
THE SUM OF DIGITS FUNCTION OF POLYNOMIAL SEQUENCES
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Abstract. Let q ≥ 2 be an integer and sq(n) denote the sum of the digits in base q of the
positive integer n. The goal of this work is to study a problem of Gelfond concerning the
the repartition of the sequence (sq(P (n)))n∈N in arithmetic progressions when P ∈ Z[X] is
such that P (N) ⊂ N. We answer Gelfond's question and we show the uniform distribution
modulo 1 of the sequence (αsq(P (n)))n∈N for α ∈ R \Q provided that q is a large enough
prime number coprime with the leading coe�cient of P .

1. Introduction

Let sq(n) denote the sum of digits function, de�ned for any non negative integer n by

sq(n) =
∑
j≥0

εj(n),

where, for any non negative integer j, εj(n) ∈ {0, 1, . . . , q − 1} are the digits in the q-ary
digital expansion

n =
∑
j≥0

εj(n)qj.

For x ∈ R we set e(x) = exp(2πix) and if ` = max{j : εj(n) 6= 0} we denote by repq(n) =
ε`(n) . . . ε0(n) the q-adic representation of the integer n.
The sum of digits function appears in many di�erent mathematical questions (see [1] and

[14] for a survey on this aspect). Mahler introduced in [13] the sequence
(
(−1)s2(n)

)
n∈N

in order to illustrate several results of spectral analysis obtained by Wiener in [26]. In
particular, Mahler showed the convergence, for any non negative integer k, of the sequence
(γk(N))N≥1 de�ned for any positive integer N by

γk(N) =
1

N

∑
n<N

(−1)s2(n)(−1)s2(n+k),

and moreover that this limit is non zero for in�nitely many integers k.
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Nowadays we know (see [12]) that for any non-negative integer k this limit is equal to
the k-th Fourier coe�cient of the correlation measure associated to the symbolic dynam-
ical system generated by the sequence

(
(−1)s2(n)

)
n∈N and that this convergence can be

understood as a consequence of the unique ergodicity of this symbolic dynamical system
(see [23] or [24]).
Only few results are known concerning the q-adic representation of the sequence (P (n))n∈N

when P is an integer valued polynomial. Davenport and Erd®s proved in [5] the normality
of the real number whose q-adic representation is

0. repq(P (1)) . . . repq(P (n)) . . .

when P is an integer valued polynomial. A consequence of their theorem is that in this
case we have ∑

n≤x

sq(P (n)) ∼ q − 1

2
d x logq x (x→ +∞),

where d is the degree of P .
Peter generalized in [21] a result obtained by Delange [6] in the case P (X) = X and

proved the following more precise estimate in the case P (X) = Xd:

Theorem A. There exist c ∈ R, ε > 0, and Φq,d a continuous function on R, 1-periodic and
nowhere di�erentiable such that for all x ≥ 1,∑

n≤x

sq(n
d) =

q − 1

2
d x logq x+ cx+ xΦq,d(d logq x) +O(x1−ε).

Furthermore Bassily and Katai showed in [2] that there is a central limit theorem for
the sum of digits function on polynomial sequences:

Theorem B. Let P ∈ Z[X] such that P (N) ⊂ N then

1

x
card

{
n ≤ x, sq(P (n)) ≤ q − 1

2
d x logq x+ y

√
q2 − 1

12
d x logq x

}
= Φ(y) + o(1),

where Φ(y) denotes the normal distribution function.

In 1967 Gelfond studied in [10] the distribution in arithmetic progressions of the sequence
(sq(P (n)))n∈N when P is an integer valued polynomial of degree 1 and proposed the case
of higher degree as an open problem:

Problem 1 (Gelfond's problem for integer valued polynomials). For any integer valued
polynomial P and any �xed integers a ∈ Z and m ≥ 1, give the number of integers n ≤ x
such that sq(P (n)) ≡ a mod m.

Following the ideas of Piatetski-Shapiro, who studied in [22] the distribution of prime
numbers in the sequence (bncc)n∈N for c > 1, a �rst approach to Gelfond's problem was
developed by Mauduit and Rivat in [15, 16] and continued by Morgenbesser in [20] who
proved the following results:



THE SUM OF DIGITS FUNCTION OF POLYNOMIAL SEQUENCES 3

Theorem C. If c ∈ [1, 7/5) and q ≥ 2 (by [16]) or if c ∈ R+ \ N and q ≥ q0(c) su�ciently
large (by [20]) then

• for all (a,m) ∈ Z× N∗, we have

lim
N→+∞

1

N
card{n < N : sq([n

c]) ≡ a mod m} =
1

m
,

• the sequence (α sq([n
c]))n∈N is uniformly distributed modulo 1 if and only if α is an

irrational number.

A �rst answer to Gelfond's original problem for integer valued polynomials was given by
Dartyge and Tenenbaum in [3, 4] where they obtained the following general lower bound:

Theorem D. Let q and m be positive integers such that q ≥ 2 and gcd(m, q − 1) = 1 and
let P ∈ Z[X] be such that P (N) ⊂ N. Then there exist two constants C = C(P, q,m) > 0
and N0 = N0(P, q,m) ≥ 1 such that for any a ∈ {0, 1, . . . ,m − 1} and for any integer
N ≥ N0, we have

card{n < N : sq(P (n)) ≡ a mod m} ≥ CNmin(1,2/d!),

where d is the degree of P .

Recently Mauduit and Rivat gave in [17] a precise answer to Gelfond's problem in the
case where the polynomial P is of degree 2 (their paper presents only a proof for the
polynomial P (X) = X2 but it could be adapted for any integer valued polynomial P
of degree 2 at the price of dealing with a technical discussion concerning the arithmetic
properties of the coe�cients of P ):

Theorem E. For any integers q ≥ 2 and m ≥ 2, there exists σq,m > 0 such that for any
a ∈ Z,

(1.1) card{n ≤ x : sq(n
2) ≡ a mod m} =

x

m
Q(a,D) +Oq,m(x1−σq,m),

where D = gcd(q − 1,m) and

(1.2) Q(a,D) = card{0 ≤ n < D : n2 ≡ a mod D}.

2. Results

The main purpose of this paper is to analyze the distribution of the sum of digits
function sq(P (n)) for polynomials P ∈ Z[X] such that P (N) ⊂ N when the degree d of the
polynomial P is greater or equal to 3.
For d = 2 the method introduced by Mauduit and Rivat in order to establish Theorem E

lies on a carry lemma that allows them to concentrate the Fourier analysis on a very
short window of digits. Then the remaining exponential sums can be handle e�ciently
by estimates on incomplete quadratic Gaussian sums. Two new di�culties arise when
d ≥ 3. First the estimates for the incomplete exponential sums are not as good as for
d = 2. Secondly the carry lemma permits only to remove a smaller proportion of digits
(see remark 4). This leads to several di�culties in the control of the Fourier transforms.
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Using Vinogradov estimates on incomplete exponential sums and a more precise control
of the Fourier transforms, we will be able to give a partial answer to Gelfond's problem
valid for integer polynomials of any degree.
The main result of this paper is the following one.

