WEYL SUMS OVER INTEGERS WITH LINEAR DIGIT
RESTRICTIONS

MICHAEL DRMOTA AND CHRISTIAN MAUDUIT

ABSTRACT. For any given integer ¢ > 2, we consider sets N of non-negative
integers that are defined by linear relations between their g-adic digits (for
example, the set of non-negative integers such that the number of 1’s equals
twice the number of 0’s in the binary representation). The main goal is to
prove that the sequence (an)pcas is uniformly distributed modulo 1 for all
irrational numbers a. The proof if based on a saddle point analysis of certain
generating functions that allows us to bound the corresponding Weyl sums.

1. INTRODUCTION

Let ¢ > 2 be a given integer and let

L
n=> ¢n)q
=0

be the g-ary digital expansion of n with digits ¢;(n) € {0,1,...,¢ — 1}, er(n) # 0,
and L = L(n) = [log, n] denotes the length of the expansion of n. Further, for
0e{0,1,...,q— 1} let

In|¢ :=card{j e N: 0<j <L, ¢(n)=1¢}

denote the number of digits of n that equal /.
For example, the g-ary sum-of-digits function is given by

L q—1
sq(n) =Y e;(n) = Lln|e.
j=0 £=0

Several works concern the study of statistical properties of sequences of integers
defined by digital properties: distribution in residue classes ([11, 14, 15, 19, 20, 21])
uniform distribution modulo 1 ([2, 5, 6, 7, 17, 12, 18]) and study of the associated
exponential sums ([3, 1, 4, 13]); see also [22] for a description of the links to spectral
analysis and properties of symbolic dynamical systems.

The purpose of this paper is to study, for any fixed irrational number «, the
ditribution modulo 1 of the sequence (na),ear, where AV is a set of integers defined
by linear properties of their digits.
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Definition 1. We say that the system £ = (Lg)g=1
defined for every (zo,...,xq—1) € R? by

x of linear forms on RY

.....

qg—1
Li(wo, 21, .y Tg—1) = E Ak 0Ty, k=1,....K
=0

(with ape € Z for (k,£) € {1,..., K} x {0,...,q — 1}) is complete if
(i) the family of vectors formed by (a1,0,...,01,4=1),-- - (AK,0,s- -, QK g—1) and
(1,...,1) is linearly independent over Q.
(ii) spang {Lx(no,...,ng-1):k=1,....K, (no,...,ng_1) € 21} = 2%,
(where spany(A) denotes the set of all finite linear combinations of elements
of A with integer coefficients).

Let £ be a complete system of linear forms over R? and 17 = (11,...,mk) be a
K-tuple of non-negative real numbers.

Definition 2. We say that i is L-admissible if the system of equations
Lk(x()vxlv"'axqfl):nkv kzla"'aKv
To+ -+ xg-1 =1

has a positive solution xg > 0,21 > 0,...,24-1 > 0.
Example 1. If K = 1, £ = (L1) with Li(zo,...,2q-1) = Z;S lxzy, then m =
(%) is L-admissible.

Example 2. If K > 1, L = (L1,..., L) with Li(xo,...,2q-1) = xo — T, for
k=1,....,K, thenn = (0,...,0) is L-admissible.
Example 3. If K = 1, £ = (L1) with L1(zo,...,2q—1) = xo — 2x1, then n =
(0,...,0) is L-admissible.

For any complete system L of linear forms over R?, for any £-admissible K-tuple
n € (RT)X and for any K-tuple p = (1, ..., ur) € Z¥ we define the set of integers

N = N(Eu n, H)
(1) = {n e N: Li(|nlo, |n|1,...,|nlg-1) = [k log,n] + px, k=1,...,K}.
In what follows we will always assume that £ is complete and that 1 is £L-admissible.

In section 3 we will give the following estimate for card{n € N : n < N}:

Theorem 1. There exist positive constants C1,Co and v < 1 depending only on
L, n, and p such that for any integer N > 2 we have

C N d N N C. N
—_— < S n< < [
Tiog, MyR7z < crdin € Nan < NJ < Cofegers

In section 4 we prove our main result:

Theorem 2. For any irrational number « the sequence (na)nen is uniformly dis-
tributed modulo 1.

Such a kind of theorem has been proved in [12] in the particular case of sequences
of integers with an average sum of digits. More precisely, for any b : N — R such

that q%lu + b(v) € N for any v > 1 and such that the sequence (fj%) is
v>1
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/\ /\ /\ /\

FIGURE 1. Infinite 3-automaton generating n € N with |n|y =
1 = Inl2

bounded, then Theorem 1.2 from [12] says that for any irrational number « the
sequence (na)peg, is uniformly distributed modulo 1, where

& = {n €N :s4(n) = qgl[logqn] —l—b([logqn])}.

It is easy to verify that in the particular case where ¢ = 2 or 3, £ and 1 defined
as in Example 1 and p = (0), our theorem is a consequence of Theorem 1.2 from
[12] but that these results are formally disjoint when ¢ > 4. Nevertheless the study
of [12] concerns the case of integers whose sum of digits is “close” to the expected
value and our work generalizes this study to the case of integers whose sum of digits
(or any other linear combination of digits) is “far” from the expected value.

In the particular case where £ and 1 are defined as in Example 2 and for pu =
(0,...,0), our theorem corresponds to Theorem 4.2 (for the set £;_1) from [18].
The main theorem from [18] can be understood as an uniform distribution result
in the case where the set NV defined by (1) is generated by a deterministic g-infinite
automaton corresponding to a random walk of zero average on a d-dimensional
lattice (see [18] for definitions of these notions).

