THE SUM OF DIGITS FUNCTION OF POLYNOMIAL SEQUENCES
MICHAEL DRMOTA*, CHRISTIAN MAUDUIT**, AND JOEL RIVAT**

ABSTRACT. Let ¢ > 2 be an integer and s,(n) denote the sum of the digits in base g of the
positive integer n. The goal of this work is to study a problem of Gelfond concerning the
the repartition of the sequence (sq(P(n)))nen in arithmetic progressions when P € Z[X] is
such that P(N) C N. We answer Gelfond’s question and we show the uniform distribution
modulo 1 of the sequence (asq(P(n)))nen for o € R\ Q provided that ¢ is a large enough
prime number coprime with the leading coefficient of P.

1. INTRODUCTION

Let s,(n) denote the sum of digits function, defined for any non negative integer n by

sq(n) = Z gj(n),

Jj=0

where, for any non negative integer j, €;(n) € {0,1,...,¢ — 1} are the digits in the g-ary

digital expansion
n = Z gji(n)¢’.
320
For x € R we set e(z) = exp(2miz) and if £ = max{j : €;(n) # 0} we denote by rep,(n) =
ge(n)...eo(n) the g-adic representation of the integer n.

The sum of digits function appears in many different mathematical questions (see [1] and
[14] for a survey on this aspect). Mahler introduced in [13]| the sequence ((—1)“”2("))neN
in order to illustrate several results of spectral analysis obtained by Wiener in [26]. In
particular, Mahler showed the convergence, for any non negative integer k, of the sequence
(7:(IV))n>1 defined for any positive integer N by

1

Ye(N) = ~ Z<_1)S2(n)(_1>sz(n+k)7

n<N

and moreover that this limit is non zero for infinitely many integers k.
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Nowadays we know (see [12]|) that for any non-negative integer k this limit is equal to
the k-th Fourier coefficient of the correlation measure associated to the symbolic dynam-
ical system generated by the sequence ((—1)‘(”2(”))nEN and that this convergence can be
understood as a consequence of the unique ergodicity of this symbolic dynamical system
(see |23] or [24]).

Only few results are known concerning the g-adic representation of the sequence (P(n)),en
when P is an integer valued polynomial. Davenport and Erdés proved in [5] the normality
of the real number whose ¢-adic representation is

0.rep,(P(1))...rep,(P(n))...

when P is an integer valued polynomial. A consequence of their theorem is that in this
case we have .
qu(P(n)) ~ q% dxlog, v (v — +00),
n<x
where d is the degree of P.
Peter generalized in [21] a result obtained by Delange [6] in the case P(X) = X and
proved the following more precise estimate in the case P(X) = X%

Theorem A. There exist c € R, ¢ > 0, and ®, 4 a continuous function on R, 1-periodic and
nowhere differentiable such that for all x > 1,
-1
Z sq(n?) = CIT d z log, x + cx + x Oy q(dlog, ) + O(z' ).
n<x
Furthermore Bassily and Katai showed in [2] that there is a central limit theorem for
the sum of digits function on polynomial sequences:

Theorem B. Let P € Z[X] such that P(N) C N then

21
12

T

1 -1
— card {n <z, s4(P(n)) < qT d x log,x + y\/q dx 1ogqx} = ®(y) +o(1),

where ®(y) denotes the normal distribution function.

In 1967 Gelfond studied in [10] the distribution in arithmetic progressions of the sequence
(s¢(P(n)))neny when P is an integer valued polynomial of degree 1 and proposed the case
of higher degree as an open problem:

Problem 1 (Gelfond’s problem for integer valued polynomials). For any integer valued
polynomial P and any fixed integers a € Z and m > 1, give the number of integers n < x
such that s,(P(n)) = a mod m.

Following the ideas of Piatetski-Shapiro, who studied in [22] the distribution of prime
numbers in the sequence (|n¢|),en for ¢ > 1, a first approach to Gelfond’s problem was
developed by Mauduit and Rivat in [15, 16] and continued by Morgenbesser in [20] who
proved the following results:
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Theorem C. If ¢ € [1,7/5) and ¢ > 2 (by [16]) or if c € RT \ N and ¢ > ¢o(c) sufficiently
large (by [20]) then

e for all (a,m) € Z x N*| we have

1 1
Nlirilm Ncard{n <N : 5,([n°]) = amod m} = p
e the sequence (« 5,([n°]))nen is uniformly distributed modulo 1 if and only if « is an

irrational number.

A first answer to Gelfond’s original problem for integer valued polynomials was given by
Dartyge and Tenenbaum in [3, 4] where they obtained the following general lower bound:

Theorem D. Let g and m be positive integers such that ¢ > 2 and ged(m,q — 1) = 1 and
let P € Z[X] be such that P(N) C N. Then there exist two constants C' = C(P,q,m) >0
and Nog = No(P,q,m) > 1 such that for any a € {0,1,...,m — 1} and for any integer
N > Ny, we have

card{n < N : s,(P(n)) = a mod m} > CN™n:2/d)
where d is the degree of P.

Recently Mauduit and Rivat gave in [17] a precise answer to Gelfond’s problem in the
case where the polynomial P is of degree 2 (their paper presents only a proof for the
polynomial P(X) = X? but it could be adapted for any integer valued polynomial P
of degree 2 at the price of dealing with a technical discussion concerning the arithmetic
properties of the coefficients of P):

Theorem E. For any integers ¢ > 2 and m > 2, there exists o,,, > 0 such that for any
a € 7,

(1.1) card{n <z : s,(n*) =amodm} = £Q(a, D) + Oy (' ~7%0m),
m
where D = ged(q — 1,m) and
(1.2) Q(a, D) =card{0 <n < D : n* =amod D}.
2. RESULTS

The main purpose of this paper is to analyze the distribution of the sum of digits
function s,(P(n)) for polynomials P € Z[X] such that P(N) C N when the degree d of the
polynomial P is greater or equal to 3.