Theorem 1. Let d ≥ 2 be an integer, q ≥ q0(d) a su�ciently large prime number, and
P ∈ Z[X] of degree d such that P (N) ⊂ N for which the leading coe�cient ad is co-prime
to q. If (q − 1)α ∈ R \ Z then there exists σ > 0 with

(2.1)
∑
n<x

e(αsq(P (n)))� x1−σ

where the implied constant depends on q, d and α.

Remark 1. It follows from the proof of Theorem 1 that we can choose σ = c ‖(q − 1)α‖2
for some constant c > 0 depending only on q and d. Furthermore we will show that

(2.2) q0(d) ≤ e67d3(log d)2 .

Remark 2. The assumptions that q is prime and that ad is co-prime to q are not really
necessary. The method we introduce to prove theorem 1 holds for general q ≥ q0(d) and
ad > 0. However, the proof would be even much more technical. Therefore we decided
to restrict ourselves to this simpli�ed case, since the main incompleteness of the theorem,
namely that we cannot say anything for small q < q0(d), remains being an open problem
and it is questionable whether the methods we use are su�cient to cover the cases of small
q.

The following theorems can be easily deduced from Theorem 1.

Theorem 2. Let d ≥ 2 be an integer, q ≥ q0(d) a su�ciently large prime number, P ∈ Z[X]
of degree d such that P (N) ⊂ N for which the leading coe�cient ad is co-prime to q, and
m an integer, m ≥ 1. Then there exists σq,m > 0 such that for all integers a

card{n ≤ x : sq(P (n)) ≡ a mod m} =
x

m
Q(a,D) +O(x1−σq,m),

where D = (q − 1,m) and

Q(a,D) = card{0 ≤ n < D : P (n) ≡ a mod D}.

Remark 3. There is no simple formula to express Q(a,D) in the general case, but for any
a and D �xed, we have

Q(a,D) =
∏
p |D

Q(a, pvp(D))

(see [25, chapitre 5.9]). In the special case where D = 1 we have Q(a,D) = 1.

Theorem 3. Let d ≥ 2 be an integer, q ≥ q0(d) a su�ciently large prime number, and
P ∈ Z[X] of degree d such that P (N) ⊂ N for which the leading coe�cient ad is co-prime
to q. Then the sequence (αsq(P (n)))n∈N is uniformly distributed modulo 1 if and only if α
is an irrational number.
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Let us consider the following question:

Problem 2. For any integer valued polynomial P of degree d and for any integer k is close
to q−1

2
dx logq x, give the number of integers n ≤ x such that sq(P (n)) = k}.

For P (X) = X2 the estimates obtained in [17] are uniform in α so that the methods we
used in [7] permit to answer Problem 2 when d = 2.
But, as the estimate (2.1) is not uniform in α Problem 2 w remains open for d ≥ 3.

The structure of the paper is the following one: in section 3 we present some auxiliary
results concerning combinatorial lemmas and Fourier transforms estimates, in Section 4 we
prove Theorem 1 and then Theorems 2 and 3 are derived in Section 5.

3. Auxiliary Results

3.1. Van der Corput's inequality. We recall van der Corput's inequality:

Lemma 1. For all complex numbers z1, z2, . . . , zN and integer R ≥ 1 we have∣∣∣∣∣
N∑
n=1

zn

∣∣∣∣∣ ≤
N − 1 +R

R

∑
|r|<R

(
1− |r|

R

) ∑
1≤n,n+r≤N

zn+rzn

1/2

.

Proof. See for example Lemme 4 of [18] . �

We will need also the following variant of van der Corput's inequality, which gives some
�exibility in the indexes:

Lemma 2. For all integers 1 ≤ A ≤ B ≤ N , all integers R ≥ 1 and all complex numbers
z1, z2, . . . , zN of modulus ≤ 1 we have∣∣∣∣∣

B∑
n=A

zn

∣∣∣∣∣ ≤
B − A+ 1

R

∑
|r|<R

(
1− |r|

R

) ∑
1≤n,n+r≤N

zn+rzn

1/2

+
R

2
.

Proof. This is Lemme 15 of [17, p. 123] . �

3.2. A Carry-Lemma. Let s
[<λ]
q denote the truncated sum-of-digits function

s[<λ]
q =

∑
j<λ

εj(n).

The truncated sum-of-digits function was introduced in [8] and the following property is
a generalization of [17, Lemme 16], where the polynomial P (X) = X2 is considered.

Lemma 3. Suppose that P ∈ Z[X] of degree d ≥ 2 is such yhat P (N) ⊂ N and that ν and
ρ are integers with ν ≥ 2 and 1 ≤ ρ ≤ ν/d. For every integer r with |r| < qρ let E(r, ν, ρ)
denote the number of integers n with qν−1 < n ≤ qν and

(3.1) sq(P (n+ r))− sq(P (n)) 6= s[<(d−1)ν+2ρ]
q (P (n+ r))− s[<ν+2ρ]

q (P (n)).
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Then we have

(3.2) E(r, ν, ρ) ≤ C qν−ρ,

where the constant C > 0 depends on the polynomial P .

Proof. First observe that |P (n+r)−P (n)| ≤ c1q
(d−1)ν+ρ ≤ q(d−1)ν+ρ+C1 for some constants

c1 > 0 and C1 > 0. If ρ ≤ C1 then (3.2) is certainly true (for a proper constant C > 0).
Thus we may assume that ρ > C1.
Assume that P (n+r)−P (n) > 0. This means that if we add P (n+r)−P (n) to P (n) then

this will a�ect certainly the �rst (d−1)ν+ρ+C1 digits. Furthermore, if n satis�es (3.1) then
the digits of aj = εj(P (n)) have to satisfy aj = q−1 for (d−1)ν+ρ+C1 ≤ j < (d−1)ν+2ρ.
Hence, it is su�cient to estimate the number of n with this property. It is clear that this
property is equivalent to the statement that there exists a positive integer m ≤ qν−2ρ with
bP (n)/q(d−1)ν+ρ+C1c = qρ−C1m− 1. Equivalently this means that

(3.3) qρ−C1m− 1 ≤ P (n)

q(d−1)ν+ρ+C1
< qρ−C1m.

Hence, for given m ≤ qν−2ρ the number of n (with qν−1 < n ≤ qν) that satisfy (3.3) is
bounded by

1 + c2q
(d−1)ν+2ρ

d
−ρm

1
d
−1 + c3q

(d−1)ν+2ρ
d

−νm
1
d

for certain constants c2, c3 > 0. Consequently the total number of n with these restrictions
if bounded by

� qν−2ρ + q
(d−1)ν+2ρ

d
−ρq

ν−2ρ
d + q

(d−1)ν+2ρ
d

−νq
ν−2ρ
d

+ν−2ρ

� qν−ρ.

A similar estimate holds for those n with P (n+r)−P (n) ≤ 0. This proves the lemma. �

Remark 4. Heuristically this lemma allows us, for most integers n, to get rid of the digits
of index between (d− 1)ν and dν. In the case d = 2 we can remove in this way almost half
of the digits and this was a crucial argument in the proof of Theorem E. When d ≥ 3, we
remove only a smaller proportion (1/d) of digits and this leads to a more di�cult situation.