For example when ¢ = 3, £ and n as in Example 2 and g = (0,...,0), the
set N = {n € N : |n|p = |n|1 = |n|2} is generated by the deterministic 3-infinite
automaton (that is depicted in Figure 1) with 0 as initial state and 0 as unique
final state.

The theorem we prove here is a generalization of this result to the case of any
random walk on a ¢-dimensional lattice (the more general case of d-dimensional
lattices, with d < g, corresponds to the generalization suggested in section 5 of our
paper).

Indeed for £ and i as in Example 3 and p = (0), the set N = {n € N : |n|g =
2|n|1} is generated by the deterministic ¢-infinite automaton that is depicted in
Figure 2 with 0 as initial state and O is unique final state. It is also linked to
the random walk on the lattice Z with probability transition (3,2). It follows in
particular from our main theorem that for any irrational number o the sequence
(NQ)|p|g=2|n|, is uniformly distributed modulo 1 (such a kind of result was out of
reach from the methods developped in [12] and [18]).
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FIGURE 2. Infinite g-automaton generating n € A" with |n|o = 2|n|;

It follows from Weyl’s criterion that in order to prove Theorem 2, it is enough
to show that for every irrational number a we have

Z e(an) = o(card{n e N : n < N})
neN ,n<N

as N — oo, where we denote e(x) = e?™@ (for general references to the theory
of uniformly distributed sequences we refer to [16] and [10]). For this purpose we
use a specific saddle point method applied to properly chosen generating functions.
In Section 2 we set up the generating functions related to our problem. Then
in Section 3 we collect some technical properties that are necessary to apply a
saddle point analysis which leads to a proof of Theorem 1. A variation of this
method leads then in Section 4 to a proof of Theorem 2. Finally we comment
on some generalizations of Theorem 2 concerning missing digits (Section 5.1) and
non-integer coefficients (Section 5.2).

2. GENERATING FUNCTIONS

We first present explicit formulas for

— E : Inlo .|nl1 [nlg—1, n
SN(:EOVTM"'?xq—luy)_ Ty Xy "':Eq—ti Y
0<n<N
Lemma 1. Define T, n(x0, 21, ..., %q-1,Y) for N < ¢” recursively by

Tu,q" (:I:Oaxla v 7wq—17y) = H (:I:O + 551qu + -+ xq—ly(qil)qT> )
r<v

Tyogi (X0, T1,s .o Tg—1,Y) =af 07! (l’o +ay? 4o+ Iefly(g_l)qv

X T 4i (X0, 1, - -y Tq—1,Y)
for1<f<qandj<v, and by
Tu,qu-‘,-N’(anxla v 7wq—17y) :Tu,qu (.’I]Q,.’Ifl, v 7xq—17y)
—i—1 07
+zg T wey T Ty N (0, 21, - - Tg—1,Y)

for1 <t <qand N' < ¢.
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Then we have
Sq“ (;[;0751;1, . 7xq—17y) :Z (£E1yqj 44 xq_ly(q—l)qj>
j<v
. Tj)qj (Io, L1,y .,.’,Eq,l,y),
S[qu(.fo,xl, <oy Lg—1, y) :SqV(.IO,.Il, s 7xq717y)
+($1yqu+ et xf—ly(g_l)qu) : Tl/,q“ (./L'Q,.’L'l, e 7$q—17y)
for2 <t <q, and

Stgr+n (X0, 21, - - Tq—1,Y) =Seq (To, 21, .., Tq—1,Y)
+xfyéq] TIJ,N’(:I:Oa Tlyew- 7$q—17y)
for N' < ¢".
Proof. First we give an alternate definition for T, y(xo,21,...,%q—1,Y). Suppose
that we consider all number n < ¢” in the form n = eo(n) + e1(n)g + --- +

g,—1(n)g”~L. Similarly to the above we set
[n|ye:=card{j e N:0<j<v, gj(n) =L}

Of course, if n < ¢¥ and ¢ # 0 then |n|,¢ = |n|,. However, for £ = 0 we usually
have |nl,,0 # |nlo since |n|, o takes all zero digits up to ¢ — 1 into account. Now set
(for N < ¢")

T, N(zo,21,...,Tq—1,Yy) = Z x‘onl“’oxlln‘”‘l . ~:1:1;ﬂ‘i“’71y".
n<N
With help of this definition the proof of Lemma 1 is immediate. O
Corollary 1. Suppose that xo,x1,...,2q—1 are complex numbers that are suffi-

ciently close to the positive real axis and xo + - -+ + xq—1 # 1. Then we have

[nlo, |nl1 [n|g—1 log, N
g zoy Cxy ez 1 = G(T0,. ., g—1,l0gy N) - (To 4+ 3g1) B
0<n<N
$0+I1—|—"'—|—Iq,1—17

where G(zo,x1,...,Tq-1,t) is a function that is analytic in xo,x1,...,Tq—1 and
continuous and periodic in t (with period 1).

Furthermore, if I is any closed interval of positive real numbers with min I > 1/q,
then, for every e > 0 such that there is at least one j with | arg(x;)| > €, there exists
0 >0 and C > 0 such that

@ | X apa™ | < O (ol 4 foa 4 g )T Y
0<n<N
uniformly for all x; with |z;| € I.