For d = 2 the method introduced by Mauduit and Rivat in order to establish Theorem E
lies on a carry lemma that allows them to concentrate the Fourier analysis on a very
short window of digits. Then the remaining exponential sums can be handle efficiently
by estimates on incomplete quadratic Gaussian sums. Two new difficulties arise when
d > 3. First the estimates for the incomplete exponential sums are not as good as for
d = 2. Secondly the carry lemma permits only to remove a smaller proportion of digits
(see remark 4). This leads to several difficulties in the control of the Fourier transforms.
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Using Vinogradov estimates on incomplete exponential sums and a more precise control
of the Fourier transforms, we will be able to give a partial answer to Gelfond’s problem
valid for integer polynomials of any degree.

The main result of this paper is the following one.

Theorem 1. Let d > 2 be an integer, ¢ > qo(d) a sufficiently large prime number, and
P € Z[X] of degree d such that P(N) C N for which the leading coefficient aq is co-prime
toq. If (g — 1)ae € R\ Z then there exists o > 0 with

(2.1) Ze(asq(P(n))) < e

n<x

where the implied constant depends on q, d and .

Remark 1. Tt follows from the proof of Theorem 1 that we can choose o = ¢||(¢ — 1)«
for some constant ¢ > 0 depending only on ¢ and d. Furthermore we will show that

(2.2) qo(d) < 667d3(logd)2'

Remark 2. The assumptions that ¢ is prime and that a4 is co-prime to ¢ are not really
necessary. The method we introduce to prove theorem 1 holds for general ¢ > ¢o(d) and
aq > 0. However, the proof would be even much more technical. Therefore we decided
to restrict ourselves to this simplified case, since the main incompleteness of the theorem,
namely that we cannot say anything for small ¢ < go(d), remains being an open problem
and it is questionable whether the methods we use are sufficient to cover the cases of small
q.
The following theorems can be easily deduced from Theorem 1.

Theorem 2. Let d > 2 be an integer, ¢ > qo(d) a sufficiently large prime number, P € Z[X]
of degree d such that P(N) C N for which the leading coefficient aq is co-prime to q, and
m an integer, m > 1. Then there exists o4, > 0 such that for all integers a

card{n < x : s,(P(n)) = a mod m} = %Q(G,D) + O(z1-oem),
where D = (¢ — 1,m) and
Q(a,D) = card{0 <n < D: P(n) =amod D}.

Remark 3. There is no simple formula to express Q)(a, D) in the general case, but for any
a and D fixed, we have

Q(aa D) = H Q(a’vpvp(D))
p|D
(see |25, chapitre 5.9]). In the special case where D = 1 we have Q(a, D) = 1.

Theorem 3. Let d > 2 be an integer, ¢ > qo(d) a sufficiently large prime number, and
P € Z[X] of degree d such that P(N) C N for which the leading coefficient aq is co-prime
to q. Then the sequence (as,(P(n)))nen s uniformly distributed modulo 1 if and only if o
1s an trrational number.
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Let us consider the following question:

Problem 2. For any integer valued polynomial P of degree d and for any integer £ is close
to Sldx log, =, give the number of integers n < x such that s,(P(n)) = k}.

For P(X) = X? the estimates obtained in [17] are uniform in « so that the methods we
used in |7] permit to answer Problem 2 when d = 2.
But, as the estimate (2.1) is not uniform in « Problem 2 w remains open for d > 3.

The structure of the paper is the following one: in section 3 we present some auxiliary
results concerning combinatorial lemmas and Fourier transforms estimates, in Section 4 we
prove Theorem 1 and then Theorems 2 and 3 are derived in Section 5.

3. AUXILIARY RESULTS

3.1. Van der Corput’s inequality. We recall van der Corput’s inequality:

Lemma 1. For all complex numbers zq, 22, ..., 2y and integer R > 1 we have
N 1/2
N—-1+R |7 _
Yol (FEE (00) X oaem
n=1 [r|<R 1<n,nt+r<N
Proof. See for example Lemme 4 of [18] . O

We will need also the following variant of van der Corput’s inequality, which gives some
flexibility in the indexes:

Lemma 2. For all integers 1 < A < B < N, all integers R > 1 and all complex numbers
21, 29, ..., 2y of modulus < 1 we have

1/2
B
B—-A+1 7| _ R
Zzn < R Z (1 R Z ZntrZn + o
n=A [r|<R 1<nn+r<N
Proof. This is Lemme 15 of [17, p. 123] . O

3.2. A Carry-Lemma. Let s[qd] denote the truncated sum-of-digits function

shN = Z g;(n).
J<A
The truncated sum-of-digits function was introduced in [8] and the following property is

a generalization of |17, Lemme 16|, where the polynomial P(X) = X? is considered.

Lemma 3. Suppose that P € Z[X] of degree d > 2 is such yhat P(N) C N and that v and
p are integers with v > 2 and 1 < p <wv/d. For every integer r with |r| < ¢° let E(r,v,p)
denote the number of integers n with ¢*~1 <n < ¢” and

(3.1) sq(P(n+1)) = sq(P(n)) # si= (P (n + 1)) — s H2(P(n)).
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Then we have
(3.2) E(rv,p) <Cq"7,
where the constant C' > 0 depends on the polynomial P.

Proof. First observe that |P(n+47) — P(n)| < c;ql4=V"+° < ¢(d=D¥+r+C1 for some constants
c; > 0and C; > 0. If p < then (3.2) is certainly true (for a proper constant C' > 0).
Thus we may assume that p > Cf.

