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Abstract

We consider compact group generalizations T (n) of the Thue-Morse sequence and
prove that the subsequence T (n2) is uniformly distributed with respect to a measure
ν that is absolutely continuous with respect to the Haar measure. The proof is based
on a proper generalization of the Fourier based method of Mauduit and Rivat in their
study of the sum-of-digits function of squares to group representations.

1 Introduction

The Thue-Morse sequence

(tn)n>0 = (01101001100101101001011001101001 . . .)

has been discovered several times in the literature. (For a survey see [12].) There are
also several different definitions. For example, we have

tn = s2(n) mod 2,

where s2(n) denotes the number of 1’s in the binary expansion of n. Alternatively, we
can use recursive definitions like t0 = 0, t2k = tk, t2k+1 = 1 − tk or identify it with a
fixed point of the morphism µ : {0, 1}∗ → {0, 1}∗ induced by µ(0) = 01 and µ(1) = 10
(see [7]). In any case, the binary expansion of n governs the behavior of tn.

The Thue-Morse sequence has many interesting properties. For example, it is cube-
free (that is, there is no subword of the form www) and every subword w that occurs
once appears infinitely often with bounded gaps (although it is non-periodic). It is also
an automatic sequence (see [4] and Section 3).

By definition it is clear that the Thue-Morse sequence has the property that the digits
0 and 1 appear with asymptotic frequency 1/2. Interestingly, this property persists for
subsequences like linear progressions (see [8]). It has been a long standing conjecture
(attributed to Gelfond [8]) that tp, p prime, and tn2 have the same property. Recently
Mauduit and Rivat [13, 14] could settle these questions.

The purpose of this paper is to establish a distribution result for the quadratic sub-
sequence T (n2), where T (n) is a generalized Thue-Morse sequence of the following type.
Let H be a compact group that satisfies the Hausdorff separation axiom, q > 2, and
g0, g1, . . . , gq−1 ∈ H with g0 = e the identity element. Furthermore, let G 6 H be the
closure of the subgroup generated by g0, g1, . . . , gq−1, i.e., G is the smallest closed set
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in H that contains the subgroup generated by g0, g1, . . . , gq−1 (note, that this is again a
group). Suppose that

n = εℓ−1(n)qℓ−1 + εℓ−2(n)qℓ−2 + · · · + ε1(n)q + ε0(n)

= (εℓ−1(n)εℓ−2(n) . . . ε1(n)ε0(n))q

denotes the q-ary digital expansion of n and define

T (n) = gε0(n)gε1(n) · · · gεℓ−1(n)
. (1)

If G = Z/2Z (with + as the group operation), q = 2, and g0 = 0, g1 = 1, then
T (n) = s2(n) mod 2 = tn. Thus, T (n) is a proper generalization of the Thue-Morse
sequence. Alternatively T (n) can be seen as a completely q-multiplicative G-valued
function which is defined by the property

T (j + qn) = T (j)T (n)

for n > 0 and 0 6 j < q. The sequence T (n) is also an example of a so-called chained
sequence with a transition matrix that is not contractive (see [1] and [2]).

It is relatively easy to show (see Theorem 2) that the sequence (T (n))n>0 is uniformly
distributed in G, that is, the normalized counting measure induced by T (n), n < N ,
converges weakly to the (normalized) Haar measure µ on G:1

1

N

N−1
∑

n=0

δT (n) → µ.

Our main result deals with the question whether this remains true if T (n) is replaced
by the subsequence of squares T (n2). Actually, this sequence is not necessarily uniformly
distributed. Nevertheless, there is always a measure ν such that T (n2) is ν-uniformly
distributed.

Theorem 1. Let T (n) be defined by (1). Then there exists a positive integer m depending
on g0 = e, g1, . . . , gq−1 and q with m | q − 1 such that the following holds.

The group2 U = cl({T (mn) : n > 0}) is a normal subgroup of G of index m with
cosets guU = cl({T (mn + u) : n > 0}), 0 6 u < m. With the help of these cosets we
define

dν =
m−1
∑

u=0

1guU · Q(u,m) dµ,

where Q(u,m) = #{0 6 n < m : n2 ≡ u mod m} and µ denotes the Haar measure on G.
Then the sequence (T (n2))n>0 is ν-uniformly distributed in G, that is,

1

N

N−1
∑

n=0

δT (n2) → ν.

Remark 1. The integer m that we will call characteristic integer of g0, . . . , gq−1 and q
(see Section 2) is defined as the largest integer such that m | q − 1 and such that there
exists a one-dimensional representation D of G with

D(gu) = e
(

− u

m

)

for all u ∈ {0, 1, . . . , q − 1}.

1δx denotes the point measure concentrated at x.
2If A ⊆ G, then cl(A) denotes the topological closure of A in G.
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Note also that if m = 1 or m = 2 then ν = µ. Hence, if m 6 2 then (T (n2))n>0 is
uniformly distributed in G. In particular if q = 2 or q = 3 then m 6 2. Furthermore it
is easy to observe that ν 6= µ for m > 2, that is, T (n2) is not uniformly distributed in
these cases.

Remark 2. Theorem 1 is a generalization of the results of Mauduit and Rivat [14].
Suppose first that H = Z/rZ and gj = j mod r, 0 6 j < q. Then T (n) = sq(n) mod r
(sq(n) = εℓ−1(n)+ εℓ−2(n)+ · · ·+ ε1(n)+ ε0(n) denotes the q-ary sum-of-digits function)
and Theorem 1 translates into Théorème 3 from [14] on the distribution of sq(n

2) modulo
r (the characteristic integer is given by (q − 1, r), see Section 3).

Similarly, if H = R/Z and gj = αj mod 1, 0 6 j < q for some irrational number α
then T (n) = αsq(n) mod 1. It is easy to observe that G = H = R/Z. Hence, Theorem 1
implies that (αsq(n

2))n>0 is uniformly distributed modulo 1 (for example, one can use
the fact that H is connected, see Remark 4); this is Théorème 2 from [14].

Remark 3. It is easy to derive some corollaries from Theorem 1. For example we have

lim
N→∞

1

N
#{0 6 n < N : T (n2) ∈ guU} =

Q(u,m)

m
,

for all 0 6 u < q.
A similar idea applies to compact homogeneous spaces X. Let H be the group acting

on X and suppose that g0, . . . , gq−1 are chosen in a way that G = H. Then it follows
that for every x0 ∈ X the sequence xn = T (n) ·x0 is uniformly distributed on X and the
distribution behavior of xn2 can be determined, too. For example, with the help of this
approach we can construct uniformly distributed sequences on the sphere Sd.

Remark 4. It follows from the proof of Theorem 1 that the Radon-Nikodym derivative
f(g) = Q(u,m) (for g ∈ guU) is continuous, which implies that G cannot be connected
if (T (n2))n>0 is not uniformly distributed. Conversely if G is connected then (T (n2))n>0

is definitely uniformly distributed. Similarly, if the commutator subgroup of G (that is,
the subgroup generated by the elements xyx−1y−1) coincides with G, then (T (n2))n>0

is also uniformly distributed (note, that the commutator subgroup is always a subgroup
of U).

Remark 5. It would be also of interest to consider the subsequence (T (p)), where p runs
over all primes. For example, an equidistribution result holds for tp (see [13]). In order
to handle this case one would need estimates of the form

∑

06h<qλ

‖Fλ(h)‖ ≪ qηλ (2)

for some η < 1/2, where Fλ(h) is the Fourier term defined in Section 2. By using the
Cauchy-Schwarz inequality it follows directly that (2) holds for η = 1/2. However, it is
not clear how to derive such a general estimate for η < 1/2. Actually, this is one of the
key estimates in [13], where the sum-of-digits function of primes is discussed.

Remark 6. If g0 6= e, then the sequence (T (n))n>0 is not q-multiplicative any more. This
would not be essential for the proof of the main theorem since it is possible to reduce the
function T (n) to the function Tλ(n) defined in Section 4.2, which is “almost” completely
q-multiplicative even if g0 6= e (it satisfies Tλ(j + qn) = gjTλ−1(n) for all 0 6 j < q and
n > 0).

However, the condition g0 = e is important for the proof of Lemma 2 and Lemma 4.
It is only possible to avoid this condition if one assumes instead that the group G is equal
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to the closure of the subgroup generated by g−1
i gj , 0 6 i, j < q and that there exists no

one-dimensional representation D satisfying

D(gu) = e(−tu)D(g0)

for all 0 6 u < q with t(q − 1) ∈ Z and D(g0) 6= 1. However, for the sake of brevity we
use the assumption g0 = e in the main theorem, since this yields a considerably simpler
presentation of the proof.

The proof of Theorem 1 is based on a proper generalization of the Fourier-based
method of Mauduit and Rivat [13, 14] to group representations. In Section 2 we use rep-
resentation theory to prove uniform distribution of the sequence (T (n))n>0 and develop
the theory to discuss the case of linear subsequences (T (an + b))n>0 (see Theorem 3).
Although linear subsequences are not the main focus of this paper the analysis of them
is also useful for the analysis of the quadratic subsequence (T (n2))n>0. Interestingly, the
characteristic integer m appears there in a quite natural way. In Section 3 we deal with
finite groups G in more detail and also show that there is a close relation of T (n) to so-
called automatic sequences. Actually, this kind of application was the main motivation
of the present study. We introduce the notion of invertible automatic sequences (un)n>0

and show that the frequencies of the letters for the quadratic subsequence (un2)n>0 exist.
The technical part of the proof of Theorem 1 is presented in Sections 4 and 5, where
we first establish some auxiliary results (like matrix generalizations of the techniques
used in [14]) and then collect all necessary facts to complete the proof. A final Section 6
discusses possible generalizations and extensions.