3.3. Exponential Sum Estimates. In what follows we will use several estimates of ex-
ponential sums. The �rst one is the following version of Vinogradov's estimate that is due
to Montgomery [19].

Lemma 4. Suppose that P is a polynomial of degree d ≥ 2 with real coe�cients whose
leading coe�cient αd satis�es ∣∣∣∣αd − a

q

∣∣∣∣ ≤ 1

q2

with (a, q) = 1 and N ≤ q ≤ Nd−1. Then

(3.4)
N∑
n=1

e(P (n))� N
1− 1

11d2 log d ,

where the constant implied by � depends on the degree d.
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Note that the condition N ≤ q ≤ Nd−1 can be weakened but then the exponential saving
gets worse. For example, if q = Nd−τ for some τ ∈ [0, 1] then we have

(3.5)
N∑
n=1

e(P (n))� N
1− τ

11d2 log d .

For example, in the proof of Theorem 1 we will need estimates for exponential sums of the
form

S =
∑
n<qν

e(P (n)),

where P is of the form P (x) = a
qλ
xd + · · · , λ = (d− 1)ν + 2ρ > (d− 1)ν, and (a, qλ) = 1.

By splitting up the sum according to n = q2µn′ + ` with 0 ≤ ` < q2ρ and 0 ≤ n′ < qν−2ρ

we obtain (since λ− 2ρd = (d− 1)(ν − 2ρ))

S =
∑

0≤`<q2ρ

∑
n′<qν−2ρ

e

(
a

q(d−1)(ν−2ρ)
(n′)d + · · ·

)
� q2ρq

(ν−2ρ)
“
1− 1

11d2 log d

”

= q
ν

“
1−(1− ν

2ρ)
1

11d2 log d

”
.

This is in accordance with (3.5).
Finally we formulate a lemma that applies also in the range that is not covered by

Lemma 4, see [11, Proposition 8.2].

Lemma 5. Suppose that d ≥ 2 and P (x) = αdx
d + · · · + α0 is a polynomial with rational

leading coe�cient αd 6= 0. Then∑
n<N

e(P (n))� N1−21−d

+N1−d 21−d

 ∑
1≤|s1|,...|sd−1|<N

min

(
N,

1

|sin (παdd!s1 · · · sd−1)|

)21−d

,

where the implied constant depends on d.

Proof. For the reader's convenience we present a short proof.
For d = 2 one just applies van der Corput's inequality (Lemma 1) with a = 0, B = N−1,

and R = N and obtains∣∣∣∣∣∑
n<N

e
(
α2n

2 + α1n
)∣∣∣∣∣� N1/2 +

 ∑
1≤|s|<N

∣∣∣∣∣ ∑
0≤n,n+s<N

e (2α2sn)

∣∣∣∣∣
1/2

.
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Now one proceeds by induction and shows (by applying van der Corput's inequality and
Hölder's inequality)∑

n<N

e(P (n))� N1−21−d

+N1−d 21−d

 ∑
1≤|s1|,...|sd−1|<N

∣∣∣∣∣∣
∑

0≤n,n+s1,...,n+sd−1<N

e (αdd!s1 · · · sd−1n)

∣∣∣∣∣∣
21−d

.

Finally, since we have for any interval I (of length |I| ≥ 1)∑
n∈I

e (αn)� min

(
|I|, 1

|sin (πα)|

)
,

the lemma follows directly. �

3.4. Fourier-Analytic Tools. A major ingredient of the proof of Theorem 1 is the dis-
crete Fourier analysis of the function

n 7→ e(fλ(n)),

where fλ(n) denotes the function

(3.6) fλ(n) = α
∑
j<λ

εj(n) = α s[<λ]
q (n).

Observe that fλ is periodic with period qλ.
We set

(3.7) Fλ(h, α) = q−λ
∑

0≤u<qλ
e
(
fλ(u)− huq−λ

)
.

Furthermore set

ϕq(t) =
| sin(πqt)|
| sin(πt)|

,

ψq(t) =
1

q

∑
0≤r<q

ϕq

(
t+

r

q

)
,

ηq =
logψq

(
1
2q

)
log q

.

Then the following properties hold.

Lemma 6. Let q ≥ 2 and λ ≥ 1 be integers and Fλ(h, α) and ηq be de�ned as above.

(1) Set cq = π2

12 log q

(
1− 2

q+1

)
. Then we have uniformly for all real α

|Fλ(h, α)| ≤ eπ
2/48q−cq‖(q−1)α‖2λ.
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(2) Suppose that 0 ≤ δ ≤ λ . Then for all integers a∑
0≤h<qλ

h≡a mod qδ

|Fλ(h, α)|2 = |Fδ(a, α)|2.

(3) Suppose that 0 ≤ δ ≤ λ . Then for all integers a∑
0≤h<qλ

h≡a mod qδ

|Fλ(h, α)| ≤ qηq(λ−δ)|Fδ(a, α)|.

(4) Suppose that 0 ≤ δ1 ≤ δ ≤ λ. Then∑
0≤h1,h2<qλ

h1+h2≡0 mod qδ

h1≡0 mod qδ1

|Fλ(h1, α)Fλ(−h2, α)| ≤ q2ηq(λ−δ)|Fδ1(0, α)|2.

Proof. These are slight and direct extensions of corresponding estimates from [17, 18]. �

Note that ηq can be estimated by

ηq ≤
log
(

2
q sin π

2q
+ 2

π
log 2q

π

)
log q

which ensures that ηq → 0 as q → ∞. (The upper bound is asymptotically equivalent to
log log q/ log q.) For example, we have η2 = 0.5 and η3 ≈ 0.4649, see [18].
In the proof of Theorem 1 we will need the assumption

2(d− 1)ηq <
1

11d2 log d

which is implied by (2.2). Note that (2.2) also implies q > d!.
The next lemma extends a property of [18] and will be crucial in the proof of Theorem 1.

Lemma 7. Suppose that d ≥ 2, that q is a prime number, and that (a, q) = 1 Furthermore,
let λ, ν, and δ non-negative integers with λ ≥ (d− 2)ν + δ. Then for every ε > 0 we have∑

1≤h<qλ
(h,qλ)=qδ

|Fλ(h, α)|2
∑

1≤|s1|,...|sd−2|<qν

1∣∣∣sin(π ahs1···sd−2

qλ

)∣∣∣
� ν qλ−δ+νε q−cq (λ−(d−2)ν)‖(q−1)α‖2 ,(3.8)

where cq is de�ned in Lemma 6 and the implied constant depends on d and on ε.

Proof. We proceed by induction and start with λ = (d − 2)ν + δ. Note that if 1 ≤
|s1|, . . . |sd−2| < qν and then we certainly have

1 ≤ |s1 · · · sd−2| ≤ q(d−2)ν = qλ−δ.
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Furthermore, the divisor functions τ(n) = card{d ≤ n : d|n} satis�es τ(n)� nε for every
ε > 0. Hence, it follows that for every ε > 0 we have uniformly for all residue classes
1 ≤ ` < qλ−δ

card{(s1, . . . , sd−2) : 1 ≤ |s1|, . . . |sd−2| < qν , s1 · · · sd−2 ≡ ` mod qλ−δ} � qνε.

