κ20κ02κ
2
11 − 12κ22κ

4
11 + 4κ03κ

3
11κ30

+ 36κ21κ
3
11κ12 + 6κ22κ

2
20κ

2
02 + 6κ03κ11κ30κ20κ02,

β = −5κ3
02κ

2
30 + 30κ2

02κ30κ11κ21 − 24κ02κ30κ12κ
2
11 − 6κ2

02κ30κ12κ20

− 12κ11κ
2
02κ31κ20 − 36κ02κ

2
21κ

2
11 − 9κ2

02κ
2
21κ20 + 3κ3

02κ40κ20

− 3κ2
02κ40κ

2
11 + 12κ3

11κ02κ31,

γ = 12∆
(
κ2

02κ30 − κ11κ20κ03 − 3κ21κ11κ02 + κ12κ
2
11 + κ12(κ02κ20 + κ2

11)
)
,

δ = 24∆(κ11κ20κ02 − κ3
11),

η = 12∆(κ02κ
2
11 − κ2

02κ20),

and ˆ indicates to replace all functions of type κij by κji.

Lemma 3 is a generalization of a result of [Good 1957], where g(x, y) = 1. Its proof
of is given in the Appendix.

We fix ε > 0 and consider the sequence of integer pairs (m, n) = (m, b(1− ε)mc).
For technical reasons we also define the ratio

ε′ = ε′m =
m− n

m
= 1− b(1− ε)mc

m
= ε +O

(
m−1

)
which is always very close to ε. By Stirling’s formula

n! =
nn

en

√
2πn

(
1 +

1
12n

+
1

288n2
+O

(
1
n3

))
we obtain the asymptotic expansion

(m!)2 n!
(2m− n)!

=
2πmm2mnn

e2n(2m− n)2m−n

√
n

2m− n

(
1 +

1 + ε′ − ε′2

6(1− ε′)2m
+O

(
1

m2

))
. (6)

For our problem, it turns out that the saddle point is given by

x0 = y0 =
n

m
e−

n
m = (1− ε′)eε′−1 <

1
e
.

This can be easily checked. By symmetry it is clear that x0 = y0. Further, t1(x, x) =
t(x) = xet(x) equals the tree function. Hence we get

t1(x0, x0) = 1− ε′ =
n

m
, t̃(x0, x0) = 1− ε′2 =

n

m

(
2− n

m

)
.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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For instance, we further obtain

κ20 =
t1(x0, y0)

(1− t1(x0, y0)t2(x0, y0))t̃(x0, y0)
− t1(x0, y0)2

t̃(x0, y0)2
=

ε′
2 − ε′ + 1

(ε′ + 1)2 ε′ (2− ε′)
,

κ11 =
t1(x0, y0)t2(x0, y0)

(1− t1(x0, y0)t2(x0, y0))t̃(x0, y0)
− t1(x0, y0)t2(x0, y0)

t̃(x0, y0)2
=

1− 2ε′

(ε′ + 1)2 ε′ (2− ε′)
,

and

∆ =
1− ε′

ε′(2− ε′)(ε′ + 1)3
=

m4n

(2m− n)3(m2 − n2)
.

The other cummulants can be calculated in the same way, but have been com-
puted with help of a computer algebra system in a half-automatic way.

We set f = t̃, g = 1/
√

1− t1t2, k = 2m− n, m1 = m, and m2 = m, in Lemma 3
and obtain the leading coefficient

t̃(x0, y0)2m−n

2π(2m− n)xm
0 ym

0

√
1− t1(x0, y0)t2(x0, y0)

√
∆

=
e2nm2n+1(2m− 2)2m−n−1

2πnnm2m
√

∆
√

m2 − n2
,

and

H =
ε′6 − 10ε′5 + 21ε′4 − 2ε′3 − 27ε′2 + 20ε′ − 5

12ε′3(−2 + ε′)2(1− ε′)
.

Combining these results with (6) we obtain

#G◦
m,m,n = m2n

(
1 +

H

(1 + ε′)m
+

1 + ε′ − ε′2

6(1− ε′)2m
+O

(
1

m2

))
= m2n

(
1− 1

m

(2ε′
2 − 5ε′ + 5)(1− ε′)3

12(2− ε′)2ε′3
+O

(
1

m2

))
Finally we can safely replace ε′ by ε = ε′+O(m−1) without changing the expansion.
All changes go into the error term O(m−2).

Hence, if p(n, m) denotes the probability, that every component of the cuckoo
graph is either a tree or unicyclic, after the insertion of n edges then we have

p(n, m) =
#G◦

m,m,b(1−ε)mc

#Gm,m,b(1−ε)mc
= 1− 1

m

(2ε2 − 5ε + 5)(1− ε)3

12(2− ε)2ε3
+O

(
1

m2

)
,

which completes the proof of the first part of Theorem 1.
Figure 2 displays the graph of h(ε) = (2ε2− 5ε + 5)(1− ε)3/(12(2− ε)2ε3). Note

that h(ε) expands as

h(ε) =
5
48

ε−3 − 5
16

ε−2 +
21
64

ε−1 − 13
96

+
3

256
ε +

1
256

ε2 +
1

1024
ε3 +O

(
ε4
)

(7)

if ε → 0.
We want to note that it is also possible to obtain a little bit more precise asymp-

totic expansion for

p(n, m) = 1− h(ε′)
m

− ĥ(ε′)
m2

+O
(

1
m3

)
,

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 2. The graph of h(ε).

where h̃(·) is again explicit. This can be done by refining the calculations related
to Lemma 3.

For example, we can apply these expansions in order to obtain asymptotic rep-
resentations for the probability q(n + 1, m) that the insertion of the n + 1-st edge
creates a bicyclic component, conditioned on the property, that the first n insertions
did not create such a component.

Lemma 4. The probability that the insertion of the n + 1-st inserted key forces
a rehash is given by

q(n + 1, m) = −
h′
(
1− n

m

)
m2

+O
(

1
m3

)
.

This is uniform for n ≤ (1− η)m, assuming η > 0.

Proof. By definition we have p(n + 1, m) = (1− q(n + 1, m))p(n, m). Hence we
get

q(n + 1, m) =
p(n, m)− p(n + 1, m)

p(n, m)

=

(
h(ε′)
m

−
h
(
ε′ − 1

m

)
m

+
ĥ(ε′)
m2

−
ĥ
(
ε′ − 1

m

)
m2

+O
(

1
m3

))

×
(

1 +O
(

1
m

))
= −h′(ε′)

m2
− ĥ′(ε′)

m3
+O

(
1

m3

)
=

(1− ε′)2(−ε′
3 + 8ε′

2 − 15ε′ + 10)
4(2− ε′)3ε′4

1
m2

+O
(

1
m3

)
.

5. THE “CRITICAL CASE”

It is also interesting to consider the case ε → 0, that is, n/m → 1. This case is more
delicate since limiting the saddle point x0 = 1/e coalesces with the singularity of
ACM Journal Name, Vol. V, No. N, Month 20YY.
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the denominator. (Note that t1(1/e, 1/e) = 1.) Hence we expect a phase transition
where the singularity behavior of the denominator gets more and more important.
This is definitely an involved analytic problem and not easy to handle. In particular,
one has to handle the singularity structure of t1(x, y)t2(x, y) around x = 1/e and
y = 1/e, which is surely feasible, but the choice of the double contour integral is
not clear.

For the sake of shortness we will only work out the limiting case ε = 0, that
is, m = n. Even in this case we do not work directly with the representation (4)
but apply Lagrange’s inversion formula first. In particular, we use the fact that
t1(x, y) satisfies the equation t1 = x exp (yet1). This leads (again) to a saddle point
integral, where the denominator is explicit and does not contain implicitly defined
functions as before.

Lemma 5. We have the identity

#G◦
m,m,m = (m!)2

∑
k≥0

(
2k

k

)
1
4k

[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k.

Proof. We use Corollary 1 and the series expansion

1√
1− z

=
∑
k≥0

(
2k

k

)
1
4k

zk.

Further, we define the functions

f(u, y) = (u + yeu(1− u)) exp (yeu) ,

l(u, y) = uyeu,

and

h(u, y) = hk(u, y) = u
mu−myeuu2 + ku + kyeu + ku2 − ku2yeu

u (u + yeu(1− u))
.

Lemma 6. The following identity holds:

[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k =
1
m

[umym]f(u, y)ml(u, y)khk(u, y).

Proof. Set φ(u, y) = exp (yeu). Then the generating function t1(x, y) satisfies
the relation t1(x, y) = xφ (t1(x, y), y). Furthermore with

g(u, y) = (u + yeu(1− u))m
uk (yeu)k

,

we have

t̃(x, y)mt1(x, y)kt2(x, y)k = g(t1(x, y), y).

Note that φ(0, y) 6= 0, so that we can apply Lagrange’s Inversion Theorem and
obtain:

[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k = [xmym]g(t1(x, y), y)

= [um−1ym]
1
m

φ(u, y)m ∂

∂u
g(u, y)

= [um−1ym]
1
m

(exp (yeu))m ∂

∂u

(
(u + yeu(1− u))m

uk (yeu)k
)

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Differentiation and simplification completes the proof.