Proof. We first provide a corresponding representation for 7, y-. Suppose that the
g-adic expansion of N’ is given by

N = glqkl + ézqkz + - —|—€quL
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with digits 0 < ¢; < g and exponents k; > kg > --- > kr > 0, then it directly
follows that

Ty 41,8 (20, T2, ., 2g-1,1) = (20 + -+ + ﬂﬂelfl)Xkl
+ x751—k2—1$£1 (IO 4oy $£271)Xk2
+ x§17k372xg1x52 (ko +---+ xgs_l)Xk3

+ xgl—kL—L-i-lIel . ’$2L71($0 4t IEL)XkL7
where X abbreviates X = x¢ + 21 + -+ + x4—1. Further we have
XV -1

Sqv (0, T2, ..., 2q-1,1) = (X — 20) X1

and (for £ > 2)

v

X -1
XV -1
X -1

quu(xo,.%'g, ce Tg1, 1) = (X — .’L‘o) + (@1 4+ +xe) XY

Z(X—LL'Q) —$0XV+($0+"'+LL'g_1)XU.
Consequently, if IV is given by
N = goqko + €1qk1 + -+ équL

then we have

Xhko —1 ko
SN(.I(),{EQ, e ,qul, 1) = (X — .Io)i — I()X
X -1
+ (w0 + -+ 4 wg—1) X0
+ ‘Tgo_kl_lxlo (‘TO +e 4+ xllfl)Xkl
(3) + $§0_k2_2$[0$[1 (IO + -+ {Eb,l))(k2
4.
+ xlgoka*L:wO coewp, (o -+ $ZL)XkL-

For 0 <t < 1 let the g-adic expansion of ¢* be given by
q"="lo+ Zéjqfkj
j>1

with digits 0 < ¢; < ¢ and exponents 0 < k1 < k2 < --- and set

/X1 —x
G(xo,xg,...7$q_1,t)=X t(%"f’(l'o'f‘"'-i-,@go_l)
x —k
+ﬁ($0+"'+$6171) <_)
X0 To
—ko
Ty, T X
+ﬁi(xo+~~+$g2,1) <_)
o o Zo

i)

It is an easy exercise to show that G is continuous in ¢ and can be periodically
extended to a (continuous) function with period 1 provided =z, ...,x4—1 are suffi-
ciently close to the positive real line. If fact G is Holder continuous with a positive
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exponent depending on o, . .., Zq—1 (compare with [9]). Furthermore by definition
it follows that
log, N _ X — %o
SN(Io,...,xqfl,l):G(Io,...,qul,IquN)'X 8q — X 1

Finally, if we assume that |z;| € I and |arg(z;)| > € for some j and for some
closed interval I of positive real numbers then the representation (3) implies (2)
almost immediately. Note that min I > 1/q implies that |xo|+-- -+ |z4—1]| > 1. O

Corollary 2. Set

n<N k=1
Then we have
K K
Pn(z1,...,2K,y) = SN <H ZZM, e H ZZk,K,y> .
k=1 k=1
Consequently, there exists a function H(z1,...,zg,t) that is analytic in z1,. ..,z

(if they are sufficiently close to the positive real azis) and continuous and periodic
int (with period 1) such that

(4) Pn(z1,...,2k,1) = H(21, ..., 2k, log, N) - F(z1,...,z;)1%8 N
3 F(z1,. . 2k) — szl ZE°

F(z1,...,2,) — 1 ’
where we assume that

qg—1

K
F(zl,...,zk):ZHzZ’“’e £ 1.

(=0 k=1

Furthermore, if J is any closed interval of positive real numbers with the property
that F(|z1],...,|zk|) > 1 for all zy with |zi| € J (1 < k < K). Then, for every
e > 0 such that there is at least one k with |arg(z;)| > €, there exists 6 > 0 and
C > 0 such that

(5) |PN(215 < RK 1)| <C- F(|Zl|a EERE) |Zk|)(1*77)10gq N
uniformly for all zy, with |zi| € J.

Proof. We just have to note that if we set xzy = Hszl zZ"’E then we obtain

i TS0 ag el
In‘f _ ¢—0 Ok, e|M|e

H Ty = H “k

=0 k=1

and can apply Corollary 1. In particular note that Definition 1.(ii) implies that (2)
translates to (5). O

In what follows we will make the assumption that

(6) ak70:O (1§I€SK)
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This implies that z¢ in Sy (o, ..., zq—1) is substituted by Hk L 2" = 1. Hence,
F(z,...,2K) is of the form

qg—1 K
F(z1,...,2k) =1+ Hza”
=1 k=1
In particular, we always have
F(Zl,...,ZK) > 1

for all positive real numbers z1,..., zx.
The assumption (6) is no real restriction. If we start with the general linear
forms

q—1
Ly(xo,x1,...,2g-1) = Zakéwe,
£=0
then the slightly modified linear forms
qg—1 q—1
Li(wo, @1, ..., 2¢-1) = Z(ak,e —ako)xTe = Z(ak,e — ag,0)Ts
=0 =1

have the property that the corresponding coefficients @, = ap¢ — aro satisfy
a0 = 0 and the condition (1) translates to
Li(Inlo; [n]1, - .-, Inlg—1) = Le(Inlo, [nl1, - - -, [nlg—1) — ax ollog, 7]
(7) = [k log, n) + pr — ak70[logq nJ
= [(mk — ax,0) log, n] + u + O(1),

where the O(1)-term depends on n and k. This means that if we replace the linear
forms Ly by Ly then (1) is replaces by (7) that is almost of the same form. In fact,
the following calculations could be worked out, too, by using (7) instead of (1).
However, in this case it would be necessary to keep track of & and n which would

make notations even more involved. Therefore we have decided to work with (1)
and, of course, with (6).