Acknowledgment. The authors are very grateful to Christian Mauduit for several hints
and comments to improve the presentation of the manuscript.

2 Group Representations

A unitary group representation D of a compact group is a continuous homomorphism
D : G → Ud for some d > 1, where Ud denotes the group of unitary d × d matrices
(over C). A representation is irreducible if there is no proper subspace W of Cd with
D(x)W ⊆ W for all x ∈ G. The trivial representation that maps all elements to 1 will
be denoted by D0. The dimension d will be also called the dimension (or degree) of D.

Irreducible and unitary group representations can be used to prove uniform distribu-
tion of a sequence (xn) in a compact group.

Lemma 1. Let G be a compact group and ν a regular normed Borel measure in G. Then
a sequence (xn)n>0 is ν-uniformly distributed in G, that is, 1

N

∑N−1
n=0 δxn → ν, if and

only if

lim
N→∞

1

N

N−1
∑

n=0

D(xn) =

∫

G
D dν

holds for all irreducible unitary representations D of G. In particular, (xn)n>0 is uni-
formly distributed in G (with respect to the Haar measure µ) if and only if

lim
N→∞

1

N

N−1
∑

n=0

D(xn) = 0

holds for all irreducible and unitary representations D 6= D0.

4



Proof. A proof of this lemma can be found for example in [10, Theorem 1.3 and Section
4.3].

We will first present a proof that a sequence T (n) of the form (1) is uniformly dis-
tributed in G. Let D be a representation of G and let

ΨD =
∑

06u<q

D(gu)

denote the sum of the matrices D(g0), . . . ,D(gq−1).
We use the following notations for matrices. If A is a matrix, then AH is the Hermitian

transpose, ρ(A) denotes the spectral radius and tr(A) the trace of A. We use ‖ . ‖2 for

the spectral norm (‖A‖2 =
√

ρ(AAH)) and ‖A‖
F

for the Frobenius norm (i.e. ‖A‖2
F

=
∑

i,j |ai j |2 = tr(AAH)).

Lemma 2. Let G be a compact group that is the closure of the subgroup generated by
the elements g0, g1, . . . , gq−1, where g0 = e. Suppose that D 6= D0 is an irreducible and
unitary representation of G. Then

‖ΨD‖2 < q. (3)

Proof. Suppose that y ∈ Cd is a non-zero vector. Then ‖D(x)y‖2 = ‖y‖2 for all x ∈ G,
and consequently

‖ΨDy‖2 =

∥

∥

∥

∥

∥

∥

∑

06u<q

D(gu)y

∥

∥

∥

∥

∥

∥

2

6
∑

06u<q

‖D(gu)y‖2 = q ‖y‖2 . (4)

Hence ‖ΨD‖2 6 q. Suppose now that ‖ΨD‖2 = q, that is, there exists a non-zero vector
y with ‖ΨDy‖2 = q ‖y‖2. We have

‖ΨDy‖2
2 =

∑

06u,v<q

〈D(gu)y,D(gv)y〉 = q2 〈y,y〉 .

The Cauchy-Schwarz inequality implies

|〈D(gu)y,D(gv)y〉| 6 ‖D(gu)y‖2 ‖D(gv)y‖2 = ‖y‖2
2 . (5)

Since 〈D(g0)y,D(g0)y〉 = 〈y,y〉, we have that 〈D(gu)y,D(gv)y〉 = 〈y, y〉 for all 0 6

u, v < q and there has to be equality in (5). It follows that D(gu)y and D(gv)y have to
be linear dependent. Since D(g0)y = y, we obtain

D(gu)y = y (6)

for all u = 0, 1, . . . , q−1. Consequently the one-dimensional space W = span(y) satisfies
D(x)W ⊆ W for all x ∈ G. (Recall that G is the closure of the subgroup generated by
g0, . . . , gq−1.) This contradicts the assumption that D is irreducible provided that d > 2.
Thus, for all irreducible representations of dimension d > 2 we actually have ‖ΨD‖2 < q.

Finally suppose that d = 1, that is, we are considering characters. Then (6) says that
D(gu) = 1 for all u = 0, 1, . . . , q− 1. Since G is the closure of the subgroup generated by
the elements g0, g1, . . . , gq−1 this would imply D(x) = 1 for all x ∈ G which contradicts
the assumption D 6= D0.
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With the help of Lemma 2 it is easy to prove that the sequence (T (n))n>0 is uniformly
distributed in G (compare also with [2]).

Theorem 2. Let q > 2 and g0, g1, . . . , gq−1 with g0 = e be elements of a compact
group and G the closure of the subgroup generated by g0, g1, . . . , gq−1. Then the sequence
(T (n))n>0 defined by (1) is uniformly distributed in G with respect to its Haar measure
µ.

Proof. Let D 6= D0 be an irreducible and unitary representation of G and recall that
T (n) = gε0gε1 · · · gεℓ−1

, where εℓ−1εℓ−2 . . . ε1ε0 denotes the q-ary digital expansion of n.

Let N > 1 be defined by N =
∑λ

ν=0 nνq
ν with nλ 6= 0. We begin with the following

identity

∑

06n<N

D(T (n)) =
λ
∑

ν=0

qν−1
∑

n=0

nν−1
∑

εν=0

D(T (n + ενqν + nν+1q
ν+1 + · · · + nλqλ))

=
λ
∑

ν=0

(

qν−1
∑

n=0

D(T (n))

)(

nν−1
∑

εν=0

D(T (εν))

)

D(gnν+1) · · ·D(gnλ
).

Since D is a unitary representation and the 2-norm is submultiplicative, we obtain

∥

∥

∥

∥

∥

∥

∑

06n<N

D(T (n))

∥

∥

∥

∥

∥

∥

2

6

λ
∑

ν=0

nν−1
∑

εν=0

‖D(T (εν))‖2

∥

∥

∥

∥

∥

qν−1
∑

n=0

D(T (n))

∥

∥

∥

∥

∥

2

6 q

λ
∑

ν=0

∥

∥

∥

∥

∥

qν−1
∑

n=0

D(T (n))

∥

∥

∥

∥

∥

2

.

By induction it follows from the definition of T (n) that
∑qν−1

n=0 D(T (n)) = (ΨD)ν .
Lemma 2 implies that we have ‖ΨD‖2 = qσ, where σ < 1. We finally get3

∥

∥

∥

∥

∥

∥

1

N

∑

06n<N

D(T (n))

∥

∥

∥

∥

∥

∥

2

6
q

N

λ
∑

ν=0

‖ΨD‖ν
2 ≪ qσλ

N
→ 0

as N → ∞. Applying Lemma 1, this proves the theorem.

It is an interesting problem to generalize Theorem 2 to special subsequences of T (n),
for example to linear subsequences T (an + b) or (as it is the main goal of this paper)
to the subsequence T (n2) of squares. First we present a result for linear subsequences.
Let D be an irreducible representation of G with degree d. In what follows, we need the
function

ΨD(t) =
∑

06u<q

e(tu)D(gu),

and the Fourier terms (defined for λ > 0)

Fλ(h) =
1

qλ

∑

06u<qλ

e

(

−hu

qλ

)

D(T (u)) =
1

qλ
ΨD

(

− h

qλ

)

ΨD

(

− h

qλ−1

)

· · ·ΨD

(

−h

q

)

.

3The symbol f ≪ g means that there exists a constant c such that f 6 cg.
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The product representation follows from the fact that

Fλ(h) =
1

qλ

∑

06j<q

∑

06u<qλ−1

e

(

−h(uq + j)

qλ

)

D(T (uq + j))

=
1

qλ

∑

06j<q

e

(

−hj

qλ

)

D(gj)
∑

06u<qλ−1

e

(

− hu

qλ−1

)

D(T (u))

=
1

q
ΨD

(

− h

qλ

)

Fλ−1(h), (7)

and that F0(h) = Id, where Id is the identity matrix of dimension d. (Note, that T (uq +
j) = gjT (u) for all 0 6 j < q and that g0 is the identity element.)

If the representation D is one-dimensional and satisfies

D(gu) = e

(

− ur

q − 1

)

for 0 6 u < q, then we see that D acts on the set {T (n) : n > 0} in a special way. Indeed,
since sq(n) ≡ n mod q − 1, we have

D(T (n)) = e

(

−sq(n)r

q − 1

)

= e

(

− nr

q − 1

)

.

Actually, these kinds of representations are crucial for the description of the distribution
of T (an + b) and T (n2).

Definition 1. Let m be the largest integer such that m | q−1 and such that there exists
a one-dimensional representation D of G with

D(gu) = e
(

− u

m

)

for all u ∈ {0, 1, . . . , q − 1}. (8)

We will call this integer characteristic integer of g0, . . . , gq−1 and q.

Observe that this characteristic integer m always exists since the trivial representation
fulfills (8) with m = 1.

The next Lemma collects some facts of this characteristic integer.

Lemma 3. Let m be the characteristic integer of g0, . . . , gq−1 and q. Then there exist
m representations D0, . . . ,Dm−1 of G with the following properties:

(i) Let 0 6 k < m. Then

Dk(gu) = e

(

− k

m
u

)

for all u ∈ {0, 1, . . . , q − 1}.