Obviously, the coefficient [umym]f(u, y)ml(u, y)kh(u, y) equals zero if k is greater
than m. Furthermore, for moderate k the saddle point method is applicable to
obtain asymptotics for this coefficient. However, for relatively large k there is an
easy upper bound.

Lemma 7. Assume that k ≥ m
1
3+ξ is satisfied for a positive ξ. Then, there exists

a positive constant c such that

[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k = O
(
e2m−cmξ

)
holds.

Proof. Note that the (trivial) bound

[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k ≤ r−2mt̃(r, r)mt1(r, r)kt2(r, r)k

holds for all r satisfying 0 < r < 1/e. We set r = (1− η) /e. Recall that t1(x, x)
equals the usual tree function t(x) and that t̃(x, x) = 2t(x)− t2(x) holds. Further,
the singular expansion of t(x) around its singularity 1/e is well known to be (cf.
[Flajolet and Sedgewick 2009])

t(x) = 1−
√

2
√

1− ex +
2
3
(1− ex)− 11

18
√

2
(1− ex)

3
2 +O

(
(1− ex)2

)
.

Thus, we obtain the inequality

[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k ≤ e2m+ 4
3

√
2mη

3
2−2

√
2η

1
2 k+O(mη2)+O(ηk).

Setting η = m−2/3 allows us to compute the claimed bound.

Lemma 8. Assume that k = O
(
m1/3+ξ

)
holds. Then, there exists a positive real

constant c such that

1
m

[umym]f(u, y)ml(u, y)khk(u, y)

=
√

2π

2π2

e2m

m
7
6

∞∫
0

se
− 2

3 s3− ks
3√m sin

(√
3ksm− 1

3 +
π

3

)
ds

+O
(

e2m−cm− 1
12

)
+O

m− 7
6−

1
24 e2m

∞∫
0

se
− 2

3 s3− ks
3√m ds

 (8)

holds.

The proof of Lemma 8 is given in the Appendix.

Interestingly the integral appearing in Lemma 8 is closely related to the Lommel
function2

S1,2/3(x) = 1 +
(

2
x

) 2
3
∞∫
0

exp
(
−u3 − 3

(x

2

) 2
3

u

)
u du.

2The Lommel functions sµ,ν(x) and Sµ,ν(x) (of first and second kind) are solutions of the inho-

mogeneous Bessel differential equation x2y′′ + xy′ + (x2 − ν2)y = xµ+1. (cf. [Zwillinger 1992])
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In particular the main term in (8) can be rewritten to

√
2π

2π2

e2m

m
7
6

∞∫
0

se
− 2

3 s3− ks
3√m sin

(√
3ksm− 1

3 +
π

3

)
ds

=
√

2π

2π2

kie2m

m
3
2

(
S1, 2

3

(
i

4k
3
2

3
√

m

)
− S1, 2

3

(
−i

4k
3
2

3
√

m

))
.

With the help of the above results we are now able to calculate the number of
graphs without complex components. By combining Lemma 5 and Lemma 6 we
obtain

#G◦
m,m,m =

(m!)2

m

m−1∑
k=0

(
2k

k

)
1
4k

[umym]f(u, y)ml(u, y)kh(u, y) = (m!)2(S1 + S2),

where the sums S1 and S2 collect moderate k ≤ m
1
3+ξ and large k, respectively;

see below. We start with an upper bound of S2, which follows from Lemma 7:

S2 =
1
m

m−1∑
k=
⌈

m
1
3 +ξ
⌉
(

2k

k

)
1
4k

[umym]f(u, y)ml(u, y)kh(u, y) ≤ mO
(
e2m−cmε

)
.

The sum S1 is more difficult to handle. First, we use the result of Lemma 8 and
split it up into four terms:

S1 =
1
m

⌊
m

1
3 +ξ
⌋∑

k=0

(
2k

k

)
1
4k

[umym]f(u, y)ml(u, y)kh(u, y)

= e−
πi
6

√
2π

2π2

e2m

m
7
6

⌊
m

1
3 +ξ
⌋∑

k=0

(
2k

k

)
1
4k

∞∫
0

se
− 2

3 s3+ 2ζ
3√m

ks
ds

+ e
πi
6

√
2π

2π2

e2m

m
7
6

⌊
m

1
3 +ξ
⌋∑

k=0

(
2k

k

)
1
4k

∞∫
0

se
− 2

3 s3+ 2ζ
3√m

ks
ds

+

⌊
m

1
3 +ξ
⌋∑

k=0

(
2k

k

)
1
4k
O
(

e2m−cm− 1
12

)

+

⌊
m

1
3 +ξ
⌋∑

k=0

(
2k

k

)
1
4k
O

m− 7
6−

1
24 e2m

∞∫
0

se
− 2

3 s3− ks
3√m ds


= S11 + S12 + S13 + S14.

The integral term S11 is split up into three parts [0,∞) = [0, m−δ)∪ [m−δ, m
1
3−γ)∪
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[m
1
3−γ ,∞):

S11 = e−
πi
6

√
2π

2π2

e2m

m
7
6

⌊
m

1
3 +ξ
⌋∑

k=0

(
2k

k

)
1
4k

∞∫
0

se
− 2

3 s3+ 2ζ
3√m

ks
ds

= e−
πi
6

√
2π

2π2

e2m

m
7
6

∞∫
0

se−
2
3 s3

⌊
m

1
3 +ξ
⌋∑

k=0

(
2k

k

)
1
4k

e
2ζ
3√m

ks
ds

= e−
πi
6

√
2π

2π2

e2m

m
7
6

(I1 + I2 + I3) .

For the first part we have the upper bound

|I1| =
∣∣∣∣

m−δ∫
0

se−
2
3 s3

⌊
m

1
3 +ξ
⌋∑

k=0

(
2k

k

)
1
4k

e
2ζ
3√m

ks
ds

∣∣∣∣
≤

m−δ∫
0

se−
2
3 s3

∞∑
k=0

(
2k

k

)
1
4k

e
− 1

3√m
ks

ds

=

m−δ∫
0

se−
2
3 s3
(
1− e

− s
3√m

)− 1
2

ds = O
(
m

1
6−δ
)

,

where we have used the inequality 1/
√

1− e−x ≤ 1 + 1/
√

x. This inequality is also
useful for bounding I3:

|I3| =
∣∣∣∣

∞∫
m

1
3−γ

se−
2
3 s3

⌊
m

1
3 +ξ
⌋∑

k=0

(
2k

k

)
1
4k

e
2ζ
3√m

ks
ds

∣∣∣∣
≤

∞∫
m

1
3−γ

se−
2
3 s3
(
1− e

− s
3√m

)− 1
2

ds

≤ m
1
6

∞∫
m

1
3−γ

√
se−

2
3 s3

ds +

∞∫
m

1
3−γ

s2e−
2
3 s3

ds = m
1
6O
(
e−cm1−3γ

)
.

The integral part I2 provides the main contribution:

I2 =

m
1
3−γ∫

m−δ

se−
2
3 s3

⌊
m

1
3 +ξ
⌋∑

k=0

(
2k

k

)
1
4k

e
2ζ
3√m

ks
ds

=

m
1
3−γ∫

m−δ

se−
2
3 s3

( ∞∑
k=0

(
2k

k

)
1
4k

e
2ζ
3√m

ks +O
(
e−mξ−δ

))
ds
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=

m
1
3−γ∫

m−δ

se−
2
3 s3
(

1− e
2ζ
3√m

s
)− 1

2

ds +O
(
e−mξ−δ

)

=

m
1
3−γ∫

m−δ

se−
2
3 s3

(
m

1
6 e

πi
6

√
2s

+O
(
m− γ

2

))
ds +O

(
e−mξ−δ

)

=
m

1
6 e

πi
6

√
2

∞∫
0

√
se−

2
3 s3

ds +O
(
m− γ

2

)
+O

(
e−mξ−δ

)
+O

(
m

1
6−δ
)

+ m
1
6O
(
e−cm1−3γ

)
= e

πi
6

m
1
6
√

π

2
√

3
+O

(
e−mξ−δ

)
+O

(
m

1
6−δ
)

+ m
1
6O
(
e−cm1−3γ

)
.

For instance, we may set ξ = 1
12 , δ = 1

24 , and γ = 1
12 . Thus, we finally obtain:

S11 =
√

2e2m

4π
√

3m

(
1 +O

(
m−δ

))
.

The second sum can be handled in the same way. In particular we obtain the same
result:

S12 =
√

2e2m

4π
√

3m

(
1 +O

(
m−δ

))
.

What is now still missing, are bounds for the remaining sums. These can be straight-
forward attained for S13:

S13 =

⌊
m

1
3 +ξ
⌋∑

k=0

(
2k

k

)
1
4k
O
(

e2m−cm− 1
12

)
= O

(
m

1
3+ξe2m−cm− 1

12

)
.