3. ESTIMATE OF card{n € N': n < N}: SADDLE POINT APPROXIMATIONS
Our first goal is to give a precise estimate for the number

card{n e N : n < N},

that is, to prove Theorem 1. For this purpose, for every integral multi-index m =
(mq,...,mg) we consider the sets

Vi (N) ={n < N : Li(|n|o, ..., |n|g—1) = mi, 1 <k < K}

and their cardinalities cardVy, (N). With help of the generating function P(zq,. .., 2k, 1)
we can obtain these numbers by the use of K-fold Cauchy integration:

cardVmm (N) = card{n < N : Li(|nlo, .- nlg=1) =mi, 1 <k < K}

dz dzi
8 (#1,...,2K,1 .
) e ], e

Since P(z1,...,2K,1) can be well approximated by a power F(z,...,zx)% ™ it
is natural to do this with help of a multivariate saddle point method.
We start with a preliminary lemma.




WEYL SUMS OVER INTEGERS WITH LINEAR DIGIT RESTRICTIONS 9

Lemma 2. Suppose that the system of equations

qg—1
9) Zakwe = % (1<k<K),
£=0
q—1
(10) o =1
£=0
has a positive solution xo > 0,21 > 0,...,24—1 > 0. Then there uniquely exist
21 >0,...,2 > 0 with
q—1 K q—1 K
(11) Zaszﬁ”:nkZHzﬁ” (1<k<K).
£=0 r=1 £=0 r=1

Proof. Let Z denote the set of solution (xo,...,z4—1) of (9) and (10) with positive
coordinates. By assumption Z is not empty, in particular, it either consists of
exactly one point (if ¢ = K +1) or it is the intersection of a (¢ — K — 1)-dimensional
hyperplane with the half spaces x; > 0, and, thus, can be considered as an open
set in a (¢ — K — 1)-dimensional space. Next consider the function

q—1
f(CC(),...,qul):—ZIjIOgCCj, (Io,...,xqfl)EZ.
=0

Observe that f is a strictly concave positive function with unbounded derivative
if one of the z; goes to 0. Hence f attains its (only) maximum at some point
(x5, q_1) € Z.

Alternatively, this maximum can be calculated with help of Lagrange multipliers.
Set

qg—1 q—1
f(l‘o,...,l'q_l,)\o,...,)\}{) :—Z,leong—f—)\o (Z,Tg— 1)
=0 £=0

K qg—1
+ Z Ak <Z Qg 0Ty — 77k> .
k=1 =0

Then by Lagrange’s theorem there exists A§, ..., A% such that (z§,...,27_;) sat-
isfies the system of equations
of : RS ,
Ba; = —loga + 1+ A+ > MNar; =0 (0<j<q).
k=1
Hence, if we set z; = e, we have
K
rg = el H z}lk’j,
k=1
and since (9) and (10) imply that
q—1 q—1
> areai =m Y ag,
=0 =0

it directly follows that (11) is satisfied for z, = e**. This is also the unique solution
since every solution of (9) can be reinterpreted as a maximum of f on Z. O
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In what follows, we will denote by 2 the (open) set of (11, ...,nx) for which (9)
has a unique solution zi(n1,...,nx) (1 <k < K) in the above sense. In fact, this
is also a multivariate saddle point as the proof of the following theorem shows.

Recall that we always assume that aj o = 0, which implies that F'(z1,...,2x) > 1
for all positive real numbers z1,..., 2x.

Theorem 3. Suppose that E is a compact subset of Q. Then uniformly for all
integer vectors m = (mg, ..., mg_1) € Z7 with

mo mg—1
(logqN’ 71ogqN> <

and as N — oo we have
H(z,...,Zk,log, N)

~ ~ lo: N ~—m ~—m
(12)  cardVm(N) = (2 log, N)K/2A1/2 (Fryoees 2 ) 00T 2 2
1
140 ———
<(1+0 ()
where
~ mo Mg—1 )
Bk = %k yees 1<k<K
(logqN log, N ( )
and

_ 2 s ot z tK
A — det 0% log F(Z1e™, ..., Zge'™ )
ot 0t

Proof. Our starting point is the representation (8), where we will use the circles of
integration
”yk:{zk:|zk|:,§k} (1§I€§K>
Due to the upper bound (5) we thus get an upper bound for those parts of the
integral where |arg(zx)| > e (for some k) of the form
C- F(El, ey gK)(l—ﬁ) log, N.

Hence, these parts of the integral can be neglected.
For the remaining parts we use standard saddle point approximation on powers
of functions (see [8]). Note that (Z1,...,Zk) is the saddle point of the function

—mK

)Iqu Nzl_ml ‘e ZK

(Zla"'aZK) HF(Zla"'aZK

K
= exp (logq N log (F(z1,...,2K)) — ka log zk> .
k=1

Hence, we directly obtain (12). O

Remark 1. Theorem 3 has a slight extension. We also have
H(fl, ce 72K710gq N)
(2mlog, N)K/2A1/2

g <1+O (bglzv))

gk:Zk(nlv"'vnK) (1SkSK)

~ ~ \log, N ~—m; S—MmK
(Z1,..., 2K) 20 2 S E

(13)  cardVyu(N) =

where
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and my — nilog, N = O(1). This means that we can vary my, a little bit without
changing the saddle points Zy, that only depends on n1,...,nx. This property will
be frequently used in the sequel.