(ii) All other representations of G do not satisfy D(g1) = e(−t) and D(gu) = D(g1)
u

for all 0 6 u < q with (q − 1) t ∈ Z.

(iii) The kernel ker D1 = {g ∈ G : D1(g) = 1} is a normal subgroup of G and the index
of ker D1 in G is equal to m.

(iv) The m cosets of ker D1 are given by

gv ker D1 = cl ({T (mn + v) : n > 0}) for all v ∈ {0, 1, . . . ,m − 1}.
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Proof. Let D be a one-dimensional representation of G that satisfies (8) and set

Dk(g) = D(g)k

for all g ∈ G and for all 0 6 k < m. Then D0 (consistent with the already defined
notation) is the trivial representation and the representations Dk satisfy the relation
stated in (i) for all 0 6 k < m. (Note, that the functions Dk are indeed representations
coming from the (iterated) tensor product of the representation D.) Next, we show that
there are no other representations of G with this property. Assume, that there exists a
representation D̃ 6= Dk for all 0 6 k < m such that

D̃(gu) = e
(

− r

m′h
)

for all 0 6 u < q,

and for some integers m′ > 1, r > 0 with (r,m′) = 1 and m′ | q − 1. Then (m,m′) < m′

and there exist non-negative integers x and y such that xm′ + yrm ≡ (m,m′) mod mm′

(note, that (rm,m′) = (m,m′)). If we set

χ(g) = Dx
1 (g)D̃y(g),

then χ is a representation satisfying

χ(gu) = e
(

−u
( x

m
+

yr

m′

))

= e

(

−u
m′x + yrm

mm′

)

= e
(

− u

m̄

)

,

for all 0 6 u < q, where m̄ = lcm(m,m′). Since m̄ = mm′/(m,m′) > m, this is impos-
sible by the definition of m. Thus, we have shown (ii). The kernel of a representation
is clearly a normal subgroup and the factor group G/ ker D1 is isomorph to the image of
D1. Let 0 6 v < m. Then we have

D1(T (mn + v)) = e

(

−sq(mn + v)

m

)

= e

(

−mn + v

m

)

= e
(

− v

m

)

.

We see that
D1 (cl ({T (mn + v) : n > 0})) = e

(

− v

m

)

.

Since D1 is continuous and (T (n))n>0 is dense in G (recall, that the sequence (T (n))n>0

is uniformly distributed in G), the family cl({T (mn + v) : n > 0}), 0 6 v < m is a
partition of G. We obtain that G/ ker D1 is isomorph to the m-th roots of unity (and
hence to Z/mZ). Moreover, we see that ker D1 = cl({T (mn) : n > 0}) and m is the
index of ker D1 in G. Since

D1(g
−1
v {T (mn + v) : n > 0}) = 1,

we finally have that gv ker D1 = cl({T (mn + v) : n > 0}), v = 0, . . . ,m − 1 are the m
different cosets of ker D1.

Lemma 4. Let G be a compact group that is the closure of the subgroup generated by the
elements g0 = e, g1, . . . , gq−1. Suppose that D 6∈ {D0, . . . ,Dm−1} is an irreducible and
unitary representation of G. Then there exists a constant c > 0 such that

max
h∈Z

‖Fλ(h)‖2 ≪ q−cλ.
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Remark 7. If D = Dk for some 0 6 k < m, then |Fλ(h)| = q−λϕqλ(h/qλ − k/m). (For
the definition and the properties of ϕqλ see Lemma 7.) In particular, this implies that

lim
λ→∞

max
h∈Z

|Fλ(h)| 6= 0,

and Lemma 4 cannot hold true in this case.

Proof. The proof is very similar to the proof of Lemma 2. We begin with considering
the function ΨD(t) for a fixed real number t. Let us first assume that D has dimension d
greater than 1. It is clear that ‖ΨD(t)‖2 6 q. Moreover, if ‖ΨD(t)‖2 = q then there exists
a non-zero vector y with ‖ΨD(t)y‖2 = q ‖y‖2. By the same reasoning as in Lemma 2,
we obtain that

e(ut)D(gu)y = D(g0)y = y (9)

for all u = 0, 1, . . . , q − 1. This contradicts the assumption that D is irreducible (we
assumed that n > 2). Thus, for all irreducible representations of dimension d > 2 we
have ‖ΨD(t)‖2 < q. If the dimension of D is equal to 1, then ‖ΨD(t)‖2 = q means
e(ut)D(gu) = 1 for all u = 0, 1, . . . , q − 1 which is equivalent to D(g1) = e(−t) and
D(gu) = D(g1)

u. Hence, if this is not true, then we also get ‖ΨD(t)‖2 < q. If D(g1) =
e(−t) and D(gu) = D(g1)

u, then (q − 1)t 6∈ Z (recall that D 6∈ {D0, . . . ,Dm−1}) and we
obtain

‖ΨD(t)ΨD(qt)‖2 < q2.

Indeed, as in the considerations above, the condition ‖ΨD(t)ΨD(qt)‖2 = q2 would imply
D(g1) = e(−t) = e(−qt) which contradicts the assumption (q − 1)t 6∈ Z.

Now we can finish the proof of Lemma 4. Since the spectral norm ‖ΨD(t)‖2 is a
submultiplicative norm and a continuous function in t, we obtain

sup
t∈R

‖ΨD(t)ΨD(qt)‖2 < q2.

Using the product representation of Fλ (see (7)), this implies that there exists a constant
c > 0 such that

max
h∈Z

‖Fλ(h)‖2 ≪ q−cλ.

Theorem 3. Let q > 2, a > 1 and b > 0 be integers and m the characteristic integer
of g0, . . . , gq−1 and q. The sequence (T (an + b))n>0 is uniformly distributed in G (with
respect to the Haar measure) if and only if (a,m) = 1.

If (a,m) > 1, then there exists a normal subgroup U (with index (a,m) in G) such
that (T (an+b))n>0 is ν-uniformly distributed on a coset of U , where ν is the (translated)
Haar measure of U .

Proof. Let D be an irreducible and unitary representation of G with D 6= Dk for all
0 6 k < m. Furthermore, let the integers λ and β be defined by qλ−1 6 N < qλ and
a 6 qβ−1. Then we have (for sufficiently large N) that aN + b < qλ+β. We can write

∑

06n<N

D(T (an + b))

=
∑

06u<qν+β

∑

06n<N

D(T (u)) · 1

qλ+β

∑

06h<qλ+β

e

(

h(an + b − u)

qλ+β

)

=
∑

06h<qλ+β

Fλ+β(h)
∑

06n<N

e

(

h(an + b)

qλ+β

)

.

9



The exponential sum can be easily calculated and we obtain
∥

∥

∥

∥

∥

∥

∑

06n<N

D(T (an + b))

∥

∥

∥

∥

∥

∥

2

≪
∑

06h<qλ+β

‖Fλ+β(h)‖2 · min



N,
1

∣

∣

∣
sin πha

qλ+β

∣

∣

∣



 .

Since D 6= Dk, Lemma 4 implies that ‖Fλ+β(h)‖2 ≪ q−c(λ+β) for some c > 0. We get
∥

∥

∥

∥

∥

∥

∑

06n<N

D(T (an + b))

∥

∥

∥

∥

∥

∥

2

≪ q−c(λ+β)
∑

06h<qλ+β

min



N,
1

∣

∣

∣
sin πha

qλ+β

∣

∣

∣



 .

For the sum in the last expression, one can apply [13, Lemma 6] to obtain
∥

∥

∥

∥

∥

∥

∑

06n<N

D(T (an + b))

∥

∥

∥

∥

∥

∥

2

≪ q−c(λ+β)
(

N + (λ + β)qλ+β
)

≪ λq(1−c)λ ≪ N1−σ

for an appropriately chosen constant σ > 0. Thus, we have

lim
N→∞

1

N

N−1
∑

n=0

D(T (an + b)) = 0.

Next, we consider the representations Dk, 0 6 k < m. We can use the fact that
D(T (n)) = e(−nk/m) for all n > 0 and obtain

1

N

N−1
∑

n=0

Dk(T (an + b)) =
1

N

N−1
∑

n=0

e

(

−k(an + b)

m

)

= e

(

−kb

m

)

1

N

N−1
∑

n=0

e

(

−kan

m

)

.

Set d = m/(a,m). If k ≡ 0 mod d (this is equivalent to m | ak), then we have

1

N

N−1
∑

n=0

e

(

−kan

m

)

= 1.

If k 6≡ 0 mod d, we obtain

1

N

∣

∣

∣

∣

∣

N−1
∑

n=0

Dk(T (an + b))

∣

∣

∣

∣

∣

=
1

N

∣

∣

∣

∣

∣

N−1
∑

n=0

e

(

−kan

m

)

∣

∣

∣

∣

∣

=
1

N

∣

∣

∣

∣

sin(πNka/m)

sin(πka/m)

∣

∣

∣

∣

→ 0,

as n goes to infinity. Thus we obtain for 0 6 k < m that

lim
N→∞

1

N

N−1
∑

n=0

Dk(T (an + b)) =

{

e
(

−kb
m

)

, if k ≡ 0 mod d,

0, otherwise.

Note, that d = m if and only if (a,m) = 1. Thus, we just have shown that all irreducible
and unitary representations satisfy the necessary and sufficient condition for (T (an +
b))n>0 to be uniformly distributed in G if and only if (a,m) = 1 (see Lemma 1).