We recall that (a, q) = 1 and that (h, qλ) = qδ. Hence, if we write H = hq−δ it also follows
that for every residue classes 1 ≤ ` < qλ−δ

(3.9) card{(s1, . . . , sd−2) : 1 ≤ |s1|, . . . |sd−2| < qν , aHs1 · · · sd−2 ≡ ` mod qλ−δ} � qνε.

Hence, (3.9) implies ∑
1≤|s1|,...|sd−2|<qν

1∣∣∣sin(π aHs1···sd−2

qλ−δ

)∣∣∣ � qλ−δ+νε log(qλ−δ)

� ν qλ−δ+νε.

Furthermore, by Lemma 6 ∑
1≤h<qλ

(h,qλ)=qδ

|Fλ(h, α)|2 ≤ |Fδ(0, α)|2

� q−2cq‖(q−1)α‖2δ

Consequently we obtain (3.8) for λ = (d− 2)ν + δ.
Similarly we can check (3.8) for λ = (d− 2)ν + δ + 1.
Finally we show inductively that if (3.8) is valid for λ then (3.8) is still valid when λ is

replaced by λ+ 2. For this purpose we consider the property that

(3.10)
∑

0≤h<qλ+2

(h,qλ+2)=qδ

|Fλ+2(h, α)|2∣∣∣sin(π Ah
qλ+2

)∣∣∣ ≤ q2−2cq‖(q−1)α‖2
∑

0≤h<qλ
(h,qλ)=qδ

|Fλ(h, α)|2∣∣∣sin(πAhqλ )∣∣∣
holds for all integers 0 ≤ δ ≤ λ and for all A with (A, qλ) < qλ−δ.
It is clear that (3.10) implies the induction step. One only has to replace A by as1 · · · sd−2

and take the sum over all s1, · · · sd−2.
Hence, it remains to check (3.10). Set

Φ1(A, x) =
1

q2

∑
0≤j<q

ϕ2
q

(
α− x+ j

q

)
ϕq

(
A(x+ j)

q

)
and

Φ2(A, x) =
1

q2

∑
0≤j<q

ϕ2
q

(
α− x+ j

q

)
ϕq

(
A(x+ j)

q

)
Φ1

(
x+ j

q

)
.
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First suppose that (A, q) = 1. Then it follows as in [18, Lemme 21] that

(3.11)
∑

0≤h<qλ+2

(h,qλ+2)=qδ

|Fλ+2(h, α)|2∣∣∣sin(π Ah
qλ+2

)∣∣∣ =
∑

0≤h<qλ
(h,qλ)=qδ

|Fλ(h, α)|2∣∣∣sin(πAhqλ )∣∣∣Φ2

(
A,

h

qλ

)
.

Since ∣∣Fλ+1(h
′ + `qλ, α)

∣∣ = |Fλ(h′, α)| 1
q
ϕq

(
α− h′

qλ+1
− `

q

)
and

1∣∣∣sin(πA(h′+`qλ)
qλ+1

)∣∣∣ =
1∣∣∣sin(πAh′qλ

)∣∣∣ ϕq
(
A(h′ + `qλ)

qλ+1

)
it follows that∑

0≤h<qλ+1

(h,qλ+1)=qδ

|Fλ+1(h, α)|2∣∣∣sin(π Ah
qλ+1

)∣∣∣ =
∑

0≤h′<qλ
(h′,qλ)=qδ

∑
0≤`<q

∣∣Fλ+1(h
′ + `qλ, α)

∣∣2∣∣∣sin(πA(h′+`qλ)
qλ+1

)∣∣∣
=

∑
0≤h′<qλ

(h′,qλ)=qδ

|Fλ(h′, α)|2∣∣∣sin(πAh′qλ

)∣∣∣
∑

0≤`<q

1

q2
ϕ2
q

(
α− h′

qλ+1
− `

q

)
ϕq

(
A(h′ + `qλ)

qλ+1

)

=
∑

0≤h′<qλ
(h′,qλ)=qδ

|Fλ(h′, α)|2∣∣∣sin(πAh′qλ

)∣∣∣ Φ1

(
a,
h′

qλ

)
.

In completely the same way one obtains (3.11).
Moreover it follows from the proof of Lemme 21 of [18] that one has uniformly in x and

for all A with (A, q) = 1

Φ2(a, x) ≤ q2γq(α)

with γq(α) de�ned by

qγq(α) = max
t∈R

√
φq(α + t)φq(α + qt).

It follows from Lemme 7 of [17] that

γq(α) ≤ 1− cq‖(q − 1)α‖2

where cq is de�ned in Lemma 6, so that we have

Φ2(a, x) ≤ q2−2cq‖(q−1)α‖2 .

Of course, this proves (3.10) in this case.



12 MICHAEL DRMOTA, CHRISTIAN MAUDUIT, AND JOËL RIVAT

Now suppose that (A, qλ) = qµ with λ− µ > δ. We also set A1 = Aq−µ. Then it follows
from Lemma 6 that ∑

0≤h<qλ
(h,qλ)=qδ

|Fλ(h, α)|2∣∣∣sin(πAhqλ )∣∣∣ =
∑

0≤h<qλ
(h,qλ)=qδ

|Fλ(h, α)|2∣∣∣sin(π A1h
qλ−µ

)∣∣∣
=

∑
0≤h′<qλ−µ

(h′,qλ−µ)=qδ

1∣∣∣sin(π A1h′

qλ−µ

)∣∣∣
∑

0≤h<qλ
h≡h′ mod qλ−µ

|Fλ(h, α)|2

=
∑

0≤h′<qλ−µ
(h′,qλ−µ)=qδ

|Fλ−µ(h′, α)|2∣∣∣sin(π A1h′

qλ−µ

)∣∣∣
This means that we can reduce the general case µ > 1 to the case µ = 0 and, thus, (3.10)
holds in all cases.
This completes the proof of the lemma. �

4. Proof of Theorem 1

4.1. Reduction of the Problem. In order to simplify notation we set f(n) = αsq(n).
The major aim is to estimate the exponential sum

S =
∑
n≤x

e(f(P (n))).

We also make the general assumption d ≥ 3 since the case of quadratic polynomials is
completely covered in the analysis of [17].
As usual we will only consider sums of the following form.

Proposition 1. Let d ≥ 3 be an integer, q ≥ q0(d) be a prime number, and P ∈ Z[X] of
degree d such that P (N) ⊂ N for which the leading coe�cient ad is co-prime to q. Then

S1 =
∑

qν−1<n≤x

e(f(P (n)))� qν−c‖(q−1)α‖2ν

uniformly for qν−1 < x ≤ qν, where ν ≥ ν1 = ν1(q, α) is su�ciently large, c > 0 depends
on q and d and the implied constant depends on q, d and α.