The sum S14 is a bit more complicate to handle, but we can proceed as in the
calculation of S11:

S14 =

⌊
m

1
3 +ξ
⌋∑

k=0

(
2k

k

)
1
4k
O

m− 7
6−

1
24 e2m

∞∫
0

se
− 2

3 s3− ks
3√m

 ds = O
(
e2mm−1− 1

24

)
.

Putting these results together, we finally obtain the equation

#G◦
m,m,m = (m!)2

√
2e2m

2π
√

3m

(
1 +O

(
m− 1

24

))
= m2m

√
2
3

(
1 +O

(
m− 1

24

))
.

Recall that p(m, m) = #G◦
m,m,m/#Gm,m,m. Hence, by using (2), this completes

the proof of the second part of Theorem 1.

6. STRUCTURE OF THE CUCKOO GRAPH

In this section, we calculate limiting distributions of some parameters of random
bipartite graphs that strongly influence the behavior of Cuckoo hashing. These are
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for instance the size of the tree components and the number of cycles. Some param-
eters might also be of interest in other applications, see e.g. [Blasiak and Durrett
2005]. In particular, we give the proof of Theorem 3. This proof is divided into
several parts, each of it proves separately one of the claimed properties. Again, we
use a generating function approach. We recall the representation of the generating
function

g◦(x, y, v) =
e

1
v t̃(xv,yv)√

1− t1(xv, yv)t2(xv, yv)
. (9)

that counts graphs without complex components (and was established in Lemma 2).
Now, we introduce an additional variable to “mark” the parameter of interest,
see for instance [Flajolet and Odlyzko 1990], [Flajolet and Sedgewick 2009], and
[Drmota and Soria 1995; 1997] for further details of this method.

We fix ε > 0 and suppose that n = b(1− ε)mc. We also note that it is sufficient
to consider graphs of G◦

m,m,n (the set of bipartite graphs without complex compo-
nents), since all results for G◦

m,m,n hold for unrestricted random bipartite graphs
too. This can be easily seen in the following way. Consider a random variable ξ
defined on the set Gm,m,n (with n = b(1− ε)mc and ε > 0) and ξ′ its restriction to
G◦

m,m,n. Then the corresponding distribution functions by Fξ and Fξ′ satisfy the
relation

|Fξ − Fξ′ | ≤ P(Gm,m,n \G◦
m,m,n) = O(1/m).

6.1 Number of Cycles

Lemma 9. The moment generating function of the number of cycles Cuc
nm and

the number of cycles of length 2k Cuc
nm,k in a graph of G◦

m,m,n (with n = b(1− ε)mc
and ε > 0) is given by

E es Cuc
nm = exp

(
log
(
1− (1− ε)2

)
2

(1− es)

)(
1 +O

(
1
m

))
,

and

E es Cuc
nm,k = exp

(
− (1− ε)2k

2k
(1− es)

)(
1 +O

(
1
m

))
,

respectively, where s is any fixed real number.

Since the moment generating function of a Poisson distribution Po(λ) is given by
eλ(es−1) we immediately deduce the first part of Theorem 3.

Proof. We start with the calculation of the total number of cycles. For this
purpose we introduce a new variable w, that marks each cyclic component, that is,
the exponent of w counts the number of cycles. Equation (9) generalizes to

g◦c (x, y, v, w) = exp
(

1
v
t̃(xv, yv) +

w

2
log

1
1− t1(x, y)t2(x, y)

)
=

exp
(

1
v t̃(xv, yv)

)
(1− t1(xv, yv)t2(xv, yv))w/2

.
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Of course, we have g◦c (x, y, v, 1) = g◦(x, y, v). Hence, the moment generating func-
tion is given by

E es Cuc
nm =

[xmymvn] g◦(x, y, v, es)
[xmymvn] g◦(x, y, v, 1)

.

Again, the number of tree components equals 2m−n, thus the generating function
simplifies to[

xmymvn

(m!)2n!

]
g◦c (x, y, v, es) =

n!(m!)2

(2m− n)!
[xmym]

t̃(x, y)2m−n

(1− t1(x, y)t2(x, y))es/2
.

We continue using Cauchy’s formula and the double saddle point method as de-
scribed in Lemma 3. Note that we can use the same saddle point x0 = y0 =
(1− ε′)eε′−1. The calculation is even easier because it is sufficient to calculate the
leading term. We make use of the inequality∣∣(1− t1(x, y)t2(x, y))−es/2

∣∣ ≤ (1− t1(x0, y0)t2(x0, y0))−es/2,

that is satisfied on the lines |x| = x0, |y| = y0 of integration. Furthermore, since
es = O(1), the performed Taylor expansion is still applicable, and thus we obtain
a corresponding result:

[xmym]
t̃(x, y)2m−n

(1− t1(x, y)t2(x, y))es/2
∼ 1

2π(x0y0)mk
√

∆
t̃(x0, y0)2m−n

(1− t1(x0, y0)t2(x0, y0))
es/2

Thus we obtain the moment generating function

E es Cuc
nm =

√
1− t1(x0, y0)t2(x0, y0)

(1− t1(x0, y0)t2(x0, y0))
es/2

(
1 +O

(
1
m

))
=
(
1− (1− ε)2

)(1−es)/2
(

1 +O
(

1
m

))
,

which completes the proof of the first part of the lemma.
The proof of the second part is very similar, we just replace g◦c by the generating

function

g◦k(x, y, v, w) =
exp

(
1
v t̃(xv, yv) + (w − 1) 1

2k t1(xv, yv)kt2(xv, yv)k
)√

1− t1(xv, yv)t2(xv, yv)
.

Hereby, w is used to mark cycles of length 2k. Recall that the generating function
of a component containing a cycle of length 2k is given by 1

2k t1(x, y)kt2(x, y)k. We
proceed as usual and yield[

xmymvn

(m!)2n!

]
g◦k(x, y, v, es)

=
n!(m!)2

(2m− n)!
[xmym]

exp
(
(es − 1) 1

2k t1(x, y)kt2(x, y)k
)√

1− t1(x, y)t2(x, y)
t̃(x, y)2m−n.

Finally, the moment generating function of Cuc
nm,k equals

E es Cuc
nm,k =

[xmymvn]g◦k(x, y, v, es)
[xmymvn]g◦k(x, y, v, 1)
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= exp
(
(es − 1)

1
2k

t1(x0, y0)kt2(x0, y0)k
)(

1 +O
(

1
m

))
= exp

(
− (1− ε)2k

2k
(1− es)

)(
1 +O

(
1
m

))
,

which completes the proof of the lemma.

6.2 Trees with fixed size

The proof of the second part of Theorem 3 is more complicated, since we also
normalize depending on m. In what follows, we make use of the generating function
of a bipartite tree component with 2k vertices. Because of Lemma 1, this function
is given by

t̃k(x, y) =
∑

m1+m2=k

mm2−1
1 mm1−1

2

xm1

m1!
ym2

m2!
.

The following lemmata provide more detailed information about this function for
x = y.

Lemma 10. We have

t̃k(x, x) =
k∑

l=0

lk−l−1(k − l)l−1 xk

l! (k − l)!
= 2kk−2 xk

k!
.

Proof. We apply Lagrange’s Inversion Formula to obtain the coefficient of xk

in t̃(x, x) = 2t(x)− t(x)2, where t(x) denotes the usual tree function that satisfies
t(x) = x exp(t(x)). Because of the previous relation, it is also clear that the number
of unrooted bipartite trees possessing k vertices equals twice the number of unrooted
(usual) trees of size k.

Lemma 11. We have[
∂

∂u
t̃k(x0e

u, x0e
v)
]
(u,v)=(0,0)

= xk
0

k∑
l=0

lk−l(k − l)l−1 1
l! (k − l)!

= kk−1 xk
0

k!
.

Proof. The proof of this lemma is a simple application of Abel’s generalization
of the binomial theorem,

x−1(x + y + ka)k =
k∑

l=0

(
k

l

)
(x + la)l−1(y + (k − l)a)k−l,

see, e.g., [Riordan 1968]. We set x = k, y = k and a = −1 and obtain the claimed
result.

As in the formulation of Theorem 3 we use the following notation:

µ = 2
kk−2(1− ε)k−1ek(ε−1)

k!
,

and

σ2 = µ− 2e2k(ε−1)k2k−4(1− ε)2k−3(k2ε2 + k2ε− 4kε + 2)
(k!)2
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where k ≥ 1 is an integer and 0 < ε < 1.
We are now able to prove the following lemma.

Lemma 12. Mean value and variance of the number of tree components Tmn,k

with k vertices of a randomly chosen graph of G◦
m,m,n (with n = b(1 − ε)mc and

ε > 0) are given by

E Tmn,k = mµ +O (1) (10)

and by

Var Tmn,k = mσ2 +O (1) .