In order to complete the proof of Theorem 3, we have to deal with the case (a,m) > 1.
We define the function f for all g ∈ G by

f(g) = 1 + e

(

db

m

)

Dd(g) + e

(

2db

m

)

D2d(g) + · · · + e

(

(m − d)b

m

)

Dm−d(g).

10



It is a real-valued positive function on G. To see this, choose an element g ∈ {T ((m,a)n+
b′) : n > 0}, where 0 6 b′ < (m,a). We can write

f(g) =

(m,a)−1
∑

ℓ=0

e

(

ℓdb

m

)

Dℓd(g)

=

(m,a)−1
∑

ℓ=0

e

(

ℓdb

m
− ℓd((m,a)n + b′)

m

)

=

(a,m)−1
∑

k=0

e

(

ℓ(b − b′)
(a,m)

)

.

Since (T (n))n>0 is uniformly distributed in G with respect to the Haar measure, we
have that (T (n))n>0 is dense in G. Set U1 = cl({T ((m,a)n + b′) : n > 0, 0 6 b′ <
(a,m), b′ ≡ b mod (m,a)}) and U2 = cl({T ((m,a)n + b′) : n > 0, 0 6 b′ < (a,m), b′ 6≡
b mod (m,a)}). Then we have G = U1 ∪ U2 and

f(g) =

{

(a,m), if g ∈ U1,

0, otherwise.

This proves the claim that f is positive. (Moreover, since f is continuous, we see that
the group has to have more than one component in this case.) Using this function, we
define the measure ν by4

dν = fdµ.

In what follows, we show that the sequence (T (an + b))n>0 is ν-uniformly distributed
in G. Let us consider a complete set of pairwise inequivalent irreducible unitary rep-
resentations Dα, α ∈ A, where A is some index set. Put eα

ij(g) =
√

nαdα
ij(g), where

Dα = (dij)16i,j6nα . It follows from representation theory that the set {eα
ij} forms

a complete orthonormal system in the Hilbert space L2(G) with the scalar product
〈f, g〉 =

∫

G fgdµ. We obtain for Dk, k ≡ 0 mod d that

∫

G
Dkfdµ =

(m,a)−1
∑

ℓ=0

e

(

ℓdb

m

)

〈

Dk,Dℓd

〉

= e

(

−kb

m

)

.

For all other representations Dα = (dα
ij)16i,j6nα , we get

∫

G
dα

ijfdµ =

(m,a)−1
∑

ℓ=0

e

(

ℓdb

m

)

〈

dα
ij ,Dℓd

〉

= 0.

Lemma 1 implies that (T (an + b))n>0 is ν-uniformly distributed in G. If we set U :=
ker Dd, then U is a normal subgroup of G (with index (m,a) in G). Similar to the proof
of Lemma 3, one can show that

U = cl ({T ((m,a)n) : n > 0})

and U1 = T (b)−1U , that is, U1 is a coset of U . Since the support of ν is U1, we have that
(T (an + b))n>0 is dense in U1. If we define the measure ν̃ on U1 by

ν̃(B) =

∫

B
1 dν

4that is, ν(A) =
R

A
fdµ for all Borel-sets A

11



for all Borel-sets B in U1, we have that (T (an + b))n>0 is ν̃-uniformly distributed in U1.
Moreover, ν̃ is the translated normed Haar measure on U . Indeed, if we set

µ̃(A) :=

∫

T (b)−1A
1 dν̃

for all Borel-sets A in U , then µ̃ is translation invariant on U . This finishes the proof of
Theorem 3.

3 Frequencies of Letters in Automatic Sequences

The special case of a finite group G is of particular interest, since there is an immediate
relation to so-called automatic sequences. The main result of this section is an application
of Theorem 1 to invertible automatic sequences (see Theorem 4).

Let G be a finite group of order |G|. Then G is also a compact topological group with
respect to the discrete topology on G (every element is an open set). The Haar measure
on G is the (normed) counting measure, that is

µ(B) =
1

|G| #{g : g ∈ B}

for every B ⊆ G. Since the one-dimensional representations of a finite group have to be
|G|-th roots of unity, we see that the characteristic integer m has to divide (|G|, q − 1).
If we take for example G = Z/rZ and gj = j mod r, 0 6 j < q, then we have m =
(r, q−1) and T (n) = sq(n) mod r, where sq denotes the q-ary sum-of-digits function. As
already mentioned, this is exactly the case considered by Mauduit and Rivat in [14] (see
Remark 2).

It is convenient to work with permutation matrices instead of abstract group elements.
If G is a finite group, then G is isomorphic to a subgroup of the symmetric group S|G|
(Cayley’s Theorem). Thus, we can assume that g0, . . . , gq−1 are permutations in Sd for
some integer d > 1 and G is a subgroup of Sd. The group G has a natural d dimensional
representation χ, the so-called permutation representation. It is defined as follows: Let
π ∈ Sd, then

χ(π) =
(

eπ(1), . . . , eπ(d)

)

,

where ej denotes the j-th standard vector in Zd (that is, all entries are 0 except the j-th,
which is equal to 1). By definition it is clear that χ(π) is a permutation matrix, that is,
(x1, . . . , xd)χ(π) = (xπ(1), . . . , xπ(d)). Obviously, permutation matrices are orthogonal
(and unitary) matrices.

As already mentioned there is a close relation between sequences (T (n))n>0 of the
form (1) and automatic sequences. Automatic sequences (un)n>0 are sequences that can
be seen as the output sequence (or the image of the output sequence in an alphabet
∆) of a finite automaton when the input is the q-ary digital expansion of n (see for
example [4, 11]). More precisely, a finite automaton has finitely many states. One starts
in an initial state and then moves around the states depending on the input sequence
(the q-ary digits of n). The moves are deterministic and can be encoded with the help
of so-called transition matrices Mk, k = 0, . . . , q − 1, which have the property that the
entry mk

ij (the i-th row and j-th column of the matrix Mk) is 1 if there is a move from
state j to state i when the input digit equals k. All other entries are zero. (Note that the
dimension of the matrices Mk is equal to the number of states.) Such a finite automaton
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can be represented by a directed graph, where a directed edge is labeled with a number
k (between 0 and q − 1) which indicates the new state if the input digit equals k. For
every n, the automaton terminates at some state s(n). Automatic sequences are now
computed with the help of an output function that is defined on the states: s(n) 7→ un.

s1 / 0 s2 / 1

1

1

0 0

Figure 1: Automaton of the Thue-Morse sequence

In Figure 1 we see the automaton that creates the Thue-Morse sequence. The two
states of the automaton are s1 (initial state) and s2, the output function maps s1 to 0
and s2 to 1 and the transition matrices are given by

M0 =

(

1 0
0 1

)

and M1 =

(

0 1
1 0

)

.

The automaton defined in Figure 2 has three states and the output function maps s1

and s2 to the letter a and s3 to b. The transition matrices are given by

M0 =





1 0 0
0 1 0
0 0 1



 , M1 =





0 1 0
1 0 0
0 0 1



 and M2 =





0 0 1
1 0 0
0 1 0



 .

The sequence starts with aaaaabaabaabaaabba . . ., and, as we will see later, it is related
to the symmetric group S3.

s1/ a
1

s2 / a

1
0 0

2

22 s3 / b

0 1

Figure 2: Automaton related to the S3

There are several equivalent ways to describe automatic sequences (see [4], in particu-
lar Definition 5.1.1 and Theorem 5.2.1). For example, one can also describe q-automatic
sequences in terms of morphisms (substitutions). Alternatively, by a theorem of Cobham
a sequence (un)n>0 is q-automatic if and only if it is the image, under a coding, of a fixed
point of a q-uniform morphism (compare with [4, Theorem 6.3.2]).

However, we will use the approach that is related to our sequence (T (n))n>0. Let Ad

be the set of all d×d matrices with the property that in each column there is exactly one
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entry equal to 1 and all other entries are 0. If the automaton has d states, then Mk ∈ Ad

for every 0 6 k < q. Set
S(n) = Mε0Mε1 · · ·Mεℓ−1

,

where (εℓ−1εℓ−2 . . . ε1ε0)q denotes the q-ary digital expansion of n. Then we have that
the last state reached is sj (if the input is n) if and only if

S(n)e1 = ej .

Thus, a sequence (un)n>0 is a q-automatic sequence if and only if there exists q matrices
in Ad (for some d > 2), such that un is given by the image of an output function (acting
on e1, . . . , ed) of S(n)e1.

Definition 2. Let (un)n>0 be a q-automatic sequence. Then we call (un)n>0 an invertible
q-automatic sequence if there exists an automaton such that all transition matrices are
invertible and such that the transition matrix of zero is given by the identity matrix.

The set Ad is a monoid with respect to the matrix multiplication and all invertible
matrices form a group (which is isomorphic to Sd). Taking this group as our group H,
the matrices M0, . . . ,Mq−1 generate a subgroup G and we can use Theorem 1 to analyze
the subsequence (un2)n>0 of such invertible automatic sequences. As already indicated
above, these matrices can be also seen as the permutation representation of the symmetric
group Sd. Note, that the Thue-Morse sequence is an invertible 2-automatic sequence.
The sequence induced by the automaton given in Figure 2 is an invertible 3-automatic
sequence. (The transition matrices can be seen as the permutation representation of
the identity element, the 2-cycle (12) and the 3-cycle (123) in S3). If the matrices are
interpreted as elements of the S3, then they generate the whole group (that is, G = H
is isomorphic to S3).

