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Abstract

We analyze several extremal parameters like the diameter or the maximum degree in
sub-critial graph classes. Sub-critical graph classes cover several well-known classes of
graphs like trees, outerplanar graph or series-parallel graphs which have been intensively
studied during the last few years. However, this paper is the first one, where these kind
of parameters are studied from a general point of view.

1 Introduction

In this paper we present a general framework to analyze in a unified way extremal parameters
in a wide variety of labelled classes of graphs that are called sub-critical. Informally a graph
class is subcritical if the average size of 2-connected components is bounded so that the block-
decomposition looks tree-like. (We will make this definition more precise in the Section 2.)

Sub-critical graph classes include important graph classes like trees, outerplanar graphs,
or series-parallel graphs. During the last few years these kind of graphs have been studied
from various points of view [4, 7, 8, 9]. In particular we mention here the paper by Drmota
et al. [7], where it has been shown that several (additive) parameters like the number of
edges, the number of blocks or the number of vertices of given degree satisfy a central limit
theorem. The purpose of the present paper is to provide a first systematic treatment on
extremal parameters of sub-critical graph classes.

In particular we concentrate ourselves to three important parameters, the diameter, the
maximum block-size and the maximum degree.

Outline of the paper. The paper is organized as follows. In Section 2 we set up the
combinatorial and analytic background. The main results are then collected in Section 3.
Finally, in Section 4–6 we present the proofs. They are all based on generating function and
methods from analytic combinatorics [13].

2 Combinatorial and Analytic Background

For k ≥ 0, a graph is k-connected if one needs to delete at least k vertices to disconnect
it. Obviously, a graph G is a set of its connected components. For the decomposition from
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connected graphs into 2-connected graphs we use the block structure of a connected graph. A
block of a graph G is a maximal 2-connected induced subgraph of G. We say a vertex of G is
incident to a block B of G if it belongs to B. The block structure of G yields a bipartite tree
with the vertex set consisting of two types of nodes, i.e. cut-vertices and blocks of G, and the
edge set describing the incidences between the cut-vertices and blocks of G. This suggests
a natural decomposition of connected graphs into 2-connected graphs and this holds also for
rooted graphs. The root-vertex v of a rooted graph G is incident to a set of blocks and to
each non-root vertex on these blocks is attached a rooted connected graph. In other words,
a rooted connected graph rooted at v is uniquely obtained as follows: take a set of derived
2-connected graphs and merge them at their pointed (distinguished but not labelled) vertices
so that v is incident to these derived 2-connected graphs, then replace each non-root vertex
w in these blocks by a rooted connected graph rooted at w (which is allowed to consist of a
single vertex and in this case it has no effect).

Let G be a family of vertex labeled graphs and gn the number of graphs in this family of
size n then

G(z) =
∑
n≥0

gn
zn

n!

denotes the corresponding exponential generating function. The derived familty G′ is the set
of graphs, where a specific vertex is chosen, for example, the vertex with largest label and
this vertex is discounted, that is, the label of this vertex is deleted and is it not counted for
the size. Note that the corresponding generating function of G′ is precisely the derivative

G′(z) =
∑
n≥1

gn
zn−1

(n− 1)!
.

Similarly we define the family G• of rooted graphs, where one vertex is chosen as a so-called
root. Since we have precisely n choices for choosing the root, the number of rooted objects of
size n equals ngn and the generating function is given by

G•(z) = zG′(z) =
∑
n≥0

ngn
zn

n!
.

Through the entire paper, given a class of graphs G, we denote by C (resp. B) the subfam-
ily of connected (resp. 2-connected) graphs in G. In the language of symbolic combinatorics
from [3, 13], the block-decomposition described above translates into the fundamental equa-
tions:

G = Set(C), (2.1)

C• = Z · Set(B′ ◦ C•), (2.2)

where the factor Z in the last equation takes account of the root vertex (which is distinguished
and labelled), the symbol · denotes the partitional product on combinatorial classes, and the
symbol ◦ denotes substitution at an atom (see [3, 13] for definitions).