Proof. We start introducing the variable w to mark trees with of size k and
obtain the generating function

g◦k,t(x, y, v, w) =
exp

(
1
v t̃(xv, yv) + (w − 1) 1

v t̃k(xv, yv)
)√

1− t1(xv, yv)t2(xv, yv)
.

The l−th factorial moment is then given by

E Tmn,k(Tmn,k − 1) · · · (Tmn,k − l + 1) =
[xmymvn]

[
∂l

∂wl g
◦
t (x, y, v, w)

]
w=1

[xmymvn]g◦t (x, y, v, 1)
.

The numerator of this expression simplifies to

[xmymvn]
[

∂l

∂wl
g◦t (x, y, v, w)

]
w=1

= [xmym]

[
∂l

∂wl

(
t̃(x, y) + (w − 1)t̃k(x, y)

)2m−n

(2m− n)!
√

1− t(x, y)

]
w=1

= [x2m]
t̃(x, y)2m−n−l

(2m− n)!
√

1− t(x, y)
(2m− n)l t̃k(x, y)l.

Now, we apply Lemma 3 to calculate an asymptotic expansion. By using Lemma 10,
we obtain that the leading term of E Tmn,k(Tmn,k − 1) · · · (Tmn,k − l + 1) equals

(2m− n)l

t̃(x0, y0)l
t̃k(x0, y0)l =

ml(1 + ε)l

(1− ε2)l

(
2
kk−2

k!
(1− ε′)ke(ε′−1)k

)l(
1 +O

(
1
m

))
.

Hence, we have completed the proof of (10). Moreover, we conclude that the
variance is of order O(m) too, thus its calculation requires to determine the next
term of the asymptotic expansion. We do this in a semi-automatic way using Maple
and obtain the proposed result.

Lemma 13. Suppose that n = b(1 − ε)mc for some and ε > 0. Then for every
k ≥ 1 and for every real number r we have, as m →∞,

E eir(Tmn,k−µm)/
√

σ2m = e−
1
2 r2
(
1 +O

(
m− 1

2+δ
))

,

where 0 < δ < 1
6 .
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Proof. The characteristic function E eirTmn,k is given by

E eirTmn,k =
[xmymvn] g◦k,t(x, y, v, eir)

[xmymvn] g◦(x, y, v)
,

where we can use the simplification

[xmymvn] g◦k,t(x, y, v, eir) = [xmym]

(
t̃(x, y) + (eir − 1)t̃k(x, y)

)2m−n√
1− t1(x, y)t2(x, y)

Set M = 2m− n = m(1 + ε′). In order to normalize we substitute r by r/
√

M and
use again an saddle point method (similarly to the methods of Lemma 3). More
precisely we use the representation(

t̃(x0e
is, y0e

it) + (e
ir√
M − 1)t̃k(x0e

is, y0e
it)
)M

= t̃(x0e
is, y0e

it)M exp
(

M log
(

1 +
t̃k(x0e

is, y0e
it)

t̃(x0eis, y0eit)

(
e

ir√
M − 1

)))
and (for s and t with |s|, |t| ≤ α = M− 1

2+δ, where 0 < δ < 1
6 ) the expansion

M log
(

1 +
t̃k(x0e

is, y0e
it)

t̃(x0eis, y0eit)

(
e

ir√
M − 1

))
= M

t̃k(x0e
is, y0e

it)
t̃(x0eis, y0eit)

(
e

ir√
M − 1

)
−M

2

(
t̃k(x0e

is, y0e
it)

t̃(x0eis, y0eit)

)2 (
e

ir√
M − 1

)2

+O
(
M− 1

2

)
= c00ir

√
M − c00

r2

2
− (c10s + c01t)r

√
M + c2

00

r2

2
+O

(
M− 1

2+2δ
)

.

Hereby, we used the abbreviations

cij =
[

∂i

∂ui

∂j

∂vj

t̃k(x0e
u, y0e

v)
t̃(x0eu, y0ev)

]
(u,v)=(0,0)

.

In particular, we have

c00 =
µ

1 + ε′
and c10 = c01 =

µ

1 + ε′

(
k − 2

1 + ε′

)
.

Now by proceeding as in the proof of Lemma 3 we eventually derive an asymptotic
expansion for

E eirTmn,k/
√

M =
[xmymvn] g◦k,t(x, y, v, eir/

√
M )

[xmymvn] g◦(x, y, v)

= exp
(

irµ
m√
M

− σ2m

2M
r2

)
+O

(
m− 1

2+δ
)

which implies the lemma.

6.3 Vertices in cycles

For the next part of the proof of Theorem 3 we have to count the number of vertices
V c

nm contained in cycles. The corresponding result is rather easy to obtain. We
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make use of the generating function

g◦c (x, y, v, w) =
exp

(
1
v t̃(xv, yv)

)√
1− w2t1(xv, yv)t2(xv, yv)

,

where the exponent of w counts the number of cyclic points. Hence by using again
the double saddle point methods we get the characteristic function

E eisV c
nm =

[xmymvn]g◦n(x, y, v, eis)
[xmymvn]g◦n(x, y, v, 1)

=

√
1− t1(x0, y0)t2(x0, y0)

1− e2ist1(x0, y0)t2(x0, y0)

(
1 +O

(
1
m

))

=

√
1− (1− ε′)2

1− e2is(1− ε′)2

(
1 +O

(
1
m

))
=

√
1− (1− ε)2

1− e2is(1− ε)2

(
1 +O

(
1
m

))
.

Of course, we have to take care of the slightly modified conditions. In particular,
we make use of the bound∣∣∣∣∣ 1√

1− e2ist1(x, y)t2(x, y)

∣∣∣∣∣ ≤ 1√
|1| − |e2ist1(x, y)t2(x, y)|

=
1√

ε′(2− ε′)
,

that is satisfied on the lines of integration. Hence we conclude that the contribution
outside the arcs (−α, α) is still negligible. It is further straightforward to calculate
the limiting mean and variance.

Finally we use the series expansion√
1− (1− ε)2

1− e2is(1− ε)2
=
√

1− (1− ε)2
∑
k≥0

(
− 1

2

k

)
(−1)k(1− ε)2keis2k

=
√

1− (1− ε)2
∑
k≥0

1·3·5 · · · (2k − 1)
2kk!

(1− ε)2keis2k,

to infer that the probability that exactly 2k vertices are contained in cycles equals

1 · 3 · 5 · · · (2k − 1)
2kk!

√
1− (1− ε)2(1− ε)2k,

in limit.

6.4 Vertices in cyclic components

If we count the number of all vertices contained in cyclic components, the generating
function modifies to

g◦v(x, y, v, w) =
exp

(
1
v t̃(xv, yv)

)√
1− t1(xvw, yvw)t2(xvw, yvw)

.

Here we took care of all vertices of trees that are attached to cycles. It is straight-
forward to calculate asymptotic mean and variance. This completes the proof of
Theorem 3.
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7. RUNNING TIME

The aim of this section is to show that the average construction time of a Cuckoo
hash table is linear. The cost of a single insertion is thereby measured by the number
of moves during this procedure, hence it equals one plus the number of kick-out
operations. We cannot give an exact result, but we obtain a suitable upper bound
as given in Theorem 2.

Let p denote the failure probability of a simplified cuckoo hashing attempt. We
already know that p ∼ c/m as m →∞. Clearly, the expected number of attempts
to construct the data structure is hence given by 1/(1 − p). This implies that the
expected number E N of rehashes to build the hash table is O(1/m). Furthermore,
the additional complexity of a failed attempt is O(n), because we detect an endless
loop in the insertion procedure after at most 2n steps. We conclude that E Ci,
the expected number of steps required during the i-th unsuccessful construction is
O(m). Hence

E
N∑

i=1

Ci = EN EC1 = O(1)

holds, cf. [Devroye and Morin 2003].
Therefore, it remains to show that the proposed bound in Theorem 2 holds for

the situation where cuckoo hashing succeeds, i.e. the cuckoo graph contains only
trees and cyclic components.

Consider the Cuckoo graph just before the insertion of the l-th edge (or key) and
denote the vertex of first type xl and the other yl. Recall that a new key is always
inserted in the vertex of first type. The number of steps needed to perform this
insertion is fully determined by the component containing xl, and not affected by
the component containing yl, unless xl belongs to a cyclic component. But this is
a very rare event. We know from Theorem 3 that the expected number of vertices
contained in cyclic components is finite.

Lemma 14. Suppose that the assumptions of Theorem 1 are fulfilled. Then the
expected number of all steps performed in cyclic components is bounded by a con-
stant.

Proof. Assume that exactly k vertices are contained in cycles. The insertion
of each of the k corresponding keys takes at most 2k steps, because during an
insertion, no vertex is visited more than twice. The total number of expected steps
is therefore bounded by ∑

k

2k2P{V c
nm = k},

which is finite because of the results from Theorem 3.