Next we give the definition of the frequency of a letter in a sequence. Let ∆ be an
alphabet and (un)n>0 a sequence in ∆. Furthermore, let a ∈ ∆. If the limit

lim
N→∞

1

N
#{0 6 n < N : un = a}

exists, then it is called the frequency of a in (un)n>0.

For arbitrary automatic sequences (un)n>0 there need not exist the frequency of each
letter. Take for example

M0 =





1 0 0
0 0 1
0 1 0



 and M1 =





0 0 0
1 0 1
0 1 0



 ,

(cf. [4, Example 8.1.2]). Nevertheless, if (un)n>0 is primitive (that is, the corresponding
graph is strongly connected), then it is known that the frequencies of all letters exist
(see [4, Theorem 8.4.7]). Furthermore, it is known that a subsequence of an automatic
sequence of the form (uan+b)n>0 is again an automatic sequence (see [4, Theorem 6.8.1]).
If we consider the subsequence (un2)n>0, then it is of a completely different nature. If
one takes for example the Thue-Morse sequence (tn)n>1, then it follows by a Theorem of
Allouche and Salon [3] that (tn2)n>0 is not 2-automatic. Moshe [15] showed in a recent
work the much stronger result that the subword complexity of (tn2)n>0 is maximal, that
is, every finite word appears as a subword. (Note, that the subword complexity of an
automatic sequence is O(n), see [4, Theorem 10.3.1]). The following Theorem is a direct
consequence of Theorem 1.
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Theorem 4. Let q > 2 and (un)n>0 be an invertible q-automatic sequence. Then the
frequency of each letter of the subsequence (un2)n>0 exists.

Remark 8. If the output function and the corresponding group generated by the transi-
tion matrices is known, then the exact frequencies of all letters can be given. Further-
more, one can show that if the output function is trivial (that is, every state is mapped
to a different letter in the alphabet ∆) and the graph is strongly connected, then the
frequencies are all equal if the characteristic integer of the underlying group is 6 2.

If we take for example the automatic sequence generated by the automaton given
in Figure 2, then we obtain that the underlying group is the symmetric group S3 and
m = 2. Thus, taking into account the special output function, the subsequence generated
by the squares has the property, that the letter a has frequency 2/3 and the letter b has
frequency 1/3.

Proof. Without loss of generality, we can assume that every state is mapped to a different
letter in the alphabet ∆. Let the possible outcomes (the different states) be denoted
by s1, . . . , sd. Since we consider invertible automatic sequences, the matrix sequence
(S(n))n>0 defined above coincides with the sequence (T (n))n>0 defined in (1) (if we set
gk = Mk for 0 6 k < q). Let the different elements in the subgroup generated by
M0, . . . ,Mq−1 be denoted by N0, . . . , Ns−1. Then

N−1
∑

n=0

T (n2) =

s−1
∑

r=0

#{0 6 n < N : T (n2) = Nr}Nr.

Moreover, we have

eT
i T (v)e1 =

{

1 if uv = si,

0 otherwise.

for every v > 0. Thus, we obtain

lim
N→∞

1

N
#{0 6 n < N : un2 = si} = lim

N→∞
1

N

N−1
∑

n=0

eT
i T (n2)e1

=

s−1
∑

r=0

lim
N→∞

1

N
#{0 6 n < N : T (n2) = Nr}eT

i Nre1,

for every 1 6 i 6 d. Theorem 1 implies that all limits exist, which in turn proves
Theorem 4.

4 Auxiliary Results

4.1 Van der Corput type inequalities

We begin with two van der Corput type inequality for matrices which enable us to
“truncate” the sequence T (n) twice (see Section 4.2 and Section 5). The presented
lemmas are inspired by [14, Lemme 15 and 17]. We want to remark that van der Corput
inequalities for matrices have been already considered by Hlawka [9] (see also [10, Chapter
4.2]).
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Lemma 5. Let N and B be positive integers satisfying N 6 B. Furthermore let Z(n) ∈
Cd×d for all n ∈ Z satisfying ‖Z(n)‖

F
6 f . Then we have for any real number R > 1,

∥

∥

∥

∥

∥

∥

∑

06n<N

Z(n)

∥

∥

∥

∥

∥

∥

F

6





d1/2N

R

∑

|r|<R

(

1 − |r|
R

)

∥

∥

∥

∥

∥

∥

∑

06n,n+r6B

Z(n + r)Z(n)H

∥

∥

∥

∥

∥

∥

F





1/2

+
f

2
R.

Proof. We take for convenience Z(n) = 0 (the d × d matrix consisting only of zeros) if
n 6∈ [0, B]. We can write

∥

∥

∥

∥

∥

∥

R
∑

06n<N

Z (n) −
∑

−R/2<r6R/2

∑

06n<N

Z (n + r)

∥

∥

∥

∥

∥

∥

F

6
∑

−R/2<r6R/2

∥

∥

∥

∥

∥

∥

∑

06n<N

Z (n) −
∑

06n<N

Z (n + r)

∥

∥

∥

∥

∥

∥

F

6
∑

−R/2<r6R/2

2f |r| 6
f

2
R2.

Thus, we have
∥

∥

∥

∥

∥

∥

∑

06n<N

Z (n)

∥

∥

∥

∥

∥

∥

F

6
1

R

∑

06n<N

∥

∥

∥

∥

∥

∥

∑

−R/2<r6R/2

Z (n + r)

∥

∥

∥

∥

∥

∥

F

+
f

2
R.

Using the Cauchy-Schwarz inequality, we get




∑

06n<N

∥

∥

∥

∥

∥

∥

∑

−R/2<r6R/2

Z (n + r)

∥

∥

∥

∥

∥

∥

F





2

6 N
∑

06n<N

∥

∥

∥

∥

∥

∥

∑

−R/2<r6R/2

Z (n + r)

∥

∥

∥

∥

∥

∥

2

F

= N
∑

06n6B

tr











∑

−R/2<r16R/2

Z (n + r1)









∑

−R/2<r26R/2

Z (n + r2)





H






= N
∑

−R/2<r16R/2

∑

−R/2<r26R/2

tr





∑

06n6B

Z (n + r1)Z (n + r2)
H



 .

Changing the index of summation, we obtain that the last expression is the same as

N
∑

−R<r<R

(R − |r|) tr





∑

06n6B

Z (n + r)Z (n)H



 .

The statement of the lemma follows from the fact that we have for all matrices A =
(aij)16i,j6d (using the Cauchy-Schwarz inequality)

| tr(A)| 6
∑

16i6d

|aii| 6
√

d

√

∑

16i6d

|aii|2 6
√

d

√

∑

16i,j6d

|aij |2 =
√

d ‖A‖
F
. (10)

16



Lemma 6. Let N be a positive integer and Z(n) ∈ Cd×d for all 0 6 n 6 N . Then we
have for any real number S > 1 and any integer k > 1 the estimate

∥

∥

∥

∥

∥

∥

∑

06n6N

Z(n)

∥

∥

∥

∥

∥

∥

2

F

6
N + k(S − 1) + 1

S

∑

|s|<S

(

1 − |s|
S

)

∑

06n,n+ks6N

tr
(

Z(n + ks)Z(n)H
)

.

Proof. Again, we take for convenience Z(n) = 0 (the d × d matrix consisting only of
zeros) if n 6∈ [0, N ]. Then we can write

S
∑

n∈Z

Z(n) =
∑

n∈Z

∑

06s<S

Z(n + ks).

If the last sum is not zero, then n satisfies −k(S − 1) 6 n 6 N and there are at most
N + k(S − 1) + 1 such values for n. Hence, applying the Cauchy-Schwarz inequality and
changing the summation index yields (cf. Lemma 5)

S2

∥

∥

∥

∥

∥

∑

n∈Z

Z(n)

∥

∥

∥

∥

∥

2

F

6 (N + k(S − 1) + 1)
∑

n∈Z

∥

∥

∥

∥

∥

∥

∑

06s<S

Z(n + ks)

∥

∥

∥

∥

∥

∥

2

F

6 (N + k(S − 1) + 1)
∑

06s1<S

∑

06s2<S

∑

n∈Z

tr
(

Z(n + ks1)Z(n + ks2)
H
)

6 (N + k(S − 1) + 1)
∑

|s|<S

(S − |s|)
∑

n∈Z

tr
(

Z(n + ks)Z(n)H
)

.

This proves the desired result.

4.2 Fourier transform

Before we consider the Fourier transform, we recall the general setting. The compact
group G is the closure of the subgroup generated by the elements g0, g1, . . . , gq−1 with
g0 = e and D is an irreducible and unitary representation of dimension d > 1.

We start with defining truncated versions of the sequence T (n). Let λ > 1 and µ < λ
be positive integers. Set

Tλ(n) = gε0(n)gε1(n) · · · gελ−1(n),

and
Tµ,λ(n) = gεµ(n)gεµ+1(n) · · · gελ−1(n),

where ε0(n), . . . , ελ−1(n) are the λ lower placed digits in the q-ary digital expansion (with
possibly leading zeros) of n. Recall, that the function Fλ (which depends on D) equals

Fλ(h) =
1

qλ

∑

06u<qλ

e

(

−hu

qλ

)

D(Tλ(u)).