A graph class G is called block-stable if it contains the link-graph `, which is a graph
with one edge together with its two (labelled) end vertices, and satisfies the property that a
graph G belongs to G iff all the blocks of G belong to G. Block-stable classes include classes
of graph specified by a finite list of forbidden minors that are all 2-connected, for instance,
planar graphs (Forbid(K5,K3,3)), series-parallel graphs (Forbid(K4)), and outerplanar graphs
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(Forbid(K4,K3,2)). For a block-stable graph class, (2.1) and (2.2) translates into equations
of EGFs in the labelled setting:

G(z) = exp(C(z)),

C•(z) = z exp(B′(C•(z))).

In particular this means that the generating function B(z) determines C(z) and consequently
G(z), too. In order to apply complex analytic methods we will assume that B(z) has a positive
radius of convergence that is sufficiently large in the following sense.

Definition 2.1. Let G be a block-stable graph class with the connected subclass C and the
2-connected subclass B such that the generating function B(z) has a positive radius of conver-
gence η.
G is called sub-critical, if

C•(ρ) < η,

where ρ denotes the radius of convergence of C(z).

Note that the implicit function theorem implies that C•(z) is regular for z = 0 has con-
sequently it has a positive radius of convergence ρ. Furthermore it is well known that the
equation for determining ρ (in the sub-critical case) is

ρ = y exp(−B′(y)),

where y = C•(ρ) is given by the equation 1 = yB′′(y). Hence, we have subcritiallity if and
only if ηB′′(η) > 1, compare with [4].

In particular we are in the sub-critial case if limz→η− B′′(z) = +∞.
It is also well known that C•(z) has a squareroot singularity at z = ρ:

C•(z) = g(z)− h(z)

√
1− z

ρ
,

where g(z) and h(z) represent non-zero analytic function in a neighborhood of z = ρ. If we
also assume that we are in the aperiodic case, that is, we have gn > 0 for all n (with at most
finitely many exceptions) then this implies that

gn ∼ cn−3/2ρ−nn!

for some constant c > 0, see [12, 13, 6]. For simplicity we will always assume for the proofs
that we are in the aperiodic case (in the periodic case we have to restrict to n ≡ 1 mod d for
some d > 1, which is reflected by the property that there are also squareroot singularities for
z = ρ exp(2πij/d), 1 ≤ j < d, however, all results are of the same kind).

Several well known graph classes are sub-critial. For expample, labelled trees, cacti-graphs,
outerplanar graphs and series-parallel graphs are sub-critical, see [4, 7]. However, the class of
labelled planar graphs is not sub-critical.

3 Results

As mentioned in the Introduction we restrict ourselves to the maximum block size, to the
diameter, and to the maximum degree.
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Theorem 3.1. Let M
(2)
n denote the maximum block size of a random connected graph in an

aperiodic sub-critical graph class. Then we have

EM (2)
n = O(log n).

Furthermore, if the limit lim bn+1/(nbn) exists and is positive then we have

P[M (2)
n ≤ k] ∼ exp (− exp(log n− f(k)))

uniformly for n, k →∞, where f(k) is a function with f(k) ∼ ck for some constant c > 0.

We note that we cannot expect in general a more precise theorem. For example in trees
the maximum block size equals 2 whereas in series-parallel graphs it is definitely of order
log n.

Theorem 3.2. Let Dn denote the diameter of a random connected aperiodic sub-critical graph
class. Then there exist two positive constants c1, c2 with

c1
√
n ≤ EDn ≤ c2

√
n log n.

This result is probably not best possible. We conjecture that there is a univeral limit law
for Dn/

√
n. However, this is already an open problem for series-parallel graphs.