The cuckoo graph contains 2m− l + 1 trees before the insertion of the l-th key.
Given a subgraph S, we denote the number of vertices of first and second type by
m1(S) and m2(S), respectively. Further, denote the maximum number of steps
needed for the insertion in S by ν(S). Assume that xl is contained in a tree
component T . Note that each of the vertices of first type equals xl with the same
probability. Hence, choosing xl corresponds to root the tree at a vertex of first
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kind. Observe that there exists a unique node z of T that corresponds to an empty
memory cell of the hash table. This node is somehow randomly (but not uniformly)
selected among all the nodes of both types of T . The insertion itself corresponds
to a walk in T , starting in xl and ending in z.

The generating function t̃(x, y) of unrooted bipartite trees can be rewritten as

t̃(x, y) =
∑
T

xm1(T )ym2(T )

m1(T )!m2(T )!
.

Consider a fixed bipartite tree T . Then, there exist m1(T ) bipartite trees T ?

possessing a root of first kind that correspond to T , what we denote by T ? ∼ T .
Each rooted tree T ? represents an unique choice of xl among the nodes of T of
first type and leads to an insertion cost of ν(T ?). Hence, we define the following
function:

HT (x, y) =
∑
T

∑
T ?∼T

ν(T ?)
xm1(T )ym2(T )

m1(T )!m2(T )!
.

Similarly, assume that the insertion takes place in the unicyclic part U . There exist
m1(U) selections of xl among the nodes of U that lead to an insertion cost of ν(U).
Thus we make use of the function

HU (x, y) =
∑
U

m1(U)ν(U)
xm1(U)ym2(U)

m1(U)!m2(U)!
.

Now, we put these things together. Recall that the Cuckoo graph contains k =
2m− l + 1 tree components T1, . . . , Tk and an unicyclic part U :

H(x, y) =
1
k!

∑
(T1,...,Tk,U)

( k∑
j=1

∑
T ?

j ∼Tj

ν(T ?
j ) + m1(U)ν(U)

)

×
(

m

m1(T1), . . . ,m1(Tk), m1(U)

)(
m

m2(T1), . . . ,m2(Tk), m2(U)

)
xm

m!
ym

m!

=
1

(k − 1)!
HT (x, y)t̃(x, y)k−1√
1− t1(x, y)t2(x, y)

+
t̃(x, y)k

k!
HU (x, y)

By construction,

C(l) =
1

m#G◦
m,m,l

(m!)2n!
(2m− l)!

[xmym]H(x, y)

bounds the average insertion cost of the l−th key.
First, consider

(m!)2n!
(2m− l)!

1
m#G◦

m,m,l

[xmym]
t̃(x, y)k

k!
HU (x, y).

This is O(1), because of Lemma 14. Hence, we obtain the upper bound

C(l) =
1

m #G◦
m,m,l

(m!)2n!
(2m− l)!

[xmym]
HT (x, y)t̃(x, y)2m−l√

1− t1(x, y)t2(x, y)
+O(1)
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for the average complexity of inserting the l−th key. Applying Lemma 3, we thus
get

C(l) =
HT (x0, x0)(2m− l + 1)

m t̃(x0, x0)

(
1 +O

(
1

2m− l

))
.

The analysis of this parameter is in fact similar to the previous calculations. A slight
difference is the new occurring function HT (x, y), but it behaves like an additional
constant factor. Thus, we only need to know HT (x0, x0), which we will consider
next.

First we use the trivial upper bound ν(T ?) ≤ m1(T ?) + m2(T ?) and obtain for
positive x and y

HT (x, y) ≤
∑
T

m1(T ) (m1(T ) + m2(T ))
xm1(T )ym2(T )

m1(T )!m2(T )!
.

∑
T

m1(T )
xm1(T )ym2(T )

m1(T )!m2(T )!
= x

∂

∂x
t̃(x, y) = t1(x, y) (11)

Recall that t1(x, x) equals t(x), so we establish

H(x, x) ≤ x
∂

∂x
t(x) =

t(x)
1− t(x)

=
t1(x, x)

1− t1(x, x)
.

Setting x = x0 = l
me−l/m and using the local expansions for t(x) and t̃(x) we

obtain

C(l) ≤ m

m− l

(
1 +O

(
1
m

))
(12)

which leads to

1
n

n∑
l=1

C(l) ≤ 1
n

n∑
l=1

1
1− l

m

(
1 +O

(
1
m

))
→ 1

1− ε

ε∫
1

da

a
=

log 1
ε

1− ε
, (13)

where n = b(1− ε)mc and m goes to infinity. This completes the proof of the first
bound of Theorem 2.

Next, we try to obtain a better bound using a more suitable estimate for ν(T ).
Recall that the selection of the vertex xl in a tree component, transforms this
component into a rooted bipartite tree. The insertion procedure starts at the root
and the number of required steps is bounded by the height of this tree. Further,
note that in the asymptotic analysis we are only interested in the special case
x = y = x0. Because of this, we can consider usual (non bipartite) rooted trees
instead.

We introduce the notations

—t
[k]
n for the number of rooted trees with n vertices and height less or equal k,

—and hn for the sum of the heights of all rooted trees with n vertices.

Moreover, we introduce the corresponding generating functions:

t[k](x) =
∑
n≥0

t[k]
n xn, h(x) =

∑
n≥0

hnxn.
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Due to [Flajolet and Odlyzko 1982] we know

t(x)− t[k](x) ∼ 2
δ(x) (1− δ(x))n

1− (1− δ(x))n ,

where δ(x) =
√

2(1− ex) +O(1− ex) and further,

h(x) =
∑
k≥0

(
t(x)− t[k](x)

)
∼ −2 log δ(x)

in a ∆-domain around its singularity e−1.
Let T ? denote a bipartite tree possessing a root node of first kind. Clearly, the

upper bound ν(T ?) ≤ height(T ?) holds. Furthermore, t1(x, y) is given by

t1(x, y) =
∑
T

∑
T ?∼T

xm1(T )ym2(T )

m1(T )!m2(T )!
.

As in (11), we make use of t1(x, x) = t(x) and we derive the inequality

HT (x, x) ≤ h(x).

Thus, we use the asymptotic approximation of h(x) as upper bound of H(x, x) and
obtain similarly to (12) the upper bound

C(l) ≤ m
− log 2

(
1− e1−l/m l

m

)
l

(
1 +O

(
1
m

))
,

for the construction time. This is of course only valid near the singularity, that is
for 1 − l/m close to zero. Nevertheless, this result is suitable to prove the second
bound stated in Theorem 2. This is due the fact that the integral

ε∫
1/2

− log 2 (1− ea(1− a))
1− a

da

is obviously bounded for ε → 0, in contrast to the corresponding integral of (13).
A numerical computation using both bounds leads to an estimated value of about

4 steps per insertion.

8. A SIMPLIFIED VERSION OF CUCKOO HASHING

8.1 Introduction

In this section, we discuss a modified, and in some sense simplified version of the
Cuckoo hash algorithm. Instead of two tables of size m, we use just one table of size
2m and grant both hash functions access to the whole memory. This simplifies the
analysis, because the bipartite Cuckoo graph is replaced by a usual random graph
(a version without different types of vertices, but directed edges), and we do not
need bivariate generating functions any longer. Despite this change, the modified
Cuckoo hash algorithm succeeds if and only if this new Cuckoo Graph does not
contain a complex component (as in the original case).

This approach was already suggested by [Pagh and Rodler 2004] and further by
[Fotakis et al. 2005] for generalized d-ary Cuckoo hashing, which uses d tables (or
hash functions), because it is easier to analyze, see also [Kutzelnigg 2008; 2009].
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m
ε = 0.4 ε = 0.2 ε = 0.1 ε = 0.06 ε = 0.04

res. exp. res. exp. res. exp. res. exp. res. exp.

5 · 103 44 49.2 710 767 5272 8100 15276 26802

104 27 24.6 386 383 3122 4050 10451 20536

5 · 104 5 4.92 87 76.7 737 810 3414 4159 8666
105 3 2.46 32 38.3 417 405 1831 2079 5323 7380

5 · 105 0 0.49 7 7.67 85 81 417 416 1358 1476

Table III. Comparison of simulation result (res.) and expected number of failures (exp.) during

the construction of 5 · 105 simplified cuckoo hash tables.

Our analysis shows, that there are also advantages of this version of the algorithm,
which recommend it for practical application.

8.2 Results

Almost the same results as stated in Theorems 1, 2, and 3 hold for this simplified
algorithm too:

Theorem 4. Suppose that ε ∈ (0, 1) is fixed. Then the probability that a sim-
plified Cuckoo hash of n = b(1− ε)mc data points into a table of size 2m succeeds,
(that is, the corresponding Cuckoo graph contains no complex component,) is equal
to

p(n, m) = 1− (5− 2ε)(1− ε)2

48ε3

1
m

+O
(

1
m2

)
.

This probability decreases to

p(n, n) =

√
2
3

+ O(1),

if n equals m.

As mentioned earlier, the second statement can be found in [Janson et al. 1993].
The only difference to the result of Theorem 1 is the modified asymptotic expan-

sion.

h̄(ε) =
5
48

ε−3 − 1
4
ε−2 +

3
16

ε−1 − 1
24

.