Assume that P(n+7r)—P(n) > 0. This means that if we add P(n+r)—P(n) to P(n) then
this will affect certainly the first (d—1)v+p+C) digits. Furthermore, if n satisfies (3.1) then
the digits of a; = £;(P(n)) have to satisfy a; = ¢—1 for (d—1)v+p+Cy < j < (d—1)v+2p.
Hence, it is sufficient to estimate the number of n with this property. It is clear that this
property is equivalent to the statement that there exists a positive integer m < ¢"~2” with
| P(n)/q @ Dv+r+Ci| = ¢qp=Cipy — 1. Equivalently this means that
P(n)

-C

< ¢ “'m.
Hence, for given m < ¢”~% the number of n (with ¢"~! < n < ¢¥) that satisfy (3.3) is
bounded by

(d—l)u+2p_p l—l (d—l)y+2p_l/ 1
14 coqg 4 md -~ +c3q 4 ma

for certain constants ¢y, c3 > 0. Consequently the total number of n with these restrictions
if bounded by

(d=Dv+2p v—2p (d=Dv+2p
d

¢4 q T T +g
L g7
A similar estimate holds for those n with P(n+1)— P(n) < 0. This proves the lemma. [

—2
v P 4v—2p

q

Remark 4. Heuristically this lemma allows us, for most integers n, to get rid of the digits
of index between (d — 1)v and dv. In the case d = 2 we can remove in this way almost half
of the digits and this was a crucial argument in the proof of Theorem E. When d > 3, we
remove only a smaller proportion (1/d) of digits and this leads to a more difficult situation.

3.3. Exponential Sum Estimates. In what follows we will use several estimates of ex-
ponential sums. The first one is the following version of Vinogradov’s estimate that is due
to Montgomery [19].

Lemma 4. Suppose that P is a polynomial of degree d > 2 with real coefficients whose
leading coefficient oy satisfies

a 1
- =| <
q q
with (a,q) =1 and N < ¢ < N9=1. Then
N
(3.4) > e(P(n)) < N' @i,
n=1

where the constant implied by < depends on the degree d.
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Note that the condition N < ¢ < N%! can be weakened but then the exponential saving
gets worse. For example, if ¢ = N9°7 for some 7 € [0, 1] then we have

N
(3.5) Ze(p(n)) < N i@msa,

n=1
For example, in the proof of Theorem 1 we will need estimates for exponential sums of the
form

S= e(P(n),

n<q”

where P is of the form P(z) = q%xd + s A=(d—1)r+2p>(d—1)v, and (a,¢*) = 1.
By splitting up the sum according to n = ¢*n’ + ¢ with 0 < £ < ¢*? and 0 < n’ < ¢ %

we obtain (since A — 2pd = (d — 1)(v — 2p))

s= 3 ¥ e(m(n/)d—l—“-)

0<0<g?P n'<q—2p
1
< q2pq(”_2’)) <1_ 1142 logd)

q”(l—(l—i)m)

This is in accordance with (3.5).
Finally we formulate a lemma that applies also in the range that is not covered by
Lemma 4, see |11, Proposition 8.2].

Lemma 5. Suppose that d > 2 and P(z) = agz® + -+ + aq is a polynomial with rational
leading coefficient g # 0. Then

Z e(P(n)) < N2

n<N
91—d

_ 1
4+ Nimd2 Z min (N, - ) ,
sin (magd!sy -+ s4-1)|

1§|S1|7...|8d_1‘<N

where the implied constant depends on d.

Proof. For the reader’s convenience we present a short proof.
For d = 2 one just applies van der Corput’s inequality (Lemma 1) witha =0, B = N—1,
and R = N and obtains

1/2

Z e (a2n2 + aln)

n<N

<NV Y

1<]s|<N

Z e (2aasn)

0<n,n+s<N
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Now one proceeds by induction and shows (by applying van der Corput’s inequality and
Holder’s inequality)

S e(Pn) < N'2

n<N

1 N2 Z Z e(aqd!sy -+ sq-1m)

1<81 ]y 8q—1|<N |0<n,n+s1,...,n+59_1 <N

Finally, since we have for any interval I (of length |I| > 1)

Y e(an) < min (|1|, m) :

nel
the lemma follows directly. OJ

3.4. Fourier-Analytic Tools. A major ingredient of the proof of Theorem 1 is the dis-
crete Fourier analysis of the function

n— e(fr(n)),
where fy(n) denotes the function
(3.6) filn) =« Z gi(n) =« s[f’\} (n).
<A
Observe that fy is periodic with period ¢*.
We set

(3.7) Fy(h,a) = ¢ Z e (fa(u) — hug™) .
0<u<q?

Furthermore set
B | sin(mqt)|
~ |sin(nt)|

1 T
Yy(t) = — Z Pq <t+_) 5

0<r<gq q
log 1, (2%1)
logg

Pq (t)

Ny =
Then the following properties hold.
Lemma 6. Let ¢ > 2 and X\ > 1 be integers and Fy(h,«) and n, be defined as above.
(1) Set ¢y, = =

—1271r0gq (1 — qi—1> Then we have uniformly for all real o

‘Fk(ha O‘)‘ < 671’2/48q70q“(q71)a\\2,\'
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(2) Suppose that 0 < 6 < X\ . Then for all integers a

Y. B = |Fa, o).

0<h<g®
h=a mod ¢°

(3) Suppose that 0 < 6 < X\ . Then for all integers a
Y Bk a)| < gm0 Fy(a, ).