Additionally, we set

Fµ,λ(h) :=
1

qλ

∑

06u<qλ

e

(

−hu

qλ

)

D(Tµ,λ(u)).
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We start our treatment on the Fourier terms with the definition of two related functions
and some useful properties of them. Then we show a result on the second order average
of ‖Fλ(h)‖F before we finally discuss the function Fµ,λ(h) in detail. The results we obtain
here are very similar to the results in [14, Section 4.2]. Nevertheless, the proofs use many
techniques from matrix theory.

Lemma 7. Let the function ϕq be defined for all q > 1 by

ϕq(t) =

∣

∣

∣

∣

∣

∣

∑

06u<q

e(ut)

∣

∣

∣

∣

∣

∣

=

{

| sinπqt|
| sinπt| , if t ∈ R \ Z

q, if t ∈ Z.

Then ϕq is periodic of period 1 and the function Φ(q) defined by

Φ(q) := max
t∈R

q−1
∑

06r<q

ϕq

(

t +
r

q

)

,

satisfies

Φ(q) 6
2

π
log

2eπ/
√

2q

π
.

Proof. See [14, Lemmas 1 and 2].

Lemma 8. Let q > 2, a ∈ Z and 0 6 δ 6 λ. Then we have

∑

06h<qλ

h≡a mod qδ

‖Fλ(h)‖2
F

= ‖Fδ(a)‖2
F
. (11)

Proof. If δ = λ, the assertion is trivial. Hence, we assume that δ < λ. Let us denote the
left hand side of (11) by S. Then we can write

S =
∑

06h<qλ−1

h≡a mod qδ

∑

06r<q

∥

∥

∥
Fλ

(

h + rqλ−1
)∥

∥

∥

2

F

=
∑

06h<qλ−1

h≡a mod qδ

∑

06r<q

tr

(

Fλ

(

h + rqλ−1
)

Fλ

(

h + rqλ−1
)H
)

=
∑

06h<qλ−1

h≡a mod qδ

∑

06r<q

tr

(

1

q2
ΨD

(

−h + rqλ−1

qλ

)

Fλ−1(h)Fλ−1(h)HΨD

(

−h + rqλ−1

qλ

)H
)

.

Here we used the definition of the Frobenius norm and the recursive description of Fλ

(see (7)). The matrix trace is a linear operator with the property, that tr(AB) = tr(BA)
for two matrices A and B. Thus, we obtain

S =
∑

06h<qλ−1

h≡a mod qδ

tr





1

q2

∑

06r<q

ΨD

(

−h + rqλ−1

qλ

)H

ΨD

(

−h + rqλ−1

qλ

)

Fλ−1(h)Fλ−1(h)H



 .

(12)
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Next we claim that for every t ∈ R we have

1

q2

∑

06r<q

ΨD

(

−t − r

q

)H

ΨD

(

−t − r

q

)

= Id. (13)

Indeed, this holds true since the left hand side of (13) is equal to

1

q2

∑

06r<q

∑

06u<q

e

(

tu +
ru

q

)

D(gu)H
∑

06v<q

e

(

−tv − rv

q

)

D(gv)

=
1

q

∑

06u<q

∑

06v<q

e (t(u − v)) D(gu)HD(gv)
1

q

∑

06r<q

e

(

r
u − v

q

)

=
1

q

∑

06u<q

D(gu)HD(gu),

and D(gu)HD(gu) = Id for every 0 6 u < q. Using this result in (12), we obtain

S =
∑

06h<qλ−1

h≡a mod qδ

tr
(

Fλ−1(h)Fλ−1(h)H
)

=
∑

06h<qλ−1

h≡a mod qδ

‖Fλ−1(h)‖2
F
.

Applying this relation λ − δ times finally yields the desired result.

Lemma 9. Let q > 2 and 1 6 µ < λ be integers. Then we have

‖Fµ,λ(h)‖ = ‖Fλ−µ(h)‖ q−µϕqµ

(

hq−λ
)

, (14)

where ‖·‖ is an arbitrary norm on Cd×d.

Proof. Since Tµ,λ(uqµ + v) = Tλ−µ(u) for 0 6 u < qλ−µ and 0 6 v < qµ, we get

Fµ,λ(h) = q−λ
∑

06u<qλ−µ

∑

06v<qµ

e

(

−h(uqµ + v)

qλ

)

D(Tµ,λ(uqµ + v))

= q−(λ−µ)
∑

06u<qλ−µ

e

(

− hu

qλ−µ

)

D(Tλ−µ(u))q−µ
∑

06v<qµ

e

(

−hv

qλ

)

.

Hence, we obtain (see Lemma 7)

‖Fµ,λ(h)‖ = ‖Fλ−µ(h)‖ q−µϕqµ

(

hq−λ
)

.

Lemma 10. Let q > 2 and 1 6 µ < λ be integers. Then we have

∑

06h<qλ

‖Fµ,λ(h)‖2 6 Φ(qµ)qλ−µ. (15)
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Proof. In a first step, we can write

∑

06h<qλ

‖Fµ,λ(h)‖2 =
∑

06u<qλ−µ

∑

06v<qµ

∥

∥

∥
Fλ−µ(u + vqλ−µ)

∥

∥

∥

2
q−µϕqµ

(

u + vqλ−µ

qλ

)

=
∑

06u<qλ−µ

‖Fλ−µ(u)‖2 q−µ
∑

06v<qµ

ϕqµ

(

u

qλ
+

v

qµ

)

.

Next, note that ‖Fλ(h)‖2 6 1 since D is a unitary representation. This observation
(together with Lemma 7) finally implies the result.

Lemma 11. Let q > 2, a ∈ Z and 1 6 λ−µ 6 δ 6 λ be positive integers. Then we have

∑

06h<qλ

h≡a mod qδ

‖Fµ,λ(h)‖ 6 Φ
(

qλ−δ
)

q−µ+λ−δϕqµ−λ+δ

(

aq−δ
)

‖Fλ−µ(a)‖ ,

where ‖·‖ is an arbitrary norm on Cd×d.

Proof. Since by assumption λ − µ 6 δ, we have Fλ−µ(a + ℓqδ) = Fλ−µ(a). We obtain

∑

06h<qλ

h≡a mod qδ

‖Fµ,λ(h)‖ =
∑

06ℓ<qλ−δ

∥

∥

∥Fλ−µ

(

a + ℓqδ
)∥

∥

∥ q−µϕqµ

(

a + ℓqδ

qλ

)

= ‖Fλ−µ(a)‖ q−µ
∑

06ℓ<qλ−δ

ϕqµ

(

a

qλ
+

ℓ

qλ−δ

)

.

A short calculation shows (cf. [14, Proof of Lemma 12]), that

q−µ
∑

06ℓ<qλ−δ

ϕqµ

(

a

qλ
+

ℓ

qλ−δ

)

6 Φ
(

qλ−δ
)

q−µ+λ−δϕqµ−λ+δ

(

aq−δ
)

.

This proves Lemma 11.

Lemma 12. Let q > 2, a ∈ Z, ℓ ∈ Z, 1 6 µ < λ and 0 6 δ 6 λ − µ. Then we have
∑

06h<qλ

h≡a mod qδ

‖Fµ,λ(h)‖
F
‖Fλ−µ(h + ℓ)‖

F
6 Φ (qµ) ‖Fδ(a)‖

F
‖Fδ(a + ℓ)‖

F
. (16)

Proof. If we write h = uqλ−µ+v, where 0 6 u < qµ and 0 6 v < qλ−µ, then h ≡ a mod qδ

is equivalent to v ≡ a mod qδ (we have δ 6 λ − µ). Denote the left hand side of (16) by
S. Then we obtain

S =
∑

06v<qλ−µ

v≡a mod qδ

∑

06u<qµ

∥

∥

∥Fµ,λ(uqλ−µ + v)
∥

∥

∥

F

∥

∥

∥Fλ−µ(uqλ−µ + v + ℓ)
∥

∥

∥

F

=
∑

06v<qλ−µ

v≡a mod qδ

‖Fλ−µ(v)‖
F
‖Fλ−µ(v + ℓ)‖

F
q−µ

∑

06u<qµ

ϕqµ

(

uqλ−µ + v

qλ

)

6
∑

06v<qλ−µ

v≡a mod qδ

‖Fλ−µ(v)‖
F
‖Fλ−µ(v + ℓ)‖

F
Φ (qµ) .
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Applying the Cauchy-Schwarz inequality and Lemma 8 yields

S 6 Φ (qµ)











∑

06v<qλ−µ

v≡a mod qδ

‖Fλ−µ(v)‖2
F











1/2









∑

06v<qλ−µ

v≡a mod qδ

‖Fλ−µ(v + ℓ)‖2
F











1/2

= Φ (qµ) ‖Fδ(a)‖
F
‖Fδ(a + ℓ)‖

F
.

Lemma 13. Let q > 2, a ∈ Z, 1 6 µ < λ and λ − µ 6 δ 6 λ. Then we have
∑

06h1,h2<qλ

h1+h2≡a mod qδ

‖Fµ,λ(h1)‖F
‖Fµ,λ(−h2)‖F

6 dΦ(qλ−δ)Φ(qµ). (17)

Proof. We have
∑

06h1,h2<qλ

h1+h2≡a mod qδ

‖Fµ,λ(h1)‖F
‖Fµ,λ(−h2)‖F

=
∑

06h2<qλ

‖Fµ,λ(−h2)‖F

∑

06h1<qλ

h1≡−h2+a mod qδ

‖Fµ,λ(h1)‖F

6 Φ(qλ−δ)
∑

06h2<qλ

‖Fµ,λ(−h2)‖F
‖Fλ−µ(−h2 + a)‖

F
.