Remark 2. If we do not use the saddle point (21, ..., 2k) but any point ((1,...,Cx)
of positive real numbers we get an upper bound of the form

H(Clu"'?CKalogqN) og N B
= F cee 8 mi . fTMK
= (2rlog, N)K/2A1/2 (G155 CK) ¢ (r

g <1+O <log1N>> ’

2 t1 tK
A — det 0% log F(Gre™, ..., Cketx)
0t;0t;

(14)  cardViu(N)

with

tl‘owtK‘O) 1<ij<K

This follows from the fact that the absolute value of F((1e't,. .. (xe'®) can be
estimated by

(15)

_ _ | K K
|[F(Cie™, ... (xe™ )| < F(Gr, ..., (k) exp —51_;1&;%‘%‘4'0(; |ti|3> ;
where

82 1OgF(<letla ) CKetK)
ot,01,

Of course, the constant implied by the term O(1/log N) depends (continuously) on
STHNG'S

The case 11 = -+ = nxg = 0 is now easy to deal with. The corresponding
asympototic formula for the numbers card{n € N : n < N} is an immediate
corollary of the above remark.

Aij =

t1=0,...,txg=0

Corollary 3. Suppose that n; = --- =nxg =0 and let p1,...,px be given (fized)
integers. Then (0,...,0) € Q and we have

card{n € N : n < N} = card{n < N : Ly(|n|o, ..., |n|g—1) = p, 1 <k < K}

H(3, ..., %, log, N . _ 1
_H& K 98 )F(Zl,...,éK)logqNél“l---ZK’“‘(1+O( ))

(2mlog, N)K/2A1/2 log N
where Z, = z(0,...,0) > 0 satisfy
q—1 K
a [z =0  (1<k<K).
£=0 r=1

The next step is a little bit more involved. Suppose that there exist k with
nr > 0 and consider the set

S = U {q(m_”k)/"k cm € Z,(m — pug)/mi > O}
k:mi#0

that is the union of geometric sequences.
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Let sp < s1 < --- be a an ordered version of the elements of S = {sg,s1,...}.
Observe that if n > 0 is an integer with s; < n < sj41 then for all £ with n, > 0
there exists m; € Z with

™k T HE Mkt TRk

q Nk §n<q Nk

For those k with 7, = 0 we set mj, = pg. If fact, this means that for all £ €
{1,2,...,K}and n € {sj,s; +1,...,s;41 — 1} we have
[k log, n] + pk = mj k.

Let m; = (mj1,...,m; k) denote the multiindex that collects these m; ;. More
precisely this shows that

card{n € N': s; <n < s;41} = cardVim, (sj41) — cardVim, (s5).
Thus, we have proved the following lemma.

Lemma 3. Assume that there exists k with ny, > 0 and suppose that N is a positive
integer with N = [s;] for some s; € S. Then we have

card{fne N :n < N} = Z (cardVim, (sj41) — cardVim, (s;)) -
j<J
Proof of Theorem 1. Lemma 3 can be used to determine the asymptotic order

of magnitude of the numbers card{n € N': n < N}. We will actually prove that
there are two positive constants Cy, Cy with

C1 <F(21,...,2K

M, sNK

) log, N
> <cardfne N :n < N}

(log, N)K/2 1 RK
< Cy F(gl,...,éK) log, N
= (log, N)K/2\ 2z ... 2K ’

where
Zp =z (M, 1K) (1<k<K).
Thus, v from Theorem 1 is explicitly given by

F(31,...,%)
fy:logq (W .

.ZK

Proof. If n1 = ... =ng = 0 then this estimate follows from Corollary 3.
If there is k with 7 > 0 then by Lemma 3 and (13) we get the upper bound:

card{fne N :n< N} < Z card (Vim, (5j41))
Jisj—1<N

<> So card (Viumomom /o crcr (@7 75™))
k>0 m<nylog, N+pg

1 F(éluaéK) (m—px)/nk
<Y Y (e
. 1 K
k>0 m<ny log, N+pg
1 (F(zl,...,zK))l"gqN

(log, N)K/2 \ 2" - ZyF

<



WEYL SUMS OVER INTEGERS WITH LINEAR DIGIT RESTRICTIONS 13

On the other hand we have
card{n € N : n < N} > card (Vim, (sj41)) — card (Vim, (s;))
+ card (Vim,,, (sj42)) — card (Vim,., (sj41))
for every j with s;12 < N. Let kg be chosen such that 7, is largest. By ob-
vious reasoning there exists a constant C such that s; = ¢(™ #k0)/Mko 5, ) =
qmF1=1ko)/Mko - and s; > N/C. Further we have mjx = [(m — ping )k /Mko] + fi-

Hence we can use the saddle point Z; = zi(m1,...,mx) (1 <k < K) and obtain by
(13):

card(Vm, (sj+1)) — card (Vim, (s;))
_H(Z,. - 2k, logy 8541) F(31,..., 55) 8% (1+0( 1 ))

(2mlog, ;1) K/2A1/2 AR log N
_H(gl""72K7]‘qusj)F(217,,,72K)10gq5j 1+O 1

91 log. 5. )K/2A1/2 s sMK e N

( gq .7) 1 K g
> 1 F(z,...2k)\ "

(log, N)K/2 \ z]" .. ZJF

s )10gq sj+1—log, s;

x (H(Zl,...,ZK,logquH)F(El,...,zK
i i 1
— H(Z1,...,%K,l0g, s5) —i—O(lOgN)).

Similarly we get
card (ij+1 (SjJrQ)) - card(VmHl (SjJrl))
1 (F(zl,...,zK))l"gqN

(log, N2 \ 20 -2

>

~ )logq sj+2—log, sj41

x (H(El,...,EK,logq siv2) F (Z1,. .. 2k

—H(Z,...,%K,log, sj41) —i—O(lOglN)).