Theorem 3.3. Let ∆n denote the maximum degree of a random connected aperiodic sub-
critical graph class. Then there exist two positive constants c1, c2 with

c1
log n

log log n
≤ E∆n ≤ c2 log n.

This result is best possible if we do not impose further conditions. For example, for
labelled trees the maximum degree is of order log n/ log log n, see [14], whereas for series-
parallel graphs it is of order log n, see [9].

4 Maximum Block Size

For every positive integer k let Bk the sub-class of 2-connected graphs of size ≤ k and Ck the
class of connected graphs, where all blocks have size ≤ k. Then the relation

C•k = Z · Set(B′k ◦ C•k),

translates to
C•k(z) = z exp(B′k(C•k(z))),

Hence, if ρk denotes the radius of convergence of C•k(z) then then we obtain (for sufficiently
large k)

C•k(z) = gk(z)− hk(z)
√

1− z

ρk

(for certain analytic functions gk and hk) and consequently

[zn]C•k(z) ∼ ckρ−nk n−3/2n!
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Thus, for fixed k we have, as n→∞,

P[M (2)
n ≤ k] =

[zn]C•k(z)

[zn]C•(z)
∼ ck
c0

(
ρ

ρk

)n
.

Actually it is not very difficult to prove that this relation holds uniform for n, k →∞, see [1].
The main idea is to start with a boots-trapping procedure to obtain uniform error estimates
and to apply the singularity analysis methods of Flajolet and Odlyzko [12], that provide
uniform error terms, too. (For the sake of shortness we omit the technical details.)

Therefore it remains to get asymptotics for ρk and ck. First we use the fact that B(z) is
analytic if z varies in a sufficiently small complex neighborhoud of y = C•(ρ). Hence it follow
that there exists γ < 1 with

B(z) = Bk(z) +O(γk)

uniformly in this neighborhood. Actually the same holds for B′(z) and B′′(z). Now the
equation for yk = C•(ρk) is

1 = ykB′k(yk), (4.1)

from which we get ρk = yk exp (−B′k(yk)). Recall that y = C•(ρ) satisfies 1 = yB′(y). Hence,
we obtain yk = y +O(γk) and consequently

ρk = ρ+O(γk).

Actually this also leads to ck = c0 +O(γk) and to

P[M (2)
n ≤ k] ∼

(
1 +O(γk)

)(
1 +O(γk)

)n
= exp

(
O(nγk)

)
.

In particular, if k ≥ log n/ log(1/γ) then

P[M (2)
n > k] = O

(
nγk

)
.

Thus, the expected value is bounded by

EM (2)
n =

∑
k≥0

P[M (2)
n > k]

≤ log n

log(1/γ)
+

∑
k≥logn/ log(1/γ)

O
(
nγk

)
= O(log n).

If the limit lim bn+1/(nbn) exists then we can be much more precise. Clearly, if τ denotes
the radius of convergence of B(z) then this limit equals τ−1. It also follows that

B(z) = Bk(z) + bk(z/τ)k,

where ck is a sequence with lim bk+1/bk = 1. (Of course, similiar relations hold for B′(z)
and B′′(z).) With the help of these information it follows (by boots-trapping) that yk =
y − dk(y/τ)k for a sequence dk with lim dk+1/dk = 1 consequently ρk = ρ + e′k(y/τ)k and
ck = c+ e′′k(y/τ)k for sequence e′k, e

′′
k with lim e′k+1/e

′
k = lim e′′k+1/e

′′
k = 1. This leads to

P[M (2)
n ≤ k] ∼ exp

(
−e′′′k (y/τ)kn

)
= exp(− exp(log n− k log(τ/y) + log e′′′k )),

where log e′′′k = o(k) as k →∞. This completes the proof of the Theorem 3.1.
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5 Diameter

The lower bound is quite easy to establish. Let Dn denote maximum number of blocks in
a path from the root to any other vertex, which is clearly a lower bound for the diameter.
Then we are precisely in the situation of determining the height of a special class of simply
generated trees, see [6].