It is an easy task to derive Theorem 1 from Proposition 1. From the obvious decompo-
sition ∑

1≤n≤x

e(f(P (n))) = e(f(P (1)) +
∑

1≤i≤ν1−1

∑
qi−1<n≤qi

e(f(P (n)))

+
∑

ν1≤i≤ν−1

∑
qi−1<n≤qi

e(f(P (n))) +
∑

qν−1<n≤x

e(f(P (n)))
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we obtain immediately∣∣∣∣∣ ∑
1≤n≤x

e(f(P (n)))

∣∣∣∣∣� qν1−1 +
∑

ν1≤i≤ν

qi−c‖(q−1)α‖2i

� qν−c‖(q−1)α‖2ν

� x1−c‖(q−1)α‖2

which is precisely the statement of Theorem 1.
The �rst step is to use van der Corput's inequality (Lemma 2). With A = 1, B =
bxc − qν−1, N = qν − qν−1, zn = e(f(P (qν−1 + n)) and R = qρ we obtain

|S1| � q(ν−ρ)/2

∣∣∣∣∣∣
∑
|r|<qρ

(
1− |r|

qρ

) ∑
qν−1<n,n+r≤qν

e(f(P (n+ r))− f(P (n)))

∣∣∣∣∣∣
1/2

+
qρ

2
.

By separating the case r = 0 and by suppressing the condition qν−1 < n + r ≤ qν (by
adding proper error terms) we get the upper bound

|S1| � qν−
ρ
2 + q

ν+ρ
2 + qρ + q

ν
2 max

1≤|r|<qρ

∣∣∣∣∣∣
∑

qν−1<n≤qν
e(f(P (n+ r))− f(P (n)))

∣∣∣∣∣∣
1/2

.

In order to simplify our estimates we will assume (without loss of generality) that ν ≥ 10
and

(4.1) 1 ≤ ρ ≤ ν

10

which ensures that

qν−
ρ
2 + q

ν+ρ
2 + qρ � qν−

ρ
2 .

The next step is to replace the di�erence f(P (n + r)) − f(P (n)) by f(d−1)ν+2ρ(P (n +
r))− f(d−1)ν+2ρ(P (n)) where f(d−1)ν+2ρ is de�ned by (3.6). By setting

S2(r, ν, ρ) =
∑

qν−1<n≤qν
e(f(d−1)ν+2ρ(P (n+ r))− f(d−1)ν+2ρ(P (n)))

we obtain (with the help of Lemma 3)

|S1| � qν−
ρ
2 + q

ν
2 max

1≤|r|<qρ
(|S2(r, ν, ρ)|+ E(r, ν, ρ))1/2

� qν−
ρ
2 + q

ν
2 max

1≤|r|<qρ
|S2(r, ν, ρ)|1/2 .

Therefore we only have to discuss the sums S2(r, ν, ρ).
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4.2. Fourier Analysis of S2(r, ν, ρ). By using the orthogonality relation for of the expo-
nential function it follows with

λ = (d− 1)ν + 2ρ

that

S2(r, ν, ρ) =
∑

qν−1<n≤qν
e (fλ(P (n+ r))− fλ(P (n)))

=
1

q2λ

∑
0≤u1<qλ

∑
0≤u2<qλ

e(fλ(u1)− fλ(u2))

×
∑

qµ−1≤n<qν

∑
0≤h1<qλ

e

(
h1(P (n+ r)− u1)

qλ

) ∑
0≤h2<qλ

e

(
h2(P (n)− u2)

qλ

)

=
∑

0≤h1<qλ

∑
0≤h2<qλ

Fλ(h1, α)Fλ(−h2, α)
∑

qν−1≤n<qν
e

(
h1P (n+ r) + h2P (n)

qλ

)
,

where Fλ is de�ned by (3.7). In order to estimate S2(r, ν, ρ) we will have a close look to
the exponential sum

S3(r, ν, ρ, h1, h2) =
∑

qν−1≤n<qν
e

(
h1P (n+ r) + h2P (n)

qλ

)
.

Suppose that aj, 0 ≤ j ≤ d, are the coe�cients of P . Then we have

h1P (x+ r) + h2P (x) = (h1 + h2)adx
d + (h1dadr + (h1 + h2)ad−1)x

d−1 + · · ·

and consequently

h1P (x+ r) + h2P (x)

qλ
=
ad(h1 + h2)

qλ
xd +

h1dadr + (h1 + h2)ad−1

qλ
xd−1 + · · · .

We now use the assumption that q is prime and that ad is co-prime to q. In order to
apply Lemma 4 we have to assume that the leading coe�cient of the polynomial is close or
equal to a rational number with co-prime numerator and denominator. This means that
we have to distinguish between the cases (h1 +h2, q

λ) = qδ, where 0 ≤ δ ≤ λ. In particular
we have to cut this range into three pieces. For this purpose we introduce an additional
parameter µ that satis�es (d − 2)ν + 2ρ < µ ≤ λ (and in fact it will be chosen very close
to λ, see Section 4.6) and we consider the three following cases:

(1) 0 ≤ δ ≤ (d− 2)ν + 2ρ. In this case we will apply Lemma 4.
(2) (d− 2)ν + 2ρ < δ ≤ µ. In this case we will also work directly with Lemma 4 but in

a slightly di�erent way.
(3) µ < δ ≤ λ. This is the most di�cult case. Here we will apply Lemma 5 and proper

estimates for the Fourier terms Fλ(h, α).

The next three sections deal with these cases separately.
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4.3. Small δ. Set

S4(r, ν, ρ) =
∑

0≤δ≤(d−2)ν+2ρ

∑
0≤h1,h2<qλ

(h1+h2,qλ)=qδ

Fλ(h1, α)Fλ(−h2, λ)

×
∑

qν−1≤n<qν
e

(
h1P (x+ r) + h2P (x)

qλ

)
.

If (h1 + h2, q
λ) = qδ we have

h1P (x+ r) + h2P (x)

qλ
=
adH

qλ−δ
xd + · · ·

for some integer H with (H, q) = 1. Note also that δ ≤ (d − 2)ν + 2ρ implies λ − δ ≥ ν.
Hence, by Lemma 4 (and its extension (3.5)) we have∑

qν−1≤n<ν

e

(
h1P (x+ r) + h2P (x)

qλ

)
� qν(1−(1− 2ρ

ν
)Cd),

where Cd abbreviates

Cd =
1

11d2 log d
.

Furthermore, by Lemma 6 we have∑
0≤h1,h2<qλ

(h1+h2,qλ)=qδ

Fλ(h1, α)Fλ(−h2, λ)� q2ηq(λ−δ)

Consequently

S4(r, ν, ρ)�
∑

0≤δ≤(d−2)ν+2ρ

q2ηq(λ−δ)qν(1−(1− 2ρ
ν

)Cd)

� qν+2ρ(2ηq+Cd)−ν(Cd−2(d−1)ηq).