0<h<g®
h=a mod ¢°

(4) Suppose that 0 < 61 < 6 < A. Then

> Rl a)Fa(=ha, )| < ¢* | F (0, )]
0<hy,ho<g?
h14+h2=0 mod ¢°
h1=0 mod q51
Proof. These are slight and direct extensions of corresponding estimates from [17, 18]. O

Note that 7, can be estimated by

log <qsir21 = + %log %)

29

<
e = log ¢

which ensures that 7, — 0 as ¢ — oo. (The upper bound is asymptotically equivalent to
loglog ¢/ logq.) For example, we have 1, = 0.5 and 73 ~ 0.4649, see |18].
In the proof of Theorem 1 we will need the assumption

2(d—1 _
(d=1)n, < 11d?log d

which is implied by (2.2). Note that (2.2) also implies ¢ > d!.
The next lemma extends a property of [18] and will be crucial in the proof of Theorem 1.

Lemma 7. Suppose that d > 2, that q is a prime number, and that (a,q) = 1 Furthermore,
let X\, v, and § non-negative integers with A > (d — 2)v + 9. Then for every € > 0 we have

LT DS -
sin <7T—a =L Sd*z)‘

1<h<g* 1<]s1];-sg—2|<q” >
(h,a™)=¢°

(3.8) < v g otvE g O d=2)l gDl

where ¢, is defined in Lemma 6 and the implied constant depends on d and on ¢.

Proof. We proceed by induction and start with A = (d — 2)v + §. Note that if 1 <
|s1], .- |Sa—2| < ¢” and then we certainly have

1< |81+ 849 < g7 =0
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Furthermore, the divisor functions 7(n) = card{d < n : d|n} satisfies 7(n) < n® for every
e > 0. Hence, it follows that for every € > 0 we have uniformly for all residue classes
1<l < g

card{(sy,...,8q-2) : 1 < |s1],...|sa—a] < ¢", 81+ 842 = L mod ¢*°} < ¢*°.

We recall that (a,q) = 1 and that (h,¢") = ¢°. Hence, if we write H = hq~? it also follows
that for every residue classes 1 < ¢ < ¢* ™%

(3.9) card{(s1,...,84-2) : 1 <s1|,...[sa—2| < ¢", aHsy--- 549 = ¢ mod q)‘_‘s} < ¢"°.
Hence, (3.9) implies
1
> < " log(q* )
: aHs1--sq_2
1<]s1],..]84—2]<qv |S (WT> ‘

<L v q)\—z?—i-ue'

Furthermore, by Lemma 6

Y B a)P < |F5(0,a)f
1<h<g*
(ha*)=q°

< g-2ealla=Dal?s

Consequently we obtain (3.8) for A = (d — 2)v + 6.

Similarly we can check (3.8) for A = (d —2)v 4+ 0 + 1.

Finally we show inductively that if (3.8) is valid for A then (3.8) is still valid when A is
replaced by A + 2. For this purpose we consider the property that

(3.10) 1Eosa(h, @) < > 2allla-Dal? Z AN (h, )2
e (ﬂqﬁ% ‘ 0<heg |50 (TER ‘
(h,g*+2)=¢° (hamgd

holds for all integers 0 < 6§ < X and for all A with (4,¢") < ¢*~°.

It is clear that (3.10) implies the induction step. One only has to replace A by as; - - 42
and take the sum over all sq, - s4_0.

Hence, it remains to check (3.10). Set

®(Aa) = 3 o2 (a— ng> Pa (@)

and

Dy(A, ) =q—12 > (O“ x?) “a (W) . (%)
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First suppose that (A, ¢q) = 1. Then it follows as in [18, Lemme 21| that

Fyoo(h,a)l? Ey(h, a)]? h
(3.11) [Paia(h, )P l:igﬁﬂ_¢2(Af7),
0<h<qA+2 SlIl (7‘(’ fﬁg) ‘ O<h<q)\ Sln (ﬂ’%) ’ q
(hg*+2)=¢° (hg)=¢°
Since
1 % /
[Fuaalt + e, 0] = B0 )] g (- 5 - )
and

1 1
(e
sin (WA(ZXT;‘]AU ‘ sin (WA—’j) ‘ gt

it follows that

2
[Poir(h, o) 3 |Fxi (W + lg*, a)|
0<h<q)‘+1 Sln <7T )\+1> ‘ 0<h/<q 0<t<q ‘Sin <7TA(hl)\—:€q>\)) ‘
(h qA+1) h, )\ q

. [FA(W, o) 3 1(p2 (a_ W —€>¢ (A(h'+qu)>
- / ’
o<heg SR (wf‘]_h) 0<t<q 2 Pl g P
(h,q")=q’

F h/ 2 h/
- > e (e,
< <q sin(w‘é—’j)) q

0 a*)=¢°

In completely the same way one obtains (3.11).
Moreover it follows from the proof of Lemme 21 of [18] that one has uniformly in x and
for all A with (A,q) =1

Dy(a,x) < g>a(@)
with v,(«) defined by

gra(@) = max \/gbq(cz +t)py(a + qt).
It follows from Lemme 7 of [17] that
(@) £ 1—¢gll(g = 1)af?
where ¢, is defined in Lemma 6, so that we have
®2<a/’ x) S qQ*QCQH(CI*l)aHQ.

Of course, this proves (3.10) in this case.
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Now suppose that (A4, ¢") = ¢* with A — u > §. We also set A; = Ag~*. Then it follows
from Lemma 6 that

3 [Ex(h,a)® 3 | Ex(h, ) f?