More precisely, let ϕ(t) = exp(B′(t)). Then ϕ(t) is a power series with non-negative
coefficients with ϕ(0) > 0. Hence it defines a probability distribution on rooted trees. Set
y0(x) = x = x exp(B′(0)) and yk+1(x) = xϕ(yk(t)) = x exp(B′(yk(t))). Then yk(x) counts
those rooted graphs where all paths starting at the root pass ≤ k blocks. On the other hand
yk(x) corresponds to those simply generated trees of height ≤ k. Hence Dn has the same
distribution as the height Hn of these trees. By [11] it is known that the height in simply
generated trees satisfies EHn ∼ c1

√
n for a proper positive constant c1. Recall that ϕ(t)

satisfies the necessary conditions, since we are in the sub-critical case: ϕ(t) is analytic for the
critical point τ > 0 that is defined by τϕ′(τ) = ϕ(τ). In fact we have τ = C•(ρ) < η.

The proof of the upper bound is much more involved, however, we use again the tree
like structure of a connected graph G that is induced by the block decomposition of a vertex
rooted graph. Actually, for every block B we have a unique vertex that acts as a local root:
it is a cut vertex of G and has miminum distance to the root of G of all vertices in B. We
define the block height of B as the maximum distance from the local root in B. Furthermore
for any vertex v in G we denote by d(v) the sum of block-heights of those blocks that are
passed on a path from the root of G to v. Finally we define Dn as the maximum d(v) over
all vertices v of G of size n.

Let B′=k denote the set of rooted blocks of block-height k and Lh(z, u) the generating
function of rooted graphs, where z corresponds to the size and u to those vertices with
d(v) = h, that is, is describes the random variable Yn,h of the number vertices v with d(v) = h
in a graph of size n. The tree-like structure translates to the following recurrence relation:

Lh(z, u) = z exp

 ∑
1≤k≤h

B′=k (Lh−k(z, u))

 (h ≥ 1)

with L0(z, u) = zu. We simplify this equation by considering the expectations EYn,h. For-
mally this means that we take the derivative with respect to u and set u = 1. In particular
by setting Mh(z) = ∂

∂uLh(z, u)|u=1 we get

Mh(z) = z exp

 ∑
1≤k≤h

B′=k (C•(z))

 ∑
1≤k≤h

B′=k (C•(z))Mh−k(z).

Since we will be interested in upper bounds for EYn,h we replace this recurrence by

Mh(z) = z exp

∑
k≥1
B′=k (C•(z))

 ∑
1≤k≤h

B′′=k (C•(z))Mh−k(z)

= C•(z)
∑

1≤k≤h
B′′=k (C•(z))Mh−k(z). (5.1)

Inductively it follows that all coefficients of Mh(z) are larger or equal than the corresponding
ones of Mh(z) if we assume that M0(z) = M0(z) = z.
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Next we set M(z, v) =
∑

h≥0Mh(z)vk. Then (5.1) translates to

M(z, v) =
z

1− C•(z)
∑

k≥1 B′′=k (C•(z)) vk
.

If z = ρ then we have the singular equation 1 = C•(ρ)B′′(C•(ρ)). Consequently the denomi-
nator of M(ρ, v) vanishes for v = 1. The next step is to show that we have a polar singularity
of the function v 7→M(z, v) if z is close to ρ.

