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Abstract—In 1993 Boncelet introduced a block arithmetic In its simplest form — to which we restrict ourselves —

scheme for entropy coding that combines advantages of strem Boncelet builds a parsing tree by splitting a fixed number
arithmetic coding with algorithmic simplicity. It is a vari able- leaves (codewords) into subtrees of predetermined nunfber o

to-fixed length encoding in which the source sequence is part | Th b £l . h subt . ’ |
tioned into variable length phrases that are encoded by a fixa@ eaves. 1he number Or leaves In each subtree IS proportona

length dictionary pointer. The parsing is accomplished though 0 the probability of the alphabet symbols. For example, for
a complete parsing tree whose leaves represent phrases. $hia binary alphabet with probabilitigs; andp, = 1 — p; the
tree, in its suboptimal heuristic version, is constructed y a expected phrase lengthin) satisfies the following recurrence

simple divide and conquer algorithm, whose analysis is the (giher parameters such as variance, generating functitmeof
subject of this paper. For a memoryless source, we first der&v h | th fulfill simil ’
the average redundancy and compare it to the (asymptoticaf) phrase length fulfill similar recurrences)

optimal Tunstall's algorithm. Then we prove a central limit
thpeorem for the phrgse length. To estart)alish these results, av d(n) =1+ pid([pin +6]) + pad ([p2n — 0])
apply powerful techniques such as Dirichlet series, MellifPerron  where is§ is a constant. This equation is an example of
formula, and (extended) Tauberian theorems of Wiener-lkelara. 5 generaldiscrete divide and conquer recurrendbat we
studied extensively in [11]. We shall adopt it here in order t
. INTRODUCTION present a comprehensive analysis of the Boncelet’s algorit
We present a comprehensive analysis of a data compresgienformance including its redundancy and limiting disitibn
algorithm due to Boncelet [3] known aBlock Arithmetic of the phrase length.
Coding (BAC). Boncelet's algorithm is a variable-to-fixed A question arises how the Boncelet algorithm compares to
data compression scheme. To recall, a variable-to-fixegthenthe (asymptotically) optimal Tunstall algorithm. In Theor 1
encoder partitions a source string overqarary alphabetd and Corollary 1 we provide an answer by first computing the
into a concatenation of variable-length phrases. Eachsphraedundancy of the Boncelet scheme (i.e., the excess of code
belongs to a given dictionary of source strings. A uniquelgngth over the optimal code length) and compare it to the
parsable dictionary is represented bgamplete parsing tree redundancy of the Tunstall code. Then in Theorem 2 we also
i.e., a tree in which every internal node has =il children prove that the phrase length of Boncelet's scheme obeys the
nodes. The dictionary entries correspond to ldmvesof the central limit law, as the Tunstall algorithm [10].
associated parsing tree. The encoder represents eacld parskiterature on Boncelet’s algorithm ardiscretedivide and
string by a fixed length binary code corresponding to itsonquer recurrences is very scarce. To the best of our knowl-
dictionary entry. There are several well known variable-tedge, there is no precise redundancy analysis for the Betxel
fixed algorithms; e.g., Tunstall and Khodak schemes (cf], [L&lgorithm. In [3] some bounds on the average phrase length
[17], [25]). Boncelet's algorithm is based ondivide and are derived. The Central Limit Law for the phrase length
conquerstrategy, and therefore is fast and easy to implemeptesented in Theorem 2 is new, too. Furthermore, we believe
Arithmetic entropy coders have been intensively studied our contribution goes beyond analyzing precisely Bontelet
literature [9], [20], [21]. They are stream coders: an adoit algorithm performance. We accomplish it by developing a
long input sequence outputs a corresponding output streanethodology for solving generaliscretedivide and conquer
One disadvantage is that long input blocks are prone to trecurrences (cf. [11]). The literature @ontinuousdivide and
effect of transmission errors. Furthermore, in some applicconquer recurrence is very extensive [1], [6], [5], however
tions the encoding and decoding are too complicated to thee discrete version of the recurrence has received mush les
done in real time. On the other hand, Tunstall variable-taitention. Flajolet and Golin [13] and Cheung et al. [4] use
fixed length scheme requires searching a codebook to find gimilar techniques to ours, however, their recurrencesareh
most probable input sequence for the next splitting. To cisimpler and restricted tp; = 0.5 (see also [12], [16]). We
cumvent these difficulties, Boncelet designed a simpleddiviapply a combination of methods such as Tauberian theorems
and conquer scheme that we briefly describe next. and Mellin-Perron techniques.