But the leading term is still the same as in (7), so the behavior is almost the
same for ε close to zero. Figure 3 compares these two functions h̄(ε) and h(ε) =
(2ε2 − 5ε + 5)(1− ε)3/(12(2− ε)2ε3). We conclude that the success probability of
simplified cuckoo hashing is slightly smaller compared to the standard algorithm.
This is also justified by our simulation results given in Tables I and III. For all
tested combinations of m and ε, the entry in the first table is less or equal than
the corresponding entry in the latter one. However, note that there is no serious
difference, because the failure probability is still very small for all practical relevant
instances.

We obtain the same bound on the construction cost for the simplified algorithm
as for the original one.

Theorem 5. Under the assumptions of Theorem 4, the expected construction
ACM Journal Name, Vol. V, No. N, Month 20YY.



A precise analysis of Cuckoo Hashing · 29

10-4

10-2

100

102

104

0 0.2 0.4 0.6 0.8 1.0

standard simplified

ǫ

Fig. 3. The functions h (standard c.h.) and h̄ (simplified c.h.).

m ε = 0.4 ε = 0.2 ε = 0.1 ε = 0.06 ε = 0.04

5 · 103 1.1972 1.3149 1.4551 1.6376 1.8336

104 1.1970 1.3108 1.4263 1.5699 1.7415
5 · 104 1.1967 1.3070 1.3945 1.4728 1.5715

105 1.1967 1.3063 1.3903 1.4512 1.5248

5 · 105 1.1967 1.3060 1.3859 1.4321 1.4700
− log ε
1−ε

1.5272 2.0118 2.5584 2.9930 3.3530

sample size: 5 · 105

Table IV. Insertion costs of simplified cuckoo hashing.

time of a simplified Cuckoo hash table is bounded above by

min
(

C,
− log ε

1− ε

)
n +O(1),

where the constant implied by O(1) depend on ε.

Although we give the same upper bound for both variations, we note that the
actual behavior is different. The comparison of the results provided in Tables II
and IV shows that the expected number of steps per insertion is smaller for the
modified version of the algorithm, see [Kutzelnigg 2009] for further details.

The different behavior of the two versions of the algorithm is also influenced
by some differences in the structure of the underlying Cuckoo graphs, which we
investigate next.

Theorem 6. Suppose that ε ∈ (0, 1) is fixed and that n = b(1 − ε)mc. Then
a random labeled multigraph with 2m vertices and n edges satisfies the following
properties.

(1 ) The number of unicyclic components C
uc

mn,k with cycle length k has in limit a
Poisson distribution Po(λk) with parameter

λk =
1
2k

(1− ε)k
,

and the number of unicyclic components C
uc

mn =
∑

k≥1 Cuc
mn,k has in limit a
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Poisson distribution Po(λ), too, with parameter

λ = −1
2

log ε.

(2 ) The number of tree components Tmn,k with k vertices satisfy a central limit
theorem of the form

Tmn,k − µ m√
σ2m

→ N(0, 1),

where

µ = 2
kk−2(1− ε)k−1ek(ε−1)

k!
and

σ2 = µ− 2e2k(ε−1)k2k−4(1− ε)2k−3(k2ε2 + k2ε− 4kε + 2)
(k!)2

.

Furthermore, mean and variance are asymptotically given by E Tmn,k = µ m +
O(1) and Var Tmn,k = σ2m +O(1) as m →∞, respectively.

(3 ) The number of vertices V
c

mn contained in cycles has a limiting distribution V
c

with characteristic function

E eisV
c

=
√

ε

1− eis(1− ε)
,

mean and variance satisfy

lim
m→∞

E V
c

mn = E V
c

=
1− ε

2ε
,

and

lim
m→∞

Var V
c

mn = Var V
c

=
(1− ε)

2ε2
.

(4 ) Furthermore, the expected value of the number of vertices V
uc

mn in unicyclic
components is asymptotically given by

lim
m→∞

E V
uc

mn =
(1− ε)

2ε2
,

and its variance by

lim
m→∞

Var V
uc

mn =
(1− ε)(2− ε)

2ε4
.

The number of tree components of fixed size have the same Gaussian limiting
distributions in both cases. As the tree components have the widest influence on
the complexity of the insertion, we expect a similar behavior of both variants.

However, there are some differences concerning the cyclic components. The pa-
rameters of the limiting Poisson distributions differ in one way from the results of
usual cuckoo hashing: The term (1− ε)2 is replaced by (1− ε). This explains that
the expected number of cycles in a non-bipartite cuckoo graph is larger compared
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to the bipartite counterpart, which is also confirmed by our experiments. Neverthe-
less, this does not seem to have big influence on the behavior of the hash algorithm,
since the difference is bounded by log(2)/2, and hence the expected number of
cycles is still very small.

This result suggests that the expected number of vertices in cycles and cyclic
components is larger, too, which is indeed verified by part (4) of Theorem 6. For
the vertices in cycles itselves, the increase is bounded by a small additive constant,
namely 1/4. If we consider all vertices in cyclic components, they are surprisingly
no longer bounded by a constant for small ε. But again, this is not of great influence
as the ratio of the expectations tends to 1 as ε tends to 0.

8.3 Sketch of the Proofs of Theorems 4-6

We already mentioned above that the simplified algorithm is connected with a
modified “non-bipartite” Cuckoo graph, and that the restrictions concerning the
structure of the graph remain unchanged. The evolution of the graph is described
by the multigraph process of [Janson et al. 1993], with the only difference that we
consider labeled and directed edges.

Similarly to Section 4, let G2m,n denote the set of all vertex and edge labeled
and directed multigraphs (V,E) with |V | = 2m and |E| = n. Obviously we have

#G2m,n = (4m2)n.

Furthermore, let G◦
2m,n denote those graphs of this family without complex com-

ponents and set

g◦(x, v) =
∑
m,n

#G◦
2m,n

x2m

(2m)!
vn

n!
.

Again we make use of the generating functions t(x) and t̃(x) of rooted and un-
rooted trees which satisfy the equations

t(x) = xet(x), t̃(x) = t(x)− 1
2
t(x)2.

Similarly to Lemma 2, we obtain the following explicit representation (see also
[Janson et al. 1993]):

Lemma 15. The generating function g◦(x, v) is given by

g◦(x, v) =
e

1
2v t̃(2xv)√

1− t(2xv)
.

We use Cauchy’s formula and obtain a integral representation analog to (5)

#G◦
2m,n =

2n(2m)!n!
2πi(2m− n)!

∮
t̃(x)2m−n√

1− t(x)
dx

xm+1
. (14)

Again, we proceed using the saddle point method. Hence we need a one dimen-
sional version of Lemma 3.

Lemma 16. Let f(x) and g(x) be analytic functions locally around 0 such that all
coefficients [xm]f(x) and [xm]g(x) are non negative and such that the “aperiodicity
condition” gcd{m|[xm]f(x) > 0} = 1 holds.

ACM Journal Name, Vol. V, No. N, Month 20YY.



32 · M. Drmota and R. Kutzelnigg

Let R be a compact interval of the positive real line that is contained in the radius
of convergence of f(x) and g(x). Furthermore set

S =
{

x

f(x)
∂

∂x
f(x) : x ∈ R

}
.

Then we have

[xm]g(x)f(x)k =
g(x0)f(x0)k

xm
0

√
2πkκ2

(
1 +

H

24κ3
2

1
k

+O
(

1
k2

))
,

uniformly for m/k ∈ S, where x0 is uniquely determined by

m

k
=

x0f
′(x0)

f(x0)
.

and the constants κ2 and H are given in the following way. Let κi and κi be the
cummulants

κi =
[

∂i

∂ui
log f(x0e

u)
]

u=0

, κi =
[

∂i

∂ui
log g(x0e

u)
]

u=0

.

Then H is given by

12κ2κ3κ1 + 3κ2κ4 − 12κ2
2κ

2
1 − 12κ2

2κ2 − 5κ2
3.

The leading term of this asymptotic expansion is already given in [Gardy 1995], and
the calculation of further terms is suggested as possible extension by the author. A
detailed asymptotic expansion for the special case g = 1 can be found in [Drmota
1994].

Concerning (14) we obtain the relation t(x0) = 1− ε and hence the saddle point

x0 = (1− ε)e−(1−ε).

A direct application of Lemma 16 completes the proof of the first part of Theorem 4.
As mentioned above the limit for p(n, n) can be found in [Janson et al. 1993].

The proofs given in sections 6 and 7 can be easily adapted to proof the Theorems 5
and 6. We just replace the bivariate generating functions by their simplified coun-
terparts and use a simple instead of a double saddle point method, see [Kutzelnigg
2009] for details.

9. CONCLUSION

The main contribution of this paper was a precise analysis of standard Cuckoo
hashing introduced by [Pagh and Rodler 2004]. Unlike usual hash algorithms,
this data structure offers constant worst case access time. This is achieved by
rearranging keys to resolve conflicts. However, there is a non-zero probability that
the creation of the hash table fails. We showed that the error probability is of order
1/m with an explicit constant depending on ε when the load factor is restricted
below 0.5. Further, we proved that the failure rate increases asymptotically to
approximately 18.4% for half-full tables. All these results were obtained using the
Cuckoo graph, a bipartite random graph that is closely related to the data structure.