If q ≥ q0(d) is su�ciently large then 2(d− 1)ηq < Cd. Furthermore if we suppose that

(4.2) 0 < ρ ≤ Cd − 2(d− 1)ηq
4(2ηq + Cd)

ν

then

(4.3) S4(r, ν, ρ)� qν(1−κ)

with κ = 1
2

(Cd − 2(d− 1)ηq) > 0 that is independent from r and α (provided that q ≥
q0(d)).
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4.4. Medium δ. Next set

S5(r, ν, ρ, µ) =
∑

(d−2)ν+2ρ<δ≤µ

∑
0≤h1,h2<qλ

(h1+h2,qλ)=qδ

Fλ(h1, α)Fλ(−h2, λ)

×
∑

qν−1≤n<qν
e

(
h1P (x+ r) + h2P (x)

qλ

)
,

where (d− 2)ν + 2ρ < µ ≤ λ. Again if (h1 + h2, q
λ) = qδ we have

h1P (x+ r) + h2P (x)

qλ
=
adH

qλ−δ
xd + · · ·

for some integer H with (H, q) = 1. However, if δ > (d− 2)ν + 2ρ then we have λ− δ < ν.
Thus we subdivide the interval [qν−1, qν) into qν−λ+δ−1 sub-intervals of length qλ−δ and
apply then Lemma 6. Hence we have∑

qν−1≤n<ν

e

(
h1P (x+ r) + h2P (x)

qλ

)
� qν−λ+δq(λ−δ)(1−Cd)

= qν−(λ−δ)Cd .

Consequently we obtain

S5(r, ν, ρ, µ)�
∑

(d−2)ν+2ρ<δ≤µ

q2ηq(λ−δ)qν−(λ−δ)Cd

� qν−(Cd−2ηq)(λ−µ).(4.4)

4.5. Large δ. Set

S6(r, ν, ρ, µ) =
∑
µ<δ≤λ

∑
0≤h1,h2<qλ

(h1+h2,qλ)=qδ

Fλ(h1, α)Fλ(−h2, λ)

×
∑

qν−1≤n<ν

e

(
h1P (x+ r) + h2P (x)

qλ

)
.

This case of large δ is the most di�cult one. The reason is that the denominator qλ−δ

gets too small so that Lemma 4 gives no proper error term. In fact by considering proper
residue classes we will omit the leading term ad(h1 + h2)q

−λnd completely.
Set τ = dλ−δ

d−1
e and write n = qτn′ + ` with 0 ≤ ` < qτ . Then, with H = (h1 + h2)q

−δ we
have

h1P (n+ r) + h2P (n)

qλ
= Hadq

dτ−(λ−δ)(n′)d + dH`adq
(d−1)τ−(λ−δ)(n′)d−1

+Had−1q
(d−1)τ−(λ−δ)(n′)d−1 +

dadh1r

qλ−(d−1)τ
(n′)d−1 + · · ·
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and consequently

e

(
h1P (x+ r) + h2P (x)

qλ

)
= e

(
dadh1r

qλ−(d−1)τ
(n′)d−1 + · · ·

)
.

This means that the polynomial f(x) = (h1P (x+ r) + h2P (x))q−λ of degree d is replaced
by a polynomial of degree d− 1.
Suppose that (r, qλ) = qρ1 for some 0 ≤ ρ1 ≤ ρ and (h1, q

λ) = qδ1 for some 0 ≤ δ1 < λ.
We will distinguish again between several ranges of δ1. Set

S ′6(r, ν, ρ, µ) =
∑
µ<δ≤λ

∑
0≤δ1≤ν+τ−ρ1

S7(r, ν, ρ, µ, δ, δ1),

S ′′6 (r, ν, ρ, µ) =
∑
µ<δ≤λ

∑
ν+τ−ρ1<δ1≤µ−2ρ

S7(r, ν, ρ, µ, δ, δ1),

S ′′′6 (r, ν, ρ, µ) =
∑
µ<δ≤λ

∑
µ−2ρ<δ1≤λ

S7(r, ν, ρ, µ, δ, δ1),

where

S7(r, ν, ρ, µ, δ, δ1) =
∑

0≤h1,h2<qλ

(h1+h2,qλ)=qδ

(h1,qλ)=qδ1

Fλ(h1, α)Fλ(−h2, λ)

× qτ
∑

qν−τ−1≤n′<qν−τ
e

(
dadh1r

qλ−(d−1)τ
(n′)d−1 + · · ·

)
.

4.5.1. Large δ1. First let us consider the sum S ′′′6 (r, ν, ρ, µ). In this case we have δ1 > µ−2ρ
which assures that the case where ρ1 + δ1 larger than λ − (d − 1)τ or almost as large as
λ− (d− 1)τ . In particular we have λ− δ1 ≤ λ−µ+ 2ρ. Consequently the number of pairs
(h1, h2) with the properties 0 ≤ h1, h2 < qλ, (h1, q

λ) = qδ1, (h1 + h2, q
λ) = qδ is bounded by

q2(λ−µ+ρ). Furthermore, we have by Lemma 6 |Fλ(h, α)| � q−cq‖(q−1)α‖2λ.
Hence we have

S7(r, ν, ρ, µ, δ, δ1) ≤ qν+2(λ−µ+ρ)q−2cq‖(q−1)α‖2λ

and consequently

(4.5) S ′′′6 (r, ν, ρ, µ) ≤ λ2 qν+2(λ−µ+ρ)−2cq‖(q−1)α‖2λ.

In what follows we will choose ρ and µ appropriately so that the term 2cq‖(q − 1)α‖2λ
dominates 2(λ− µ+ ρ) and S ′′′6 (r, ν, ρ, µ) is small enough.
Next let us consider the sum S ′′6 (r, ν, ρ, µ). Here we will use Lemma 4 to estimate the

exponential sum

S8 =
∑

qν−τ−1≤n′<qν−τ
e

(
dadH1r1

qλ−(d−1)τ−δ1−ρ1
(n′)d−1 + · · ·

)
,

where H1 = h1q
−δ1 and r1 = rq−ρ1 . Note that (dadH1r1, q) = 1. Note also that in this case

δ1 < δ.
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Suppose �rst that

(4.6) ν − τ − ρ1 ≤ δ1 ≤ (d− 2)ν + 2ρ− ρ1 − (d− 1)τ,

which is equivalent to

qν−τ ≤ qλ−(d−1)τ−δ1−ρ1 ≤ q(d−2)(ν−τ)+2ρ.

Hence we can apply Lemma 4 (and its extension (3.5)) to obtain the bound

S8 � q(ν−τ)(1−(1− 2ρ
ν−τ )Cd−1)

� q−τqν(1− 1
2
Cd−1),

provided that

(4.7) (ν − τ)

(
1− 2ρ

ν − τ

)
≥ ν

2
.

It will be an easy task to choose the constants ρ and µ such that (4.7) is satis�ed. Fur-
thermore we have from Lemma 6

(4.8)
∑

0≤h1,h2<qλ

h1+h2≡0 mod qδ

h1≡0 mod qδ1

|Fλ(h1, α)Fλ(−h2, α)| ≤ q2ηq(λ−δ).