To obtain the last inequality, we employed Lemma 11 (note, that q−µ+λ−δϕqµ−λ+δ ( · ) 6

1). Since we have
‖F0(u)‖

F
= ‖Id‖F

=
√

d

for all u ∈ Z, Lemma 12 (with δ = 0) yields the desired result.

5 Proof of Theorem 1

In the next two sections we show that

1

N

∑

06n<N

D(T (n2))

converges for every irreducible and unitary representation D (for N → ∞). With the
help of this result, we will finish the proof of Theorem 1 in Section 5.3.

5.1 Irreducible representations of the form Dk

In this section we consider the m representations D0, . . . ,Dm−1. Recall that Dk(T (v)) =
e(−kv/m) for all v > 0. We have

1

N

N−1
∑

n=0

Dk(T (n2)) =
1

N

N−1
∑

n=0

e

(

−kn2

m

)

=
1

N

⌊

N

m

⌋m−1
∑

n=0

e

(

−kn2

m

)

+
1

N

N−1
∑

n=m⌊N
m⌋

e

(

−kn2

m

)

.
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It follows that

lim
N→∞

1

N

N−1
∑

n=0

Dk(T (n2)) =
1

m
G(−k,m), (18)

where G(a, c) = G(a, 0; c) and G(a, b; c) denotes the quadratic Gauss sum

G(a, b; c) =

c−1
∑

n=0

e

(

an2 + bn

c

)

. (19)

This sum is well studied in the literature (see for example [5]).

5.2 Irreducible representations different from Dk

Let D be an irreducible and unitary representation of G of dimension d > 1 such that
D 6= Dk for all 0 6 k < m. Furthermore, let ν ∈ Z+ be defined by qν−1 < N 6 qν and
set

S1 =
∑

06n<N

D(T (n2)). (20)

Then we will show that there exists a constant σ > 0, such that ‖S1‖F
≪ q(1−σ)ν . In

particular, this implies that

lim
N→∞

1

N

N−1
∑

n=0

D(T (n2)) = 0.

We begin with applying Lemma 5 with B = qν , R = qρ and Z(n) = D(T (n2)), where
ρ is an integer satisfying 1 6 ρ 6 ν/2 (note, that ‖D(T (n2))‖F =

√
d for all n > 0). We

can write

‖S1‖F
≪





N

qρ

∑

|r|<qρ

(

1 − |r|
qρ

)

∥

∥

∥

∥

∥

∥

∑

06n,n+r6qν

D(T ((n + r)2))D(T (n2))H

∥

∥

∥

∥

∥

∥

F





1/2

+ qρ

≪



q2ν−ρ + qν max
16|r|<qρ

∥

∥

∥

∥

∥

∥

∑

06n,n+r6qν

D(T ((n + r)2))D(T (n2))H

∥

∥

∥

∥

∥

∥

F





1/2

+ qρ.

In the last step, we separated the case r = 0 and r 6= 0. Additionally, we get an error term
O(qν+ρ) (inside the square root) when removing the summation condition 0 6 n+r 6 qν .
Since we have assumed ρ 6 ν/2, this term can be neglected. Hence, we obtain

‖S1‖F
≪ qν−ρ/2 + qν/2 max

16|r|<qρ

∥

∥

∥

∥

∥

∥

∑

06n6qν

D(T ((n + r)2))D(T (n2))H

∥

∥

∥

∥

∥

∥

1/2

F

.

We set
λ := ν + 2ρ + 1.

Recall that we have (using the fact that g0 = e)

Tλ(n) := gε0(n)gε1(n) · · · gελ−1(n),

where ε0(n), . . . , ελ−1(n) are the λ lower placed digits in the q-ary digital expansion (with
possibly leading zeros) of n.
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Lemma 14. For all integers ν and ρ with ν > 2 and 1 6 ρ 6 ν/2 and for all r ∈ Z with
|r| < qρ, we denote by E(r, ν, ρ) the number of integers n such that 0 6 n 6 qν and

D(Tλ((n + r)2))D(Tλ(n2))H 6= D(T ((n + r)2))D(T (n2))H .

Then we have

E(r, ν, ρ) ≪ qν−ρ.

Proof. In order to prove this lemma we recall what Mauduit and Rivat actually proved
in [14, Lemme 16]. Let us fix an integer r satisfying |r| < qρ and denote by F (r, ν, ρ) the
number of integers 0 6 n 6 qν such that not all digits of n2 and (n+r)2 which are higher
placed than λ− 1 are equal. Then it follows from their reasoning that F (r, ν, ρ) ≪ qν−ρ.
(Note, that the additional condition qν−1 < n in their statement is not needed.) Using
this fact, we can complete our proof. Let n2 = εℓ−1εℓ−2 . . . ελ . . . ε0, where ℓ > λ and
with possibly leading zeros. If all digits of n2 and (n + r)2 which are higher placed than
λ − 1 are equal, we have

D(T ((n + r)2))D(T (n2))H

= D(Tλ((n + r)2))D(gελ
· · · gεℓ−1

)D(gελ
· · · gεℓ−1

)HD(Tλ(n2))H

= D(Tλ((n + r)2))D(Tλ(n2))H .

Here we used that D is a unitary representation. All matrices that come from the higher
placed digits “cancel” out. We can bound E(r, ν, ρ) by F (r, ν, ρ) which proves the desired
result.

This lemma enables us to replace D(T (u2)) by D(Tλ(u2)). We obtain

‖S1‖F
≪ qν−ρ/2 + qν/2 max

16|r|<qρ
‖S2‖1/2

F
, (21)

where

S2 :=
∑

06n6qν

D(Tλ((n + r)2))D(Tλ(n2))H .

In view of Lemma 6, we set Z(n) = D(Tλ((n + r)2))D(Tλ(n2))H , N = qν , S = q2ρ and
k = qµ, where µ is an integer satisfying

1 6 µ 6 ν − 2ρ − 1.

Then we have to consider expressions of the form

tr
(

D(Tλ((n + r + sqµ)2))D(Tλ((n + sqµ)2))HD(Tλ(n2))D(Tλ((n + r)2))H
)

. (22)

Using that tr(AB) = tr(BA) for two matrices A and B, this is the same as

tr
(

D(Tλ((n + r)2))HD(Tλ((n + r + sqµ)2))D(Tλ((n + sqµ)2))HD(Tλ(n2))
)

.

Next, we recall that
Tµ,λ(n) = gεµ(n)gεµ+1(n) · · · gελ−1(n).

Since
(n + r + sqµ)2 = (n + r)2 + qµ(2s(n + r) + s2qµ),
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we see that (n + r + sqµ)2 and (n + r)2 have the same µ lower placed digits. Using that
D is a unitary representation (compare also with the proof of Lemma 14), we see that

D(Tλ((n + r)2))HD(Tλ((n + r + sqµ)2)) = D(Tµ,λ((n + r)2))HD(Tµ,λ((n + r + sqµ)2)),

since the terms coming from the µ lower placed digits cancel out. The same argument
works for (n + sqµ)2 and n2 and we obtain that (22) can be written as

tr
(

D(Tµ,λ((n + r)2))HD(Tµ,λ((n + r + sqµ)2))D(Tµ,λ((n + sqµ)2))HD(Tµ,λ(n2))
)

.

We set Iν,s,µ := {0 6 n 6 qν : 0 6 n + sqµ 6 qν}. Then we finally have (cf. (10))

∣

∣

∣

∣

∣

∣

∑

n∈Iν,s,µ

tr
(

D(Tλ((n + r)2))HD(Tλ((n + r + sqµ)2))D(Tλ((n + sqµ)2))HD(Tλ(n2))
)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

tr

(

∑

n∈Iν,s,µ

(

D(Tµ,λ((n + r)2))HD(Tµ,λ((n + r + sqµ)2))

· D(Tµ,λ((n + sqµ)2))HD(Tµ,λ(n2))

))∣

∣

∣

∣

∣

6
√

d

∥

∥

∥

∥

∥

∑

n∈Iν,s,µ

D(Tµ,λ((n + r)2))HD(Tµ,λ((n + r + sqµ)2))

· D(Tµ,λ((n + sqµ)2))HD(Tµ,λ(n2))

∥

∥

∥

∥

∥

F

.

Hence Lemma 6 gives

‖S2‖2
F
≪ qν−2ρ

∑

|s|<q2ρ

(

1 − |s|
q2ρ

)

‖S3‖F

≪ q2ν−2ρ + qν max
16|s|<q2ρ

‖S3‖F
, (23)

where S3 denotes the sum

∑

n∈Iν,s,µ

D(Tµ,λ((n + r)2))HD(Tµ,λ((n + r + sqµ)2))D(Tµ,λ((n + sqµ)2))HD(Tµ,λ(n2)).

The inverse of the Fourier term Fµ,λ (defined in Section 4.2) is given by

D(Tµ,λ(u)) =
∑

06h<qλ

Fµ,λ(h) e

(

uh

qλ

)

.