Clearly if d(v) = k then the block B has at least k vertices. Hence it follows that
B′′=k(y) = O(γk) for some γ < 1 uniformly for z in a sufficiently small complex neighborhood
N of y = C•(ρ). This implies that the function

v 7→
∑
k≥1
B′′=k (y) vk

is well defined for |v − 1| < ε and y ∈ N (for a suitably chosen ε > 0). Hence by the implicit
function theorem the equation

y
∑
k≥1
B′′=k (y) vk = 1 (5.2)

has a unique analytic solution v = β(y) in a complex neighborhood of y = C•(ρ) with the
properties β(C•(ρ)) = 1 and β′(C•(ρ)) 6= 0. Finally if we set α(z) = 1/β(C•(z)) then 1/α(z)
is the unique polar singulariy of v 7→ M(z, v) if z is close to ρ. Since C•(z) has a squareroot
singularity and β′(C•(ρ)) 6= 0 it follows that α(z) has a local expansion of the form

α(z) = 1− c′
√

1− z/ρ+O(|ρ− z|)

for some positive constant c′. It is also easy to check that 1/α(z) is the only singularity in
the dics |v| ≤ 1/|α(z)| + δ for some sufficiently small δ > 0. This follows from the fact that
the left hand side of (5.2) is a power series with non-negative coefficients and the aperiodicity
assumption.

Hence by a simple Cauchy integration it follows that

Mh(z) = C(z)α(z)h(1 +O(γk))

for some γ < 1 and a suitable function C(z) (that has a squareroot singularity, too).
Hence we are in a situation, where we can apply a slight generalization of [5]. It follows

that

[zn]Mh(z) ∼ c1kn−3/2ρ−n exp

(
−c2

k2

n

)
uniformly for k ≤ C

√
n log n (for an arbitrary constant C > 0), where c1 and c2 are positive

constants. Furthermore, by setting z = ρ(1− 1/n) we get the upper bound

[zn]Mh(z) ≤ z−nMh(z) = O

(
ρ−n exp

(
−c3

k√
n

))
.

for some positive constant c3 > 0. Since [zn]C•(z) ∼ cn−3/2ρ−n it follows that

EYn,h ≤

 c4k exp
(
−c2 k

2

n

)
for k ≤ C

√
n log n,

c4n
3/2 exp

(
−c3 k√

n

)
for k > C

√
n log n
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and consequently

∑
`≥h

EYn,` ≤

 c5n exp
(
−c2 k

2

n

)
for k ≤ C

√
n log n,

c5n
3/2 exp

(
−c3 k√

n

)
for k > C

√
n log n,

where C has to be chosen sufficiently large. Recall that Zn,h =
∑

`≥h Yn,` denotes the number

of vertices v with d(v) ≥ h.
Finally we use the property that Dn > h if and only if Zn,h > 0. Hence, by applying the

first moment method we obtain for every λ > 0

EDn =
∑
h≥0

P[Dn > h]

=
∑
h≥0

P[Zn,h > 0]

≤ λ
√
n log n+

∑
h≥λ
√
n logn

EZn,h

≤ λ
√
n log n+ c6n exp

(
−c2λ2 log n

)
.

Consequently, by setting λ = c
−1/2
2 this leads to

EDn = O
(√

n log n
)
.

and completes the proof since the diameter is upper bounded by 2Dn.

6 Maximum Degree

In order to prove the lower bound we use the concept of Boltzmann sampling. In par-
ticular we fix z = ρ and sample rooted connected graphs G with probability distribution
P[G] = ρ|G|/(|G|!C•(ρ)). An important feature of this sampling is that conditioning on the
size leads to uniform distribution (that is, the distribution we are interested in). Furthermore,
the Boltzmann distribution is compatible with the combinatorial (block) decomposition. In
particular one can sample a connected graph by a recursive procedure and by using indepen-
dent samples of 2-connected components (again according to the corresponding Boltzmann
distribution), for details see [10].

Instead of the maximum degree we will consider the maximum number of blocks that are
attached to a cut vertex (when we are looking at the tree-like block decomposition of rooted
graphs). This random variable will be denoted by ∆ and is obviously a lower bound for the
maximum degree.