(- Ah (A
O§h<q>‘ S1n <7T q/\>’ 0§h<q/\ ‘Sln (Tqu—ﬂ>)
(ha*)=q (h.a*)=q
- Y Y BhaP
crremn |sin (T AL <hed®
0<h’<q qrH 0<h<q
(W ,g*—")=¢° h=h' mod ¢*#

F,\,uh’,a2
_ oy B

o Ak
Ogh/<q)\7u S11 (Trquﬂ>
(W ,q*H)=¢°

This means that we can reduce the general case p > 1 to the case p = 0 and, thus, (3.10)
holds in all cases.
This completes the proof of the lemma. O

4. PROOF OF THEOREM 1

4.1. Reduction of the Problem. In order to simplify notation we set f(n) = as,(n).
The major aim is to estimate the exponential sum

S =3 e(f(P(n)).

We also make the general assumption d > 3 since the case of quadratic polynomials is
completely covered in the analysis of [17].
As usual we will only consider sums of the following form.

Proposition 1. Let d > 3 be an integer, ¢ > qo(d) be a prime number, and P € Z[X] of
degree d such that P(N) C N for which the leading coefficient aq is co-prime to q. Then

Si= Y elf(P()) < gl
qv~l<n<z
uniformly for ¢*~1 < xz < ¢”, where v > vy = v1(q, «) is sufficiently large, ¢ > 0 depends

on q and d and the implied constant depends on q, d and .

It is an easy task to derive Theorem 1 from Proposition 1. From the obvious decompo-
sition
> elf(P(m) = e(f(P) + > elf(P(n)

+ YN o)+ Y elf(Pm))

n<isv—l gi=l<n<g q"~t<n<z
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we obtain immediately

Y elf(Pn)

1<n<lzx

< qulfl_’_ Z qich(qfl)aH?i

v <i<v

< qV_CH(q—l)Oé||2V
< glela=Dal?

which is precisely the statement of Theorem 1.
The first step is to use van der Corput’s inequality (Lemma 2). With A = 1, B =
2| —¢" 'V, N=¢" —q" ', z, = e(f(P(¢""" +n)) and R = ¢” we obtain

1] <7 Z(l—‘ﬁ) > P - @) ||+ T

P
[r|<qf q g~ l<nnt+r<q¥

By separating the case r = 0 and by suppressing the condition ¢! < n+r < ¢” (by
adding proper error terms) we get the upper bound

1/2
vtp

S| < ¢ F+q 2 +¢"+¢> max | D e(f(P(n+r)— f(P(n)))
1<|r|<gP - lem<qr

In order to simplify our estimates we will assume (without loss of generality) that v > 10
and

v
4.1 1< p< —
(4.1) VAT
which ensures that
v—2 vip v—P
"2 qgE <

The next step is to replace the difference f(P(n + 7)) — f(P(n)) by fla—1)v42,(P(n +
7)) = fla—1w420(P(n)) where fg_1),12, is defined by (3.6). By setting

Sy(r,v, p) = Z e(fa—1yr2p(P(n+71)) = fa—1yvr2,(P(n)))

qufl<ngqu
we obtain (with the help of Lemma 3)

|Sl| < qu—g +q% max (|SQ(T7 va)| +E<T7V7p))1/2
1<|r|<gr
< qu—g + q% max |SQ(T> v, p)|1/2 :

1<|r|<gr

Therefore we only have to discuss the sums Sy(r, v, p).
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4.2. Fourier Analysis of Sy(r,v, p). By using the orthogonality relation for of the expo-
nential function it follows with

A=(d—-1v+2p
that

Sa(rivip) = Y e(A(PMm+7r) = H(P(n))

q”*1<n<q

= 2,\ Z Z e(fa(ur) — fa(uz))

0<u1<g* 0<uz<g*

< 3% 6(h1<P<n;r>—u1)) 3 e(hQ(P(Zz—W))

gt—1<n<q¥ 0<hy<g* 0<ha<g
_ hiP(n+7r)+ he P(n
- Y ¥ ARG 3 o HHEIERI
0<h1<g* 0<ha<g? g*~1<n<g¥ q

where F) is defined by (3.7). In order to estimate Sy(r,v, p) we will have a close look to
the exponential sum

Srophnh) = Y e <h1P(n + r))\+ th(n)) .

qu—1§n<qu q

Suppose that a;, 0 < j < d, are the coefficients of P. Then we have
h1P<l’ + 7‘) + th(J]) = (hl + hg)adl’d + (hldadr + (hl + hg)ad_l) l’d_l + -
and consequently

hlp(l’ + 7") + hgp(ﬂf) B CLd(hl + hz)l‘d i hldadr + (hl + hg)ad_lxd_l
@ a* a*

We now use the assumption that ¢ is prime and that ay4 is co-prime to g. In order to
apply Lemma 4 we have to assume that the leading coefficient of the polynomial is close or
equal to a rational number with co-prime numerator and denominator. This means that
we have to distinguish between the cases (hy + hs, ¢*) = ¢°, where 0 < § < \. In particular
we have to cut this range into three pieces. For this purpose we introduce an additional
parameter ;1 that satisfies (d — 2)v + 2p < p < X (and in fact it will be chosen very close
to A, see Section 4.6) and we consider the three following cases:

(1) 0 <6 < (d—2)v+2p. In this case we will apply Lemma 4.

(2) (d—2)v+2p < 6 < p. In this case we will also work directly with Lemma 4 but in
a slightly different way.

(3) < 0 < A. This is the most difficult case. Here we will apply Lemma 5 and proper
estimates for the Fourier terms F)(h, «).