Since card(Vim, (sj41)) — card(Vm, (s;)) > 0 and card(Vin,_, (sj12))—
card(Vim, ., (8j41)) > 0, it follows that

log, sj+2—log, sj41 H(gl,

C/

- _logN

H(El, .. .,2K,logq SjJrQ)F(gl, e ,EK) e ,ZK,logq Sj)

for some constant C’ > 0. Hence we get

1 <F(zl,...,zK)>l°gqN

(logq N)K/2 zm o, .g?{K

x <(F(zl,...,éz<;”"k° - 1) +0 <log1N>>

1 <F(zl,...,zK)>l°gqN

logq N)K/2 5171 .. .g?{K
This completes the proof of the Theorem 1. O

card{n e N :n< N} >

>>(
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4. UNIFORM DISTRIBUTION MODULO 1 OF THE SEQUENCE (an)nen

As we remark at the end of section 1 proving Theorem 2 is equivalent to prove
that for any irrational o we have

W = Z e(an) = o(card{n e N : n < N}).
neN ,n<N
For this purpose we introduce the function
U(,To, vy Tg—13to, .- ,tq_l) = ,Toe(to) + -+ xq_le(tq_l).
We will also use the short hand notation U(x,t).

Lemma 4. Suppose that xg,...,Tq—1 are positive real numbers Then there exists
a constant ¢ > 0 that depends continuously on x = (o, ...,%q—1) such that for all
real vectors t = (to,...,tq—1) and to = (£0,0,---,t0,q—1)

U, t)U(x,t +to)| <U(x,0)%exp | —c Y [ltos —tol* ] .
0<i<j<q

where ||z|| = mingez | — k| denotes the distance to the nearest integer.
Proof. We first consider |U(x,t)[>. By using the inequality |sin(mt)| > 2||¢] we
obtain

U(x,t)2 = U(x, t)U(x, —t)

Q
—

(]

a3 +2 Z x;xj cos(2m(t; — t;))

7=0 0<i<j<q
=U(x,0%—4 Y masin(n(t; —t;))
0<i<j<q
< U(x,0)% — 16 > maglt — )
= 9 2 etV R R J
0<i<j<q

SUX07%exp [ —cr Y ti—t]* |,

0<i<j<q
where )
_ 16 OSIZ'n<1§1<q Titi
AT U2

is a positive constant depending continuously on x. Since [[t[|? + ||t +¢'||? > £||¢'||?

for any real numbers ¢ and ¢’ it immediately follows that
|U(Xa t)U(Xa t+ t0)|

1
2

C1
<SUGO?exp (=5 3 (Il =t + It =t + toi — to]°)
0<i<j<q
2 a 2
< U(x,0) exp -7 Z It0,i — to,sll
0<i<j<q

This proves the lemma for ¢ = ¢1 /4. O
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Next we set

U(z1,. ., 2K; 815+, SK; 8) i=
K K K K K
ak,0 Ak,q—1,
U sz ,...,sz S E ak,05k, E ak,15k+s,...,§ agq-15k + (¢ —1)s |,
k=0 k=0 k=0 k=0 k=0

that is, we substitute x, = Hszo zgk’f and ty = ZkK:O akesk +4s (1 <l < K).
Note that

(16) Uty oy 2131,y 5530) = Fzre(sn), . ze(si))-
Furthermore, we have the following upper bound.

Lemma 5. Suppose that zg, ..., Tq—1 are positive real numbers and to, ..., t;—1 and
a are real numbers. Then there exists a constant Cs > 0 (that depends continuously
on To,...,Tq—1) with

|SN(I06it17 s 7xq716itq7176ia)|
< Cs Z HU(xO,...,xq,l;to,tl+oij,...,tq,1—|—(q—1)o¢qj) .
¢<log, N |j<¢

Consequently, we have for positive real numbers z1, . .., zx and real numbers s1, ..., sk
and «

|Py (21, ..., 2™ e'®)]
SC3 Z HU(Zlv"'aZK;Slv"'vsK;aqj) :
églogqN gj<t

Proof. The estimate for Sy follows immediately from the representations given in
Lemma 1. The upper bound for Py is just a rewritten version of the upper bound
for Sn. O

This estimate shows that if we are interested in upper bounds for

Wm(N) = Z e(an)

nEVm(N)
1 1
18 8 (%o 181\ —m 18 —m
:/~-~/PN(Z16 Lo zge PR ") (21e") T (2R ) TR (s - - dsk,
0 0

then it is sufficient to get proper upper bounds for integrals of the form

1 1
(17) / / H‘U(Zlu'"7ZK;517-'-73K;04(]J)‘dSl"'dSK.
0 0

J<v

Following this idea we prove upper bounds for (17) in Lemma 6 and 7 which will
lead to upper bounds for Wi, (N) in Lemma 8.
We have the following estimates.
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Lemma 6. Suppose that z1,...,zx are positive real numbers. Then there exists a

constant Cy > 0 (that depends continuously on z1, ..., zk ) such that for all integers
v > 1 and all real numbers «

1 1
— v Cy y
/ /0 ’U(zl,...,ZK;sl,...,sK;a)‘ dsy---dsg < K/2F(zl,...,z;<) .
Proof. Observe that Lemma 4 also implies that
|U(x,t)] < U(x,0)exp [ —c Z t: — t;]|?
0<i<j<q
Hence, we also get

U(21y. s 2K 81, - -, 5K Q)|

K 2

Zakz_akj Sk"’(l_])