Let (pk) be the distribution of the number of blocks that are attached to the root in
Boltzmann sampled connected graphs. Then we have

pk =
ρB′(C•(ρ))k

k!C•(ρ)

Next let E1 denote the event that the number of vertices of G equals n and E2 the event
that the number of blocks is larger than κn (where κ > 0 will be chosen sufficiently small).
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It is well known that P[E1] ∼ c1n
−3/2 for a proper constant c1 > 0. Furthermore, since we

know that (conditioned on E1) the number of blocks satisfies a central limit theorem with
asymptotically linear mean and variance it follows that we can choose κ > 0 in a way that
P[E2|E1] ≥ 1 − n−2. Note that this also implies P[E1 ∩ E2] = P[E2|E1]P[E1] ≥ c2n

−3/2.
Furthermore, for every cut vertex v let Xv the indicator function that there are at least
c log n/ log logn blocks attached to v (for some positive constant c < 1), and set X =

∑
Xv,

where the sum it taken over all cut vertices v of G. Obviously, if X > 0 then ∆(G) ≥ c log n.
Hence we obtain

P[∆(G) < c log n/ log log n|E1] ≤ P[X = 0|E1]

= P[(X = 0) ∩ Ec2|E1] + P[(X = 0) ∩ E2|E1]

≤ n−2 + P[(X = 0)|E1 ∩ E2]

≤ n−2 +
P[(X = 0)|E2]

P[E1 ∩ E2]

≤ n−2 + c3n
3/2P[(X = 0)|E2].

Finally we note that X is binomially distributed with ≥ κn terms and probability

p =
∑

k>c logn

pk ∼ c4n−c+O(1/ log logn)

Hence the probability P[(X = 0)|E2] is bounded by

P[(X = 0)|E2] ≤
(

1− c4n−c+O(1/ log logn)
)κn
≤ exp

(
−c4κn1−c+O(1/ log logn)

)
This proves that with high probability (≥ 1− 2n−2) there is a cut vertex that is attached to
at least c log n/ log log n blocks. Of course this also implies that

E∆n ≥ c
log n

log logn
(1− 2n−2)

and completes the proof of the lower bound.
The proof for the upper bound for the maximum degree is again an application of the first

moment method. For this purpose let Yn,k denote (now) the number of vertices of degree k in
a (connected) graph of size n. Then EYn,k = npn,k, where pn,k denotes the probability that
a given vertex has degree k (here we use the assumption that we are dealing with labelled
graphs). Without loss of generality we can assume that pn,k denote that probability that the
root of rooted graph of size n has degree k.

Now let B′(z, u) denote the double generating function, where the exponent of u takes
care of the root degree. Then the corresponding function C•(z, u) is given by

C•(z, u) = z exp
(
B′(C•(z), u)

)
and pn,k is given by

pn,k =
[znuk] C•(z, u)

[zn] C•(z)
.
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Since the degree of the root vertex is bounded by the total number of vertices we have
B′(z, u) ≤ B′(zu) for positive real z and u. Hence, if z is close to C•(ρ) then B′(z, u) converges
for some u0 > 1. This property can be used to obtain an upper bound for the coefficient

[znuk] C•(z, u) ≤ [zn−1]u−k0 exp
(
B′(C•(z), u0)

)
.

Since C•(z) has a squareroot singularity the same holds fo the function z 7→ exp (B′(C•(z), u0))
with implies that

[zn] exp
(
B′(C•(z), u0)

)
∼ c(u0)n−3/2ρ−n

for some constant c(u0) > 0. Putting these estimates together it follows that

pn,k = O(u−k0 )

uniformly in n and k.
Finally we set Zn,k =

∑
`>k Yn,` and observe first that the ∆n > k if and only if Zn,k > 0

and second that the expected value of Zn,k is bounded by

EZn,k = O(nu−k0 ).

Consequently we obtain for k0 = blog n/ log u0c

E∆n =
∑
k≥0

P[∆n > k] =
∑
k≥0

P[Zn,k > 0]

≤ k0 +
∑
k≥k0

EZn,k ≤ k0 +O(1)

= O(log n).
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