The next three sections deal with these cases separately.
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4.3. Small §. Set
54(7“, v, p) - Z Z F)\(hlaa/)FA(_h%)\)

0<6<(d—2)v+2p  0<hy,ha<qg*
(h1+h2,0)=¢°

5 Z e<h1P(x+T)+h2P(x)).

q)\

qV71STL<qV
If (hy + hs, ¢*) = ¢° we have
hiP(x +71)+heP(x)  aqH ,
7 T
for some integer H with (H,q) = 1. Note also that § < (d — 2)v 4 2p implies A — § > v.
Hence, by Lemma 4 (and its extension (3.5)) we have

Z . (hlP(:c + Z)AJF th(:c)) < qu(l—(l—%ﬂ)c‘d)’

v~ 1<n<v

where C; abbreviates
1

Co= 11 logd

Furthermore, by Lemma 6 we have

Z Fy(hy, a)Fa(—ha, \) < ¢21aO=9)

0<h1,ha<qg?
(h1+h2,0*)=¢°

Consequently

Sirv.p) < Y gm0y
0<6<(d—2)v+2p
< qu+2p(2nq+cd)—V(Cd—z(d—l)nq) .

If ¢ > qo(d) is sufficiently large then 2(d — 1)1, < C4. Furthermore if we suppose that

Cq — 2(d - 1)”(1
4.2 0<p<
(4:2) p= 4(2n, + Ca)
then
(4.3) Sy(r,v,p) < ")

with £ = 3 (Cy — 2(d — 1)n,) > 0 that is independent from 7 and a (provided that ¢ >
qo(d))-
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4.4. Medium §. Next set
SB(Tu V7p7l’b) = Z Z FA(hIaOK)F)\(_h’Qa)\)

(d=2)v+2p<é<p  0<hy,ha<q*
(h1+h2,q*)=¢°

CY (hlP(x +r)+ th(x)) |

q)\

qu—1§n<qy
where (d —2)v +2p < pp < . Again if (hy + hy, ") = ¢° we have

hiP(x +7)+hoP(x)  aqH

> TP
for some integer H with (H,q) = 1. However, if 6 > (d — 2)v + 2p then we have A\ —§ < v.
Thus we subdivide the interval [¢"~%, ¢”) into ¢ *9~! sub-intervals of length ¢*~° and
apply then Lemma 6. Hence we have

Z . (hlp($+z)x+ th@)) & @ IHIGA=H1-Ca)

¢v~1<n<v
et qy_(A_é)Cd‘
Consequently we obtain
Ss(r, v, p,p) < Z q277fJ(>\—5)ql/—(>\—6)Cd
(d=2)v+2p<d<p
(44) < g/~ (Ca=2m)A=n),

4.5. Large 0. Set
86(T7 vav:u) = Z Z F)\(hlaa)FX(_h%A)

pn<o<A oghl,h2<qA
(h1+ha,q)=¢°

" Z e(hlP(x+r)+h2P(x))'

qA

g~ 1<n<v

This case of large J is the most difficult one. The reason is that the denominator ¢*—°
gets too small so that Lemma 4 gives no proper error term. In fact by considering proper
residue classes we will omit the leading term ay(hy + ho)g~*n? completely.
Set 7 = [2=27 and write n = ¢"n’ + ¢ with 0 < ¢ < ¢”. Then, with H = (hy + hy)q~° we
have
hiP(n+ 1)+ heP(n)

- _ Hadda—()\—5)(n/)d+dHéadq(d—l)T—()\—(S)(n/)d—l
q

dadher (n’)d_1 4.

+ Had_lq(d—l)T—(/\—(S)(n/)d—l + q)\_(Tl)



THE SUM OF DIGITS FUNCTION OF POLYNOMIAL SEQUENCES 17

and consequently

) <h1P(x+r)+h2P(!E)) . (qdadﬁ(n/)d—q...)_

q>\ A—(d-1)T

This means that the polynomial f(z) = (hiP(z + 1) + hoP(x))q " of degree d is replaced
by a polynomial of degree d — 1.

Suppose that (r,¢*) = ¢** for some 0 < p; < p and (hy,¢") = ¢* for some 0 < 6; < \.
We will distinguish again between several ranges of ;. Set

S/ T v,p, b Z Z S7<7n7 v, /07”757 51)7

pu<d<A 0<61<v+71—p1

S (ryv, p, 1t Z Z Sz(r, v, p, , 6, 01),

pu<O<A vHrT—p1<61<pu—2p

Sgl(r7 VJpJM) = Z Z 57(7’7”7)07#75751),

p<O<A p—2p<d1 <A

where

57(7’7 v, p, W, J, 51) = Z F)\<h1>a)F)\(_h2>/\)

0<h1,h2<q*
(h1+h2,¢*)=¢°
(h1,4*)=¢%1

daghyr
v T )
qD7771§n1<ql/77

4.5.1. Large 6;. First let us consider the sum S{’(r, v, p, ;1) In this case we have §; > u—2p
which assures that the case where p; + d; larger than A\ — (d — 1)7 or almost as large as
A— (d—1)7. In particular we have A —§; < A — u+ 2p. Consequently the number of pairs
(h1, hy) with the properties 0 < hy, hy < ¢, (h1,¢") = ¢}, (h1 + ha, ¢*) = ¢’ is bounded by
¢?A=#+0)  Furthermore, we have by Lemma 6 |Fy(h, a)| < ¢ Cll@=Dal?A,

Hence we have

Sa(r,v, p, . 6,01) < qlﬂr2(/\*u+p)q*ZCqII(qfl)all2A

and consequently

(4.5) S (r, v, p, 1) < N2 g +2O—mtR—2eql@=DalP

In what follows we will choose p and p appropriately so that the term 2¢,||(¢ — 1)a*A
dominates 2(A — pu + p) and S¢'(r, v, p, ) is small enough.
Next let us consider the sum S§(r,v, p, u). Here we will use Lemma 4 to estimate the

exponential sum
dadH17"1 Nd—1
= (e ).