<U(z1,...,2K;0,...,0;0)exp [ —c Z

0<i<j<q

By the linear independence assumption on the forms Lj; and by Definition 1.(ii)
there exist jo < j1 < --- < jx such the matrix C' = (ax j, — ak,j,)1<k,e<K is regular
and, thus, has determinant det C' = d # 0. Further, there exist §; with

K

> @k g, — argo)or = (e — o) (1 <0 < K).
k=1

Hence, there exist integers d;, with

K
S] + (5 Zdﬂ <Z (ak,j, — k.o )(sk + 6k)> .
=1 k=1

Hence, for all j we have

K 2
Hd(SJ + 5 H2 < Z Z Ak 5, — Qk,jo (Sk + 5k)
=1 ||k=1
K 2
< Y0 D (aki —akg)sk + (i =
0<i<j<q k=1

Consequently, there exists a constant ¢/ > 0 with

|U (21,5 2K 815 - -5 SK Q)|

K
<U(z1,.-.,2K;0,...,0;0) exp <—c/z ld(sk —|—5k)||2>

k=1

K
F(z1,...,2;) exp (—c’ Z lld(sk + 5;€)|2> :

k=1
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so that

1 1
/ / ‘U(Zl,...,ZK;Sl,...,sK;a)’Vdsl...dSK
0 0

1 1 K
SF(Zlv"'aZk)U/ / exp (-CIVZ|d(Sk—|—5k)|2> dsi---dsg
0 0 1

1 K
’ 2
< F(z1,...,28)" (/ e—cvlasl ds)
0

4 v
= mF(Zl,...,Z}C) .

This completes the proof of the lemma. (I

Remark 3. Alternatively we can prove Lemma 6 by using property (16) and pre-
vious estimates for F. Namely, by using (15) for |s;| < e (where e > 0 is chosen
sufficiently small) and the property that

|F(z1e(51), ..., 2ve(sk))| < F(z1,...,25) "

for some n > 0 if there is some j with |s;| > & (compare with (5)) the upper bound
follows.

The next lemma is crucial for proving upper bound on Weyl sums.

Lemma 7. Suppose that z1,...,zx are positive real numbers. Then there exists a
constant Cs > 0 (that depends continuously on z1, ..., zk ) such that for all integers
v > 1 and all real number «

1 1
/ / H‘U(zlv---,ZK;Sl,...,sK;aqj)|dsl...dsK
0 0

J<v

Cs ) ¢ |
SWF(ZIV"?ZK) exp —ZZHG((J—UQJHQ

Jj<v

Proof. For simplicity we assume that v is a multiple of 4. The other cases can be
handled in the same way.
We split the product of the integrand into two parts:

H ‘U(zlv"'7ZK;517"'7SK;aqj)U(Zla'"aZK;Sla"'aSK;aqj+1)‘
j<v,7=0 mod 4

X H |U(zl,...,ZK;sl,...,sK;aqj)|.

j<v,j=2,3 mod 4
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By applying Lemma 4 with tg, = ¢(q — 1)¢’ @ we get

H ‘U(zl,...,ZK;sl,...,sK;aqj)U(zl,...,zK;sl,...,sK;aqu)‘
j<v,7=0 mod 4

< F(z1,...,25)" %exp | —c Z Z (i —§) (g — D¢’ a)?

j<v,j=0 mod 4 0<i<j<q

<F(a,..2k)Pexp = > g Ddal?

j<v,j=0 mod 4
Furthermore, by applying the inequality

[ 4 - A o™

3

|'Ul...'Um| S
m

we obtain (by applying Lemma 6):

/ / H ’U(Zlv"-azK;Sl,...,SK;aqj)’dsl...dSK

j<v,j=2,3 mod 4
1 v/2
SW E ’Uzl,.. JZK ST, sK,aq)’ dsy---dsg
Jj<v,j=2,3 mod 4

ZK)V/Q.

< F(Zl,..

)

K2

Hence,

/ /H|Uz1,.. JZK 81, .., SKG QG ‘dsl

J<v

Cs ” <
< mF(zl,...,zK) exp [ —c Z (g — 1)g7 |2

j<v,7=0 mod 4

Similarly we can deal with the other residue classes modulo 4. Combining these 4
estimates finally proves the lemma. (I

We set

Zl\a Ld’||*.

J<u

For irrational « it is clear that E(«,v) — 0o as v — oo (compare with [12]).
Next we prove an upper bound for

Wm(N) = Z e(an).

nEVim(N)

Lemma 8. Suppose that my = [y log, N]+puy. Then, there exist constants C > 0
and C7 > 0 (that depend on n1,...,nx and on py, ..., pK ) such that as N — oo

(Wi (N)] < G card (Ven (N) - (¢ (08 M/2) 4 o=Crlon, )
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Proof. We first fix positive numbers z1,...,zx. Recall that F(z1,...,2x) > 1.
Hence, by Lemma 5 and Lemma 7 we have

1
-/PN(zleisl, oy 2R K 1Y) (21€M) T L (2 e )T sy - ds g
0
1
(

1
0
1
< //|PN z1e" L zge e )| 2y 2 dsy - ds ke
0 0

11
< Z /--'/H‘U(zl,...,zK;sl,...,sK;aqj)| dsy---dsk
0

¢<log, N {) j<t

1 —mi —MmgK
< Y mEFlenz) M 2 exp (—eB((g — 1)a, )

(<log, N

< WF(ZM BN ZK)logq szml .. Z;(mx
- exp (—cE((q - 1Da, [1qu N]/Q))