This leads to the estimate∑
µ<δ≤λ

∑
ν+τ−ρ1<δ1≤(d−2)ν+2ρ−ρ1−(d−1)τ

S7(r, ν, ρ, µ, δ, δ1)

�
∑
µ<δ≤λ

∑
ν+τ−ρ1<δ1≤(d−2)ν+2ρ−ρ1−(d−1)τ

q2ηq(λ−δ)qν(1− 1
2
Cd−1)

� λ q2ηq(λ−µ)qν(1− 1
2
Cd−1)

� λqν(1− 1
4
Cd−1)

provided that

(4.9) 2ηq(λ− µ) ≤ ν

4
Cd−1.

Again it will be easy to choose µ su�ciently close to λ such that (4.9) holds.

4.5.2. Medium δ1. Next suppose that

(4.10) (d− 2)ν + 2ρ− ρ1 − (d− 1)τ < δ1 ≤ µ− 2ρ

which is equivalent to

qλ−µ−(d−1)τ+2ρ−ρ1 ≤ qλ−(d−1)τ−δ1−ρ1 < qν−τ .
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Hence, by subdividing the interval [qν−τ−1, qν−τ ) and applying Lemma 4 it follows that

S8 � qν−τ−(λ−(d−1)τ−δ1−ρ1)q(λ−(d−1)τ−δ1−ρ1)(1−Cd−1)

� q−τqν−ρCd−1 .

Here we have used that

λ− (d− 1)τ − δ1 − ρ1 ≥ λ− µ− (λ− δ)− 1 + 2ρ− ρ1 ≥ ρ− 1.

Furthermore, we can assume that

(4.11) (d− 2)ν + 2ρ− ρ1 − (d− 1)τ ≥ (d− 5/2)ν.

Consequently δ1 ≥ (d− 5/2)ν and we get∑
0≤h1,h2<qλ h1+h2≡0 mod qδ

h1≡0 mod qδ1

|Fλ(h1, α)Fλ(−h2, α)|

� q2ηq(λ−δ)q−2(d−5/2)cq‖(q−1)α‖2ν

and thus∑
µ<δ≤λ

∑
(d−2)ν+2ρ−ρ1−(d−1)τ<δ1≤µ−2ρ

S7(r, ν, ρ, µ, δ, δ1)

�
∑
µ<δ≤λ

∑
(d−2)ν+2ρ−ρ1−(d−1)τ<δ1≤µ−2ρ

q2ηq(λ−δ)q−2(d−5/2)cq‖(q−1)α‖2νqν−ρCd−1

� λ q2ηq(λ−µ)qν−ρCd−1−(2d−5)cq‖(q−1)α‖2ν .

Putting these two estimates together we obtain an upper bound for S ′′6 (r, ν, ρ, µ) of the
form

(4.12) S ′′6 (r, ν, ρ, µ)� λqν(1− 1
4
Cd−1) + λ q2ηq(λ−µ)qν−ρCd−1−(2d−5)cq‖(q−1)α‖2ν

provided that (4.7), (4.9), and (4.11) hold.

4.5.3. Small δ1. Finally we deal with S ′6(r, ν, ρ, µ) For notational convenience we set λ′ =
λ − (d − 1)τ and ν ′ = ν − τ (where τ = dλ−δ

d−1
e). As above we also use the abbreviations

H1 = h1q
−δ1 and r1 = rq−ρ1 . Furthermore we de�ne

H(λ, δ, δ1) = {(h1, h2) ∈ Z2 : 0 ≤ h1, h2 < qλ, h1 + h2 ≡ 0 mod qδ, h1 ≡ 0 mod qδ1}.
It now follows from Lemma 5 that∑

qν′−1≤n′<qν′
e

(
dad−1H1r1
qλ′−δ1−ρ1

(n′)d−1 + · · ·
)
� qν

′(1−22−d)

+ qν
′(1−(d−1) 22−d)

 ∑
1≤|s1|,...,|sd−2|≤qν′

1∣∣∣sin(π d!adH1r1
qλ
′−δ1−ρ1

s1 · · · sd−2

)∣∣∣
2d−2

,
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provided that
λ′ − ρ1 ≥ (d− 2)ν ′ + δ1,

or equivalently if

(4.13) δ1 ≤ ν + 2ρ− τ − ρ1.

However, by assumption we have 0 ≤ δ1 ≤ ν + τ − ρ1. Hence, (4.13) is satis�ed if

(4.14) τ ≤ ρ.

Now we write S7(r, ν, ρ, µ, δ, δ1) = T1 +T2, where T1 is estimated (with the help of (4.8))
by

T1 �
∑

(h1,h2)∈H(λ,δ,δ1)

|Fλ(h1, α)Fλ(−h2, α)| qτ qν′(1−22−d) � q2ηq(λ−δ)qν−22−dν′

and T2 (with the help of Hölder's inequality) by

T2 ≤ qν
′(1−(d−1) 22−d)

∑
(h1,h2)∈H(λ,δ,δ1)

|Fλ(h1, α)Fλ(−h2, α)|

×

 ∑
1≤|s1|,...,|sd−2|≤qν′

1∣∣∣sin(π d!adH1r1
qλ
′−δ1−ρ1

s1 · · · sd−2

)∣∣∣
2d−2

≤ qν
′(1−(d−1) 22−d) T 1−22−d

3 T 22−d

4 ,

where
T3 =

∑
(h1,h2)∈H(λ,δ,δ1)

|Fλ(h1, α)Fλ(−h2, α)|

and

T4 =
∑

(h1,h2)∈H(λ,δ,δ1)

|Fλ(h1, α)Fλ(−h2, α)|
∑

1≤|s1|,...,|sd−2|≤qν′

1∣∣∣sin(π d!adH1r1
qλ
′−δ1−ρ1

s1 · · · sd−2

)∣∣∣ .
By (4.8) the term T3 can be bounded by

T3 ≤ q2ηq(λ−δ).

In order to handle T4 we have to be more careful. Since∑
h2≡h1 mod qδ

|Fλ(−h2, α)| ≤ qηq(λ−δ)|Fδ(h1, α)|

and |Fλ(h1, α)| ≤ |Fδ(h1, α)| it follows that

T4 ≤ qηq(λ−δ)
∑

0≤h1<qλ

(h1,qλ)=qδ1

|Fδ(h1, α)|2

×
∑

1≤|s1|,...,|sd−2|≤qν′

1∣∣∣sin(π d!adH1r1
qλ
′−δ1−ρ1

s1 · · · sd−2

)∣∣∣ .
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Observe that λ′ = λ − (d − 1)τ ≤ δ. Hence, due to periodicity and the (already used)
inequality |Fδ(h1, α)| ≤ |Fλ′−ρ1(h1, α)| we obtain the upper bound

T4 ≤ qηq(λ−δ)q(d−1)τ+ρ1
∑

0≤h′<qλ′−ρ1
(h′,qλ

′−ρ1 )=qδ1

|Fλ′−ρ1(h′, α)|2

×
∑

1≤|s1|,...,|sd−2|≤qν′

1∣∣∣sin(π d!adr1h′
qλ
′−ρ1

s1 · · · sd−2

)∣∣∣ .
Finally we apply Lemma 7 and obtain

T4 � ν qηq(λ−δ)q(d−1)τ+ρ1qλ
′−δ1+ν′εq−cq (λ′−(d−2)ν′)‖(q−1)α‖2

� qλ+ρ1−δ1+νε+ηq(λ−δ)q−cq (ν+2ρ−τ)‖(q−1)α‖2 .