As a further important result, we analyzed the average running time required to
build-up a Cuckoo hash table. In particular, we gave an upper bound that is linear
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in the size of the data structure, conditioned that the load is restricted below 50%.
This result was derived via a detailed investigation of the structure of the Cuckoo
graph. Among other things, we provide asymptotic results covering the number of
cycles and trees of given size, including limiting distributions.

Finally, we briefly discussed a simplified version of Cuckoo hashing. In contrast
to the standard algorithm, both hash functions address the whole memory. Nev-
ertheless, we obtain almost the same results as for the standard algorithm using a
non-bipartite random graph model.

APPENDIX

We present the proofs of Lemma 3 and 8. We start with the proof of Lemma 3, in
which we will use the formula

∞∫
−∞

e−z2/2zk dz =

{
1 · 3 · 5 . . . (k − 1)

√
2π if k is even,

0 if k is odd.

Proof of Lemma 3. The technical conditions on the coefficients of f(x, y) en-
sure that the function f(x0e

is, y0e
it), (s, t) ∈ [−π/2, π/2]2, has its maximal modulus

for s = t = 0. Furthermore, it can be seen that the saddle point (x0, y0) is unique,
because the cummulants of second order are strictly positive (compare with [Good
1957]).

We start by applying Cauchy’s Formula and substitute x = x0e
is and y = y0e

it:

[xm1ym2 ]g(x, y)f(x, y)k = − 1
4π2

∫
|x|=x0

∫
|y|=y0

g(x, y)f(x, y)k

xm1+1ym2+1
dy dx

=
1

4π2xm1
0 ym2

0

π∫
−π

π∫
−π

g
(
x0e

is, y0e
it
)
f
(
x0e

is, y0e
it
)k

e−m1is−m2it dt ds.

The contribution of the integral taken over the range I =
(
[−π, π] × [−π, π]

)
\(

[−α, α] × [−α, α]
)

is very small compared to the remaining integral, where α =
k−1/2+ξ and ξ denotes a real number satisfying 0 < ξ < 1/6. By continuity we
surely have |f

(
x0e

is, y0e
it
)
| ≤ f(x0, y0) − δ if |s| ≥ η or |t| ≥ η, where δ > 0 and

η > 0 are chosen appropriately. Furthermore, for |s| < η and |t| < η we can use a
local expansion of the form

ek log f(x0eis,y0eit)−m1is−m2it = f (x0, y0)
k
e−

k
2 (κ20s2+2κ11st+κ02t2)+O

(
k−

1
2 +3ξ

)
.

to deduce that (for some c > 0)∣∣∣∣ ∫∫
I

g
(
x0e

is, y0e
it
)
f
(
x0e

is, y0e
it
)k

e−m1is−m2it dt ds

∣∣∣∣
≤ 4π2g(x0, y0)f(x0, y0)ke−ck2ξ

,

Hence this part of the integral is negligible (as proposed).
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Next, we substitute u =
√

ks and v =
√

kt and calculate Taylor expansions of
the functions log f and log g. More precisely, we obtain the expansions

k log f
(
x0e

i u√
k , y0e

i v√
k

)
−m1i

u√
k
−m2i

v√
k

= k log f(x0, y0)

− 1
2
(
κ20u

2 + 2κ11uv + κ02v
2
)
− i

6
√

k

(
κ30u

3 + 3κ21u
2v + 3κ12uv2 + κ03v

3
)

+
1

24k

(
κ40u

4 + 4κ31u
3v + 6κ22u

2v2 + 4κ13uv3 + κ04v
4
)

+O
(
kα5

)
,

and

log g
(
x0e

i u√
k , y0e

i v√
k

)
= log g(x0, y0) +

i√
k

(κ10u + κ01v)− 1
2k

(
κ20u

2 + 2κ11uv + κ02v
2
)

+O
(
α3
)

in the neighborhood of (x0, y0). The linear terms vanish due to the choice of the
saddle point. By using the expansions (in k)

exp
(
−i

1
6
√

k

(
κ30u

3 + 3κ21u
2v + 3κ12uv2 + κ03v

3
))

= 1− i

6
√

k

(
κ30u

3 + 3κ21u
2v + 3κ12uv2 + κ03v

3
)

− 1
72k

(
κ30u

3 + 3κ21u
2v + 3κ12uv2 + κ03v

3
)2

+O
(
k3α9

)
,

exp
(

1
24k

(
κ40u

4 + 4κ31u
3v + 6κ22u

2v2 + 4κ13uv3 + κ04v
4
))

= 1 +
1

24k

(
κ40u

4 + 4κ31u
3v + 6κ22u

2v2 + 4κ13uv3 + κ04v
4
)

+O
(
k2α8

)
,

exp
(

i√
k

(κ10u + κ01v)
)

= 1 +
i√
k

(κ10u + κ01v)− 1
2k

(κ10u + κ01v)2 +O(α3),

exp
(
− 1

2k

(
κ20u

2 + 2κ11uv + κ02v
2
))

=

1− 1
2k

(
κ20u

2 + 2κ11uv + κ02v
2
)

+O(α4)

we can rewrite the remaining integral in the following way:

1
4π2xm1

0 ym2
0

α∫
−α

α∫
−α

g
(
x0e

is, y0e
it
)
ek log f(x0eis,y0eit)−m1is−m2itdt ds

=
g(x0, y0)f(x0, y0)k

4kπ2xm1
0 ym2

0

α
√

k∫
−α

√
k

α
√

k∫
−α

√
k

e−
1
2 (κ20u2+2κ11uv+κ02v2)
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×
(

1 − i

6
√

k

(
κ30u

3 + 3κ21u
2v + 3κ12uv2 + κ03v

3
)

+
i√
k

(κ10u + κ01v)− 1
72k

(
κ30u

3 + 3κ21u
2v + 3κ12uv2 + κ03v

3
)2

+
1

24k

(
κ40u

4 + 4κ31u
3v + 6κ22u

2v2 + 4κ13uv3 + κ04v
4
)

+
1
6k

(
κ30u

3 + 3κ21u
2v + 3κ12uv2 + κ03v

3
)
(κ10u + κ01v)

− 1
2k

(κ10u + κ01v)2 − 1
2k

(
κ20u

2 + 2κ11uv + κ02v
2
)

+O
(
α9k3

))
dv du.

(15)

Without loss of generality we can assume that κ20 ≥ κ02. We substitute u =√
κ02/∆ a and v = −κ11/

√
κ02∆ a + b/

√
κ02, where ∆ = κ20κ02 − κ2

11. Hence

α
√

k∫
−α

√
k

α
√

k∫
−α

√
k

e−
1
2 (κ20u2+2κ11uv+κ02v2)dv du =

1√
∆

µ∫
−µ

ν(a)∫
−ν(a)

e−
a2+b2

2 db da,

where µ = α
√

k∆/κ02 and ν(a) = α
√

kκ02+aκ11/
√

∆. Note that for all a satisfying
−µ ≤ a ≤ µ, the inequality ν(a) ≥ νmin = α

√
k(
√

κ02 − κ11/
√

κ02) is valid. Fur-
thermore the relation κ20 ≥ κ02 implies that

√
κ02 − κ11/

√
κ02 > 0. Consequently

we get (for some constant 0 < c < 1
2 )

∞∫
ν(a)

e−
b2
2 bl db ≤

∞∫
νmin

e−
b2
2 bl db = O

(
e−ck2ξ

)
. (16)

The last part of (15) can be estimated by

∣∣∣∣
α
√

k∫
−α

√
k

α
√

k∫
−α

√
k

e−
1
2 (κ20u2+2κ11uv−κ02v2)O

(
k3α9

)
dv du

∣∣∣∣
≤
O
(
k3α9

)
√

∆

µ∫
−µ

ν(a)∫
−ν(a)

e−
a2+b2

2 db da ≤ O
(
k3α9

) ∞∫
−∞

∞∫
−∞

e−
a2+b2

2 db da

= O
(
k−

3
2+9ξ

)
.