< WF(ZL ey 2r) OB N g i

) (e—cE(a,[logq N1/2) 4 o~Crlog, N)

)

where C7 > 0 depends on z1,...,2x. Now, if we choose z = Zx = zk(m,. .., NK)
we, thus, obtain the proposed estimate. O

Proof of Theorem 2. We are now ready to prove the final step of Theorem 2,
i.e., that for all irrational numbers o we have, as N — oo,

Z e(an) = o(card{n € N': n < N}).

neN ,n<N
Proof. First assume that 1 = --- = ng = 0. Here we have with m = (u1,..., ux)
W= Z e(an) = W (N)

neN ,n<N

and we can directly apply Lemma 8.
Now suppose that there exists & with n; > 0. With the same reasoning as in
Lemma 3 we have (if N = [s;] for some s; € S)

W = Z e(an)

neN ,n<N

= (Wan, (551) = Win, (5))

JjeJ
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and consequently

WIS D (IWn, (8542) [ + W, (55)]) -
j<J

Now, with help of Lemma 8 we get the upper bound

D W, (sj40)[ < Y S Witz @)
i<J king>0 m<ny log, N+p

. . (m—px)/nk
1 F
« Xy ()
m Zl ...ZK

k>0 m<nylog, N+puk

% (echm,(mw)/(znk)) T efc7m/nk)

_, 1 F(z,...,55)\ %"
-~ \(log, N)K/2 \ "z 2K

=o(card{n e N :n < N}).

Similarly we can estimate the second sum . ; Wm, (s;). This proves the lemma
if N ={[sy] for some sy € S. If N is not of that form we just have to add

Wm.l (N) - WmJ (SJ)
which can be handled with help of Lemma 8. ([l

5. GENERALIZATIONS

5.1. Missing digits. A first generalization of Theorem 2 is to assume that some
digits D C {0,1...,¢ — 1} do not appear, that is, we additionally assume that

(18) Inle =0 for e D

(compare also with [18]). Formally this condition could be included into (1) with-
out any change of notation. However, then there is no positive solution of the
corresponding system of equations Ly(xo,...,2q—1) = n% (1 < k < K) since (18)
forces z;, = 0 for all £ € D. Nevertheless, we can work with in the missing-digit-case
almost in the same way as above.

First, it is clear that the generating function

SR((@)igmoy) = > [T =™ "

n<N j¢D

is just obtained by using Sy (x1,...,2znN,y) and setting z; = 0 for £ € D. In par-
ticular, we directly use Lemma 1 and, hence, all subsequent considerations directly
transfer.

After all we get precisely the same as Theorem 2. The only difference is that we
have to consider linear forms in the remaining variables x;, j ¢ D. More precisely
we have to assume that the system £ = (LP)i_1, i

LP = E Qg 0Ty

£¢D
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is complete (compare with Definition 1) and that the system

Zakﬁga:g:nk k:L...,K

(gD
ng =1

(gD

has a positive solution. Then the sequence (an), e is uniformly distributed modulo
1, where NV is the set of positive integers with |n|; = 0 for j € D and

> arelnle = [mlogynl + pr,  k=1,... K.
gD

5.2. Non-integer coefficients. The restriction that the coefficients aj ¢ of the
linear forms Lj are integers was natural in the context of Theorem 2. Nevertheless
we can also consider general linear forms

qg—1
Lk(Io,...,:qul):Zakﬁzxg (1§k§K>
=0

and fix intervals Iy = [a1,b1], ...,k = [ak,bk] contained in the positive real line.
A corresponding set A can be then defined by the set of non-negative integers n
with

Li(Info, - - -5 Inlg—1) — nx log, n € Iy (1<k<K),
where 71, ...,nK are given real numbers.

Instead of Cauchy’s formula we can then use the inverse Laplace transform. For
example, if we set (similarly to the above)

Vm(N) = {n < N : Li(|nlo, . .., [n|q—1) — mk € It},

where m = (my, ..., mg) is any vector of real numbers, then we have for all real
numbers Sg 1, ..., 50,K
1 Soyl—iTl S(),K—iTK
n_ . .
g V= o lim <+ lim
nEVm(N) (2mi) K T =00 s0,1—iT) Tr—00 Jgo j—iTx
K e~ kSk _ o—brsk
X Pn(e®t, ..., e°% y)e  Mis1T I TMESK H —dsy---dsg.
s
k=1 k
In particular, we can use s ; = log Z, where Z;, = z(m1/ logq N,...,mg/ logq N)

are the saddle points from above. Then these integrals can be asymptotically
evaluated by a usual saddle point approximation, in particular if y = 1 and also if
y = e(a).

Of course, there are some technical difficulties that might occur. First note that
the above integrals are not absolutely convergent. This is due to the factor 1/sy of

the Laplace transform
by, —agsg —bi sk
_ e —e
/ e dr = ———
ap Sk?

As usual, this can be handled by smoothing the characteristic functions of the
itervals I = [ak, bk]
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Second, if there are rational relations between the coefficients of the linear forms
Ly then we have to deal with infinitely many saddle points on the lines R(sy) = s¢ -
For example, if the coefficients aj ¢ and my, are integers then
PN(651+27‘1W1', s esK+27‘K7ri, y)e—ml(51+27‘17ri)—»~—mK(sK+27‘K7ri)
— PN(eSI €5K y)e*mISI*'“*mKSK
e ,
for all integers r1,...,rx. However, it is possible to deal with all these kinds of
problems. We again observe that the sequence (an),cn is uniformly distributed
modulo 1.
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