Hence we obtain

S3 =
∑

06h1,h2,h3,h4<qλ

Fµ,λ(−h1)
HFµ,λ(h2)Fµ,λ(−h3)

HFµ,λ(h4)

·
∑

n∈Iν,s,µ

e

(

h1(n + r)2 + h2(n + r + sqµ)2 + h3(n + sqµ)2 + h4n
2

qλ

)

. (24)
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Assume that c > 2 is an integer and (zn)n∈Z is a sequence of complex numbers that is
periodic of period c. It is shown in [14, Lemme 18], that one has for all M1, M2 ∈ Z
with 1 6 M2 6 c the estimate

∣

∣

∣

∣

∣

∣

∑

M1<n6M1+M2

zn

∣

∣

∣

∣

∣

∣

6
2

π
log

(

4eπ/2c

π

)

max
06ℓ<c

∣

∣

∣

∣

∣

∣

∑

06n<c

zn e

(

ℓn

c

)

∣

∣

∣

∣

∣

∣

.

If we apply this to (24) with c = qλ and M1 and M2 chosen appropriately, we get

‖S3‖F
6

2

π
log

(

4eπ/2qλ

π

)

max
06ℓ<qλ

∑

d|qλ

·
∑

06h1,h2,h3,h4<qλ

(h1+h2+h3+h4,qλ)=d

‖Fµ,λ(h1)‖F
‖Fµ,λ(h2)‖F

‖Fµ,λ(h3)‖F
‖Fµ,λ(h4)‖F

· |G(h1 + h2 + h3 + h4, 2r(h1 + h2) + 2sqµ(h2 + h3) + l; qλ)|,

where G(a, b; c) denotes the quadratic Gauss sum already defined in (19). This sum has
the following properties (see for example [14, Proposition 1 and 2]). Let d = (a, c). Then
G(a, b; c) = 0 if d ∤ b and |G(a, b, c)| 6

√
2dc in any case. Thus we get

‖S3‖F
6

2

π
log

(

4eπ/2qλ

π

)

qλ/2 max
06ℓ<qλ

∑

d|qλ

d1/2 (25)

·
∑

06h1,h2,h3,h4<qλ

(h1+h2+h3+h4,qλ)=d
d|2r(h1+h2)+2sqµ(h2+h3)+ℓ

‖Fµ,λ(h1)‖F
‖Fµ,λ(h2)‖F

‖Fµ,λ(h3)‖F
‖Fµ,λ(h4)‖F

.

Exactly the same way as in the work of Mauduit and Rivat [14, Section 5.5 - 5.8], one
can now show that the integer µ can be chosen in such a way that

‖S3‖F
≪ νω(q)+6qν−2ρ,

whenever ρ is an integer smaller than ν times some constant only depending on the chosen
representation D. (The constant ω(q) denotes the number of distinct prime divisors of
q). In order to do so, one has to use the results on the Fourier terms we have proved in
Section 4.2 on the one hand and the L∞ norm estimate of ‖Fλ( · )‖ proved in Section 2
(see Lemma 4) on the other hand. Note, that in order to apply Lemma 4 we need that
D 6= Dk for 0 6 k < m.

Combining (21), (23) and the last estimate, we are done since we can choose ρ such
that

‖S1‖F
≪ q(1−σ)ν

for some constant σ > 0.

5.3 Final steps in the proof of Theorem 1

Let m be the characteristic integer of g0, . . . , gq−1 and q. Lemma 3 implies that the
set U := cl({T (mn) : n > 0}) is a normal subgroup of G (of index m) with cosets
guU = cl({T (mn + u) : n > 0}), 0 6 u < m.
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Let us define the function f by

f(g) = 1 +
1

m
G(1,m)D1(g) + · · · + 1

m
G(m − 1,m)Dm−1(g).

Since the representations are continuous, f is a continuous function. Moreover, it is a
positive function and it satisfies

f(v) =

m−1
∑

u=0

1guU (v) · Q(u,m). (26)

In order to see this, we state and prove the following lemma:

Lemma 15. Let c > 1, a ∈ Z and set Q(a, c) = #{0 6 n < c : n2 ≡ a mod c}. Then we
have

Q(a, c) =
1

c

c−1
∑

k=0

G(k, c) e

(

−ka

c

)

.

Proof. Let us consider the group Z/cZ (with + as the group operation). The represen-
tations of Z/cZ are given by

χk(u) = e

(

ku

c

)

for all u ∈ Z/cZ and all 0 6 k < c. For any n ∈ N let xn be the element of Z/cZ defined
by n ≡ xn mod c. Then we obtain

lim
N→∞

1

N
#{0 6 n < N : xn2 ≡ a mod c} =

1

c
Q(a, c).

Thus, the sequence (xn2)n>0 is νZ/cZ-uniformly distributed in Z/cZ, where the measure
νZ/cZ is defined by

νZ/cZ(v) =
1

c
Q(v, c).

It follows from Lemma 1 that for every 0 6 k < c,

lim
N→∞

1

N

N−1
∑

n=0

χk(xn2) =

∫

Z/cZ

χkdνZ/cZ. (27)

As in Section 5.1, we obtain

lim
N→∞

1

N

N−1
∑

n=0

χk(xn2) =
1

c
G(k, c).

On the other hand, we have

∫

Z/cZ

χkdνZ/cZ =
1

c

c−1
∑

v=0

e

(

−vk

c

)

Q(v, c).

Summing up the left and right hand side of (27) from k = 0 to k = c− 1 (weighted with
e(−ka/c)), we obtain

1

c

c−1
∑

k=0

G(k, c) e

(

−ka

c

)

=
1

c

c−1
∑

k=0

e

(

−ka

c

) c−1
∑

v=0

e

(

vk

c

)

Q(v, c). (28)
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The right hand side of (28) is equal to

c−1
∑

v=0

Q(v, c)
1

c

c−1
∑

k=0

e

(

k(v − a)

c

)

= Q(a, c).

This shows the desired result.

If n and v are integers > 0, then

f(T (nm + v)) =
1

m

m−1
∑

k=0

G(k,m)Dk(T (nm + v)) =
1

m

m−1
∑

k=0

G(k,m) e

(

−vk

m

)

.

Employing Lemma 15, we obtain that

f(T (nm + v)) = Q(v,m).

Since (T (n))n>0 is dense in G, equation (26) holds true, indeed. This allows us to define
the measure

dν = fdµ.

We proceed as in the linear case and show that (T (n2))n>0 is ν-uniformly distributed in
G. Let {Dα, α ∈ A} be again a complete set of pairwise inequivalent irreducible unitary
representations and set eα

ij(g) =
√

nαdα
ij(g), where Dα = (dij)16i,j6nα (recall, that the

set {eα
ij} forms a complete orthonormal system in the Hilbert space L2(G)). We obtain

for Dk, k = 0, . . . ,m − 1 that

∫

G
Dkfdµ =

m−1
∑

ℓ=0

1

m
G(−ℓ,m)

〈

Dk,Dℓ

〉

=
1

m
G(−k,m).

For all other representations Dα = (dα
ij)16i,j6nα , we get

∫

G
dα

ijfdµ =

m−1
∑

ℓ=0

1

m
G(−ℓ,m)

〈

dα
ij ,Dℓ

〉

= 0.

Finally, this proves Theorem 1.

6 Possible Generalizations and Extensions

Similarly to completely q-multiplicative functions (which are precisely sequences of the
form (1)) we can consider so-called block-multiplicative functions (cf. [6]). Let L > 1 be
given and B = (b1 · · · bL) be a block of length L of q-ary digits bj ∈ {0, 1, . . . , q − 1}.
Furthermore, let (gB)B∈{0,1,...,q−1}L be elements of a compact group H with the property
g(00···0) = e. Similarly to the definition (1) we set

T (n) =g(0···00ε0(n))g(0···0ε0(n)ε1(n)) · · · g(ε0(n)ε1(n)···εL−1(n))g(ε1(n)ε2(n)···εL(n)) · · ·
· · · g(εℓ−L(n)εℓ−L+1(n)···εℓ−1(n))g(εℓ−L+1(n)εℓ−L+2(n)···εℓ−1(n)0) · · · g(εℓ−1(n)00···0).

A famous example of block-multiplicative functions is the Rudin-Shapiro sequence (see
[2, 4]) which is defined by g(00) = g(01) = g(10) = 1 and g(11) = −1 in the multiplicative
group H = {−1, 1}. There is also a close relation to chained sequences, see [2].
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As in the case L = 1, we can introduce the Fourier term

Fλ(h) =
1

qλ

∑

06u<qλ

e

(

−hu

qλ

)

D(T (u)).

The only (but essential) difference to the case L = 1 is that Fλ has a more involved
representation if L > 1. We have to introduce a qL−1 × qL−1 matrix that is indexed by
blocks B′, C ′ ∈ {0, 1, . . . , q − 1}L−1 and has unitary d × d matrices as entries. We set

GD(t) =
(

AB′,C′

)

B′,C′∈{0,1,...,q−1}L−1 ,

where

A(b1···bL−1),(c1···cL−1) =

{

D(g(b1···bL−1cL−1)) e(tcL−1) if (b2 · · · bL−1) = (c1 · · · cL−2),

0 otherwise.

Then

Fλ(h) =
1

qλ

(

1 0 · · · 0
)

GD

(

− h

qλ

)

GD

(

− h

qλ−1

)

· · ·GD

(

−h

q

)

GD(0)L−1











1
0
...
0











.

It is expected that all results of this paper generalize to the case L > 1. For example, if
one can derive that ‖GD(t)‖ < q (under suitable conditions) one obtains ‖Fλ(h)‖ ≪ q−cλ.
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