Consequently

T2 ≤ qν
′(1−(d−1) 22−d) T 1−22−d

3 T 22−d

4

� qν
′(1−(d−1) 22−d)+2ηq(λ−δ)(1−22−d)+(λ+ρ1−δ1+νε+ηq(λ−δ))22−d

q−cq 22−d(ν+2ρ−τ)‖(q−1)α‖2

= qν+(2ρ+ρ1+νε−δ1)22−d−τ(1−(d−1)22−d)+2ηq(λ−δ)q−cq 22−d(ν+2ρ−τ)‖(q−1)α‖2

� qν+(3ρ+νε−δ1)22−d
q−cq 22−d(ν+2ρ)‖(q−1)α‖2 .

This proves that

S ′6(r, ν, ρ, µ) =
∑
µ<δ≤λ

∑
0≤δ1≤ν+τ−ρ1

(T1 + T2)

� νqν(1−22−d)+(2ηq+22−d/(d−1))(λ−µ)(4.15)

+ qν+(3ρ+νε)22−d
q−cq 22−d(ν+2ρ)‖(q−1)α‖2 .

4.6. Completion of the proof of Theorem 1. We recall that

S1 � qν−
ρ
2 + q

ν
2 max

1≤|r|<qρ
|S2(r, ν, ρ)|1/2

and

S2(r, ν, ρ) = S4(r, ν, ρ) + S5(r, ν, ρ, µ) + S6(r, ν, ρ, µ),

where

S6(r, ν, ρ, µ) = S ′6(r, ν, ρ, µ) + S ′′6 (r, ν, ρ, µ) + S ′′′6 (r, ν, ρ, µ)
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and (d− 2)ν+ 2ρ < µ ≤ λ = (d− 1)ν+ 2ρ. Hence, by (4.3), (4.4), (4.5), (4.12), and (4.15)
we obtain:

S2(r, ν, ρ)� qν−
1
2
(Cd−2(d−1)ηq)ν + qν−(Cd−2ηq)(λ−µ)

+ νqν(1−22−d)+(2ηq+22−d/(d−1))(λ−µ) + qν+(3ρ+νε)22−d−cq 22−d‖(q−1)α‖2ν

+ λqν(1− 1
4
Cd−1) + λ qν−ρCd−1+2ηq(λ−µ)−(2d−5)cq‖(q−1)α‖2ν

+ λ2 qν+2(λ−µ+ρ)−2cq(d−1)‖(q−1)α‖2ν ,

provided that (4.1), (4.2), (4.7), (4.9), (4.11), and (4.14) are satis�ed. Recall also that
τ = dλ−δ

d−1
e ≤ λ−µ

d−1
+ 1.

We now choose

ρ = min

(
cq
12
,
d− 1

2
cq,

1

10
,
Cd − 2(d− 1)ηq

4(2ηq + Cd)

)
‖(q − 1)α‖2ν,

λ− µ = min

(
ρ,

(2d− 5)cq
4ηq

‖(q − 1)α‖2ν, 21−d

2ηq + 22−d/(d− 1)
ν,
Cd−1

8ηq
ν

)
,

ε =
cq
4
‖(q − 1)α‖2.

This assures that (4.1), (4.2), and (4.9) are automatically satis�ed. Since

τ <
λ− µ
d− 1

+ 1 ≤ ρ

d− 1
+ 1 ≤ ρ

we also have (4.14). Since ρ ≤ ν/10 this also implies and (4.7) and (4.11).
Furthermore this choice of parameters assures that there exist a constant c > 0 depending

only on q and d such that uniformly for 1 ≤ |r| ≤ qρ

(4.16) S2(r, ν, ρ)� qν−2c‖(q−1)α‖2ν ,

where the implied constant depends on q, d and α (and without loss of generality we can
assume that 2c‖(q − 1)α‖2ν ≤ ρ). Hence

(4.17) S1 � qν−c‖(q−1)α‖2ν .

This completes the proof of Proposition 1 and consequently the proof of Theorem 1.

5. Proofs of Theorems 2 and 3

5.1. Proof of Theorem 2. By a simple discrete Fourier analysis we have

card{n ≤ x : sq(P (n)) ≡ a mod m} =
∑
n≤x

1

m

∑
0≤j<m

e

(
j

m
(sq(P (n))− a)

)
.

Set t = (m, q − 1),m′ = m/t, J = {km′ : 0 ≤ k < t}, J ′ = {0, . . . ,m− 1} \ J = {km′ + r :
0 ≤ k < t, 1 ≤ r < m′}.
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Now observe that sq(n) ≡ n mod t for all divisors t|q − 1. Hence, if j = km′ ∈ J then

e

(
j

m
sq(P (n))

)
= e

(
km′

tm′
sq(P (n))

)
= e

(
k

t
sq(P (n))

)
= e

(
k

t
P (n)

)
and consequently

∑
n≤x

1

m

∑
j∈J

e

(
j

m
(sq(P (n))− a)

)
=
∑
n≤x

1

m

t∑
k=1

e

(
k

t
(P (n)− a)

)
=

t

m

∑
n≤x, P (n)≡a mod t

1

=
t

m

(x
t

+O(1)
)
Q(a, t)

=
( x
m

+O(1)
)
Q(a, t).

Thus,

card{n ≤ x : sq(P (n)) ≡ a mod m} =
x

m
Q(a, t) +O(t)

+
1

m

∑
j∈J ′

e

(
−aj
m

)∑
n≤x

e

(
j

m
sq(P (n))

)
.

If J ′ = ∅ which corresponds to the degenerate case m|q − 1 then we are done. If J ′ 6= ∅
then we set q′ = (q − 1)/t so that (q′,m) = 1. Furthermore for j = km′ + r ∈ J ′ we have

(q − 1)j

m
=
tq′(km′ + r)

tm′
= q′k +

q′r

m′
6∈ Z.

Hence, by Theorem 1 there exists σm,j > 0 with∑
n≤x

e

(
j

m
sq(P (n))

)
� x1−σm,j .

This �nally implies

card{n ≤ x : sq(P (n)) ≡ a mod m} =
x

m
Q(a, t) +O

(
x1−σ)

with

σ = min
j∈J ′

σm,j

and completes the proof of Theorem 3.
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5.2. Proof of Theorem 3. If α ∈ Q then (αsq(P (n)))n∈N attains only �nitely many values
modulo 1. Hence, the sequence (αsq(P (n)))n∈N is de�nitely not uniformly distributed
modulo 1.
Conversely, if α 6∈ Q then (q − 1)hα 6∈ Z. Thus, we can apply Theorem 1 where we

formally replace α by hα and observe that there exists σ > 0 with∑
n≤x

e(hαsq(P (n)))� x1−σ.

Hence, by Weyl's criterion (see [9]) the sequence (αsq(P (n)))n∈N is uniformly distributed
modulo 1.
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