qV7771§n1<qV77'

where H, = hyq~% and r; = rq~"'. Note that (daqH,71,q) = 1. Note also that in this case
51 < 0.
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Suppose first that
(4.6) v—T—p < <(d-2)v+2p—p —(d— 1),
which is equivalent to
¢ < DT < (A2 420,
Hence we can apply Lemma 4 (and its extension (3.5)) to obtain the bound
S <<q(u—r)(1—(1—y%)cd_1)
< ququ(1—%Cd_1)’

provided that

(4.7) (v—1) (1— 2 )2 4

vV —T

It will be an easy task to choose the constants p and p such that (4.7) is satisfied. Fur-
thermore we have from Lemma 6

(4.8) > B ) Fa(=hg, )| < g?1)

0<hy,h2<g*
h1+h2=0 mod q5
h1=0 mod ¢%1

This leads to the estimate

Z Z 57(7“, v, p,u,d, 51)

p<I<N v41—p1<61 <(d—2)v+2p—p1—(d—1)T

< Z Z q277q()\—§)qu(1—%Cd,1)

p<O<N v+7—p1 <6 <(d—2)v+2p—p1—(d—1)T

< Aq2nq()\—,u)qu(lf%0d,1)
< Ag(1=iCas)
provided that
v
(4.9) 20g(A = 1) < 7 Ca1.

Again it will be easy to choose p sufficiently close to A such that (4.9) holds.

4.5.2. Medium ;. Next suppose that
(4.10) (d=2)v+2p—p1—(d=—1)T1<6H <pu—2p
which is equivalent to

q)\—,u—(d—l)T—l-Qp—m < qA—(d—l)T—él—pl < qIJ—T.
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Hence, by subdividing the interval [¢"""!,¢"~7) and applying Lemma 4 it follows that
SS < qV—T—()\—(d—l)T—51—pl)q()\—(d—l)’r—él—pl)(l—Cd,l)
< q_"'q’/—pcd—l.
Here we have used that
A—d=—1D1=6—p>2A—p—A=086)—-1+2p—p >p—1.
Furthermore, we can assume that
(4.11) (d=2v+2p—p1—(d—1)7 > (d—5/2)v.
Consequently 6; > (d — 5/2)v and we get

Z |F\(hy, @) Fx(—hg, a)|

0§h1,h2<qA h1+h2=0 mod q5
h1=0 mod ¢°1

& 29 =2(d=5/2)eql(a- Dol

and thus

Z Z 57(7’, v, p,u,d, 51)

u<d<A (d—2)v+2p—p1—(d—1)T7<61<p—2p
<Y 3 2 O=8) =2d=5/2)cqll(a=D)al v u=pCas
u<I<A (d—2)v+2p—p1—(d—1)1<61<p—2p
< A 21O gr=pCa—a=d=5)cqll (gD l*v

Putting these two estimates together we obtain an upper bound for S{(r,v, p, ) of the
form

(4]_2) Sg(r7 v, p, Iu) < )\qy(liicdfl) + )\q277q()‘_ﬂ)qV_PCd—l_(Qd_5)cq”(q_l)a”2y
provided that (4.7), (4.9), and (4.11) hold.

4.5.3. Small §;. Finally we deal with Si(r, v, p, u) For notational convenience we set \' =

A—(d—1)7 and ' = v — 7 (where 7 = [2=2]). As above we also use the abbreviations

H, = hig™% and r = r¢~"'. Furthermore we define
H(X,6,61) = {(hy,hy) €Z*:0 < hy,ha < ¢, hy + hy = 0mod ¢°, by = 0 mod ¢*}.
It now follows from Lemma 5 that
dag1Hir d—1 U (1—92—d
S (et ) < g

qu/ —1 <nl<qu/
2d72

+ qu’(lf(d71)22_d) Z 1
. dlagHir1 ’
Sin Wmsl cerSq—2

/

1< 511,00 80—2]<g¥



20 MICHAEL DRMOTA, CHRISTIAN MAUDUIT, AND JOEL RIVAT

provided that
)\/ — pP1 Z (d — 2)V/ + (51,
or equivalently if

(4.13) h<v+2p—7—p1
However, by assumption we have 0 < §; < v+ 7 — p;. Hence, (4.13) is satisfied if
(4.14) T < p.

Now we write S7(r, v, p, pt,0,01) = Ty + Ts, where Tj is estimated (with the help of (4.8))
by

i< Y B, a)Fa(—hy,a)| g7 ¢" 07D < g2
(h1,h2)€H(X6,61)
and T, (with the help of Holder’s inequality) by

T, < qy’(l—(d—1)227d) Z |F)\(h1,CY)F)\(_h2aa)’
(h1,h2)EH(X,6,61)

1
x 2
d!adH1r1 >

1<s1],e0n]s0—zl<q [SHL <7Tq>\’*51*p1 S1°0 0 Sd—2

2d72

< ql/,(l—(d—l) 22—d) T31_227d T422—d’

where
T3: Z ‘Fk(hlao‘)F)\(_h%a”
(hl,hz)EH()\,é,(Sl)
and
1
Ti= Y |R(na)B(-ha) Y

(h1,h2)EH (X,6,01) 1§|51‘7---7‘8d—2|§qyl
By (4.8) the term T3 can be bounded by
T3 S q271q()‘—5)‘

. dlagHir1 . ’
S1n (ﬁ—qk/*fﬁfﬂl S1 Sd_2> ‘

In order to handle T, we have to be more careful. Since
Y R(=hy, @) < g Fy(h, )
ha=h1 mod ¢°
and |Fy\(hy,a)| < |Fs(hy, «)| it follows that
Ty < ¢ Z |F5(h, )|