Finally we introduce the notation

I(p, q) =

µ∫
−µ

ν(a)∫
−ν(a)

e−
a2+b2

2 apbq db da

=

∞∫
−∞

∞∫
−∞

e−
a2+b2

2 apbq db da + O
(
e−ck2ξ

)
(17)
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Obviously, I(p, q) = 0 if either p or q is odd. Hence the main term of the integral
in (15) rewrites to

I(0, 0)− κ2
03

I(6, 0)
72κ3

02

+
(
κ04 + 4κ03κ01

)I(4, 0)
24κ02

−
(
κ02 + κ2

01

)I(2, 0)
2κ02

+
(
κ6

11κ
2
03 + 6κ4

11κ03κ
2
02κ21 − 2κ3

11κ03κ
3
02κ30 − 6κ5

11κ03κ02κ12

− 18κ3
11κ12κ

3
02κ21 + 9κ2

12κ
4
11κ

2
02 + 6κ2

11κ12κ
4
02κ30 + 9κ2

21κ
2
11κ

4
02

− 6κ5
02κ11κ21κ30 + κ6

02κ
2
30

) I(0, 6)
72κ3

02∆3

−
(
5κ4

11κ
2
03 − 20κ3

11κ03κ02κ12 − 2κ11κ03κ
3
02κ30 + 12κ2

11κ03κ
2
02κ21

+ 18κ2
12κ

2
11κ

2
02 + 2κ12κ

4
02κ30 − 18κ12κ

3
02κ21κ11 + 3κ2

21κ
4
02

) I(2, 4)
24κ3

02∆2

−
(
4κ3

11κ02κ03κ10 g + 12κ3
11κ02κ12κ01 + 4κ3

11κ02κ13 − 12κ2
11κ

2
02κ21κ01

− 6κ2
11κ

2
02κ22 − 12κ2

11κ
2
02κ12κ10 − κ4

02κ10 − 4κ4
02κ30κ10

+ 12κ11κ
3
02κ21κ10 + 4κ11κ

3
02κ30κ01 + 4κ11κ

3
02κ31 − κ4

11κ04

− 4κ4
11κ03κ01

) I(0, 4)
24κ3

02∆2

+
(
3κ2

02κ
2
12 + 2κ2

02κ03κ21 − 10κ11κ03κ12κ02 + 5κ2
11κ

2
03

)I(4, 2)
24∆

+
(
2κ2

02κ21κ01 + κ2
02κ22 + 2κ2

02κ12κ10 − 2κ11κ02κ03κ10 − 6κ11κ02κ12κ01

− 2κ11κ02κ13 + κ2
11κ04 + 4κ2

11κ03κ01

)I(2, 2)
4κ2

02∆

−
(
κ2

02κ20 + κ2
02κ

2
10 + κ2

11κ02 + κ2
11κ

2
01 − 2κ11κ02κ01κ10 − 2κ11κ02κ11

)I(0, 2)
2κ02∆

.

It remains to complete the integrals I(p, q) to the range R2 (see (17)) and to cal-
culate them according to (16).

Proof of Lemma 8. In this proof, ci denotes real positive constants. We use
Lemma 6 and Cauchy’s formula and obtain

[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k = − 1
m

1
4π2

∮ ∮
f(u, y)ml(u, y)kh(u, y)

um+1ym+1
dy du.

(18)
The corresponding saddle point is obtained using the equation system

∂

∂u
(log f(u, y)− log u− log y) = 0,

∂

∂y
(log f(u, y)− log u− log y) = 0,

obtaining the solution u0 = 1, y0 = 1/e. As in Lemma 3, the cummulants are

κij =
[

∂i

∂σi

∂j

∂τ j
log f(u0e

σ, y0e
τ )
]
(σ,τ)=(0,0)

,

particularly we obtain κ20 = 0, κ11 = 0, κ02 = 1, κ30 = −4, κ21 = −1, κ12 = 0, and
κ03 = 1. In fact, we cannot proceed in the same way as in Lemma 3, because the
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determinant ∆ = κ20κ02 − κ2
11 equals zero. Instead, we perform the substitution

y = eiτ−1, u =

{
eζσ if =(u) ≥ 0
eζσ if =(u) < 0

where ζ = ei 2π
3 .

We concentrate on the path in the upper half plane (the second part is similar) and
obtain the integral

I = − iζ

4π2

1
m

2π√
3∫

0

π∫
−π

f
(
eζσ, eiτ−1

)m
l
(
eζσ, eiτ−1

)k
h
(
eζσ, eiτ−1

)
eζσme(iτ−1)m

dτ dσ.

Let α ∈ (0, 2π/
√

3) and β ∈ (0, π). This choice will be discussed later. We divide
the integral into two parts

I1 = − iζ

4π2

1
m

α∫
0

β∫
−β

f
(
eζσ, eiτ−1

)m
l
(
eζσ, eiτ−1

)k
h
(
eζσ, eiτ−1

)
eζσme(iτ−1)m

dτ dσ,

and I2 = I − I1. We continue calculating an approximation of I1 but before, we
give an upper bound on I2.

Next, we consider the modulus of the function f
(
eζσ, eiτ−1

)
e−ζσe1−iτ if (σ, τ) ∈[

0, 2π/
√

3
]
× [−π, π]. A plot can be found in Figure 4. The function is unimodal

and attains it maximum at (σ, τ) = (0, 0). This can be verified using the mean
value theorem, a bound on the derivative, and the evaluation of the function on
points of a sufficient small grid. Further, a local expansion of this function around

-3.2
0

1

2

3

-1.23

4

5

6

7

tau

2

sigma
0.81

2.80

Fig. 4. The modulus of f
`
eζσ , eiτ−1

´
e−ζσe1−iτ in the relevant area.
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the origin is given by exp
(
2− 1

2τ2 − 2
3σ3 + O(σ2τ)

)
. We choose

α = m− 7
24 and β = m− 11

24 ,

such that α3m and β2m tend to infinity as m goes to infinity, but on the other
hand the terms of higher order like α2βm tend to zero. Hence, we conclude that
the bound ∣∣∣∣f

(
eζσ, eiτ−1

)
eζσeiτ−1

∣∣∣∣m ≤ e2m−c0m− 1
8

holds, if σ ∈
[
α, 2π/

√
3
]

and |τ | ∈ [β, π] are satisfied. Thus, we further obtain the
bound

|I2| = O
(

e2m−c0m− 1
8

)
.

Next, we calculate an approximation of I1 with help of the following local expan-
sions: (replace ζ by ζ for the second case)

f
(
e

ζs
3√m , e

it√
m
−1
)m

= exp
(

m + ζsm
2
3 + it

√
m− 1

2
t2 − 2

3
s3 +O

(
m− 1

24

))
,

l
(
e

ζs
3√m , e

it√
m
−1
)k

= exp
(

2ζ
3
√

m
ks +O

(
m− 3

24+ξ
))

,

hk

(
e

ζs
3√m , e

it√
m
−1
)

= −2ζsm
2
3

(
1 +O

(
m− 3

24

))
.

Using these expansions, and assuming that ξ ≤ 1
12 holds, we infer:

I1 =
−iζ

4π2m
11
6

α 3√m∫
0

β
√

m∫
−β

√
m

f
(
e

ζs
3√m , e

it√
m
−1
)m

l
(
e

ζs
3√m , e

it√
m
−1
)k

h
(
e

ζs
3√m , e

it√
m
−1
)

e
ζs
3√m

m
e

“
it√
m
−1

”
m

dt ds

=
iζ2e2m

2π2m
7
6

α 3√m∫
0

β
√

m∫
−β

√
m

se
− 1

2 t2− 2
3 s3+ 2ζ

3√m
ks
(
1 +O

(
m− 1

24

))
dt ds

=
iζ2e2m

2π2m
7
6

α 3√m∫
0

β
√

m∫
−β

√
m

se
− 1

2 t2− 2
3 s3+ 2ζ

3√m
ks

dt ds +O
(

m− 29
24 e2m

∞∫
0

se
− 2

3 s3− ks
3√m ds

)
.

We denote the remaining integral by I ′1:

I ′1 =

α 3√m∫
0

β
√

m∫
−β

√
m

se
− 1

2 t2− 2
3 s3+ 2ζ

3√m
ks

dt ds.

Our next step is to “complete the tails”:
∞∫

β
√

m

e−
1
2 t2dt =

∞∫
0

e−
1
2 (h+β

√
m)2dh = e−

1
2 β2m

∞∫
0

e−
1
2 h2−hβ

√
mdh ≤

√
π

2
e−

1
2 β2m,
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∞∫

α 3√m

se
− 2

3 s3+ 2ζ
3√m

ks
ds

∣∣∣∣∣ ≤
∞∫

α 3√m

se
− 2

3 s3− ks
3√m ds

≤ e−
2
3 α3m

 ∞∫
0

he−
2
3 h3

dh + α 3
√

m

∞∫
0

e−
2
3 h3

dh

 ≤
(
c1 + c2α

3
√

m
)
e−

2
3 α3m.

We apply this bounds and get the representation

I ′1 =

 ∞∫
−∞

e−
1
2 t2dt +O

(
e−c3β2m

) ∞∫
0

se
− 2

3 s3+ 2ζ
3√m

ks
ds +O

(
e−c4α3m

)
=
√

2π

∞∫
0

se
− 2

3 s3+ 2ζ
3√m

ks
ds +O

(
e−c4α3m

)
+O

(
e−c3β2m

)
.

The second part of the integral representing (18) has the main contribution

−
√

2πiζ
2
e2m

2π2m
7
6

∞∫
0

se
− 2

3 s3+ 2ζ
3√m

ks
ds

and the error terms are of the same order as before.
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