0<hy <g?
(h1,a™)=¢*1

1
X<
sin( dlagHi7r1

1<s51],een 502l <"’ T - 517 ScH)
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Observe that X' = A — (d — 1)7 < 4. Hence, due to periodicity and the (already used)
inequality |Fs(hy, )| < |Fy_p, (h1,a)| we obtain the upper bound

Ty < qugl=Dmter N By, (W)

0<h/<g —r1
(W, ~P1)=¢"1

1
X E .
. | /
sin (stl .. Sd_2> ’

1S|Sl"~~~7|sd72‘gqy/ q)‘l_pl

Finally we apply Lemma 7 and obtain

Ty < v gDl DTt e e (@2l el

< q>\+Pl —01+ve+ng(A—9) q*Cq (v+2p—7)[[(g—D)a? )

Consequently

T2 S ql/(l—(d—l) 227d) T§_227d T4227Li

& ¢ (@D 2 12 A-0) (1227 (b1 —br vty (=022~ g 2w 2-7)l (g D)el?
_ et tre=8) 2 (1 (=122 ) 420y (A-0) g 220 20-7) | (0~ Do
& Bre=0022 T ey 227w 2p) (- Ded

This proves that

Sé(r,y,p,,u) = Z Z (T1+T2>

p<o<A 0<61<v+T1—p1
(415) < Vq’/(1*22_d)+(277q+22_d/(d*1))()\7/1)

+ qu+(3p+1/€)22’dq—cq 2274 (w+2p) || (q=D)el*

4.6. Completion of the proof of Theorem 1. We recall that

S1< g5+ a7 max |Sy(r, )
and
Sa(r,v, p) = Su(r,v, p) + Ss(r,v, p, p) + Se(r, v, p, 1),
where

Se(r,v, p, ) = Sg(r,v, p, ) + S (r, v, p, ) + Sg' (1, v, p, 1)
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and (d—2)v+2p < pu < A= (d—1)v+2p. Hence, by (4.3), (4.4), (4.5), (4.12), and (4.15)
we obtain:

+ g2 D@2/ (@) Amp) gt Bptre) 22 =g 227 (= D) P

4 A (1m5Can1) 4 ) o pCamat ()= (2d=5)cq | (a— Va2

1A qu+2(>\—u+p)—26q(d—1)H(q—l)aHzV’
provided that (4.1), (4.2), (4.7), (4.9), (4.11), and (4.14) are satisfied. Recall also that
r=[F<FEL

We now choose
. [cg d—1 1 Cq—2(d—1)n, 9
— B -1
p m1n(12, 5 ‘o 107 421, + Cy) 1(g = Def"v,
_ (2d — 5)c, ) 21-d Cyy )
A—p=min | p, ———||(¢ — 1)a||“v, v, v,

e =2la—1al*

This assures that (4.1), (4.2), and (4.9) are automatically satisfied. Since

A—p p
1<——+41<
i—1 Sg-1 =7
we also have (4.14). Since p < v/10 this also implies and (4.7) and (4.11).
Furthermore this choice of parameters assures that there exist a constant ¢ > 0 depending

only on ¢ and d such that uniformly for 1 < |r| < ¢”

T <

(4.16) Sy(r, v, p) < g~ 2ela=Dall?v.

where the implied constant depends on ¢, d and « (and without loss of generality we can
assume that 2c||(¢ — 1)al|*v < p). Hence

(4.17) S, < g cla=Dal?v,

This completes the proof of Proposition 1 and consequently the proof of Theorem 1.

5. PROOFS OF THEOREMS 2 AND 3
5.1. Proof of Theorem 2. By a simple discrete Fourier analysis we have

card{n <z : s,(P(n)) = a mod m} = Z% Z e (%(sq(P(n)) — a)) .

n<x 0<j<m

Set t = (m,q—1),m' =m/t, J={km' :0<k<t}, JJ={0,....m—1}\J={km' +r:
0<k<t,1<r<m}.
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Now observe that s,(n) =n mod ¢ for all divisors ¢|g — 1. Hence, if j = km’ € J then

e (Lspo) =e (fmpstron ) =e (Fstron ) =« (7))

and consequently

> oY (Lisrm) o)) - Z% e (L)

nlx jeJ n<lx

Thus,

card{n < z : s,(P(n)) = a mod m} = %Q(a, t)+0(t)
+ % ;e (‘7‘”) ; e (%sq(P(n))> .

If J' = () which corresponds to the degenerate case m|q — 1 then we are done. If J # ()
then we set ¢’ = (¢ — 1)/t so that (¢’,m) = 1. Furthermore for j = km’ 4+ r € J' we have

—1)5  tqd'(Em’ d
(q )JZQ(m+T>:q'k+ﬂ¢z,
m tm/ m/

Hence, by Theorem 1 there exists o, ; > 0 with
Ze iS (P(n)) ) < z'~7mi.
n<lz m !

This finally implies
card{n < x: s,(P(n)) = amod m} = %Q(a, £+ 0 (z'7)

with

o =mino,
jeS

and completes the proof of Theorem 3.
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5.2. Proof of Theorem 3. If a € Q then (as,(P(n)))nen attains only finitely many values
modulo 1. Hence, the sequence (as,(P(n)))nen is definitely not uniformly distributed
modulo 1.

Conversely, if o € Q then (¢ — 1)ha € Z. Thus, we can apply Theorem 1 where we
formally replace a by ha and observe that there exists o > 0 with

> e(hasy(P(n))) < z'~°.

n<x

Hence, by Weyl’s criterion (see [9]) the sequence (as,(P(n)))nen is uniformly distributed
modulo 1.
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