[I. MAIN RESULTS proof requires powerful tools of analytic combinatoricElsu
Let us start with a succinct description of the Boncelet alg@S Dirichlet series [2], [24] and complex asymptotics [24].
rithm in terms of its parsing tree. We consider a memorylessOU" first result concemns the average redundancy of Bon-
source over a general alphabétof sizem with probabilities celet's algorlthm. To present it succinctly, we need toddtrce
of symbols denoted gs; for i = 1,...,m. some properties of;.
For fixed n (representing the number of leaves in the Definition 1: We say thatlog(1/p1), .. .,log(1/pn) are
parsing tree and hence also the number of distinct phrased@jonally related if there exists a positive real numbeér

codewords), the algorithm in each step createsubtrees of SUCh thatlog(1/py),. .., log(1/pn) are integer multiples of
predetermined number, of leaves (phrases). This continued that is, log(1/p;) = n;L, n; € Z, (1 < j <
recursively until less tham leaves are left. For example, for) Where ged(ni,...,ny,) = 1. Similarly, we say that

a binary alphabet, the roatis split into two subtrees with the 108(1/p1), .- ., log(1/pm) areirrationally related if they are

number of leaves, respectively, equalitp = |pin + 6| and Not rationally related. . .
ny = [pan — 8] for somed € (0, 1) that satisfiep; +6 < 2. Example. If m = 1, then we are always in the rationally

Let {v1,...v,} denote the phrases of the Boncelet cod&lated case. In the binary case= 2, the numbersog(1/p1),
that correspond to the paths from the root to leaves of th(1/p2) are rationally related if and only if the ratio
parsing tree, and let(v;),..., £(v,) be the correspond-108(1/p1)/log(1/p2) is rational.

ing phrase lengths. Furthermore, (ify, iz, . . ., i(,)) With  Theorem 1:Consider anm-ary memoryless source with
ij € {1,...,m}) encodes the path from the root to phrasgositive probabilitesp; > 0 and the entropy ratd] =
v, We SetP(vr) = piyPiz - Piy,,,- ThENP(v1), ..., P(vn) S pilog(1/p;). Let d(n) = ED, denote the expected
sum up tol and represent a probability distribution on th‘fz‘)hrase length of the binary Boncelet code.

phrases that corresponds to the distribution of phrases {grif 10g(1/p,),...log(1/p,) are irrationally related, then
a memoryless source. We denote By, the length of a

phrase corresponding to the probability distributidnthat is, d(n) = 1 logn — @ + o(1), (5)
P[D,, = £(v)] = P(vg). Its probability generating function H H
is defined asC(n,y) = EyP» = ", P(v;)y"(*). For a where H
binary alphabet, the Boncelet splitting procedure leadh¢o a= E/(O) — @/(O) —H - —2, (6)
following recurrence orC'(n,y) for n > 2 , / / 2H
Hy =" pilog” p;, andE (0) andG (0) are the derivatives
Clny) =pryC(lpn+0],y)+p2y C[pan —01,y) (1) 5 :%:oflthe Dirichlet seriés)definecg i21 Section A (for a

with initial conditionsC(0,y) = 0 andC(1,y) = 1 and some binary alphabet).

5. Then the average phrase lengilp), defined ast D, :=  (ii) If log(1/p1),...log(1/pn,) are rationally related, then
d(n) = Y% | P(v;) l(v;) = C'(n,1) satisfies the following 1 o+ U(logn
recurrence d(n) = 5 logn — % +0(n™") ()

d(n) =14+ pid(|pin+6]) +ped([pan—38])  (2) for somen > 0, where¥(t) is a periodic function of bounded
variation that has usually an infinite number of discontilegi

For practical data compression algorithms, it is important
to achieve low redundancy defined as the excess of the code

with d(0) = d(1) = 0. In general, for anm-ary alphabet
recurrence (2) becomes

Ui length over the optimal code lengthH . For variable-to-fixed
Cln,y) =y Y piC([pin+6,y) (3)  codes, the average redundancy is expressed as [10], [22]
=1
wherelz] is the quantized value af; in our case it is replaced R, = Ilé)%n —H= Z’f? — H.
n n

either by the floor function or the ceiling function.
These recurrences (1)—(3) are special cases of a gen€rat previous results imply immediately the following.
divide and conquer recurrence of the following form: For Corollary 1: Let R,, denote the redundancy of the Boncelet

m>1,letpy,...,pm, b1,...,by anddy,... b, be positive code.
real numbers such that; < 1 for 1 < j < m. Then given (i) If log(1/p1),...log(1/px,) are irrationally related, then
T(0) <T(1) for n > 2 we set Ha 1
n — o (8)
i i logn (logn)
T(n)=a,+ b;T (|pjn+46;])+ T ([pjn + 8%
" ; T Lpgn+ 03] ; T30 i o defined in (6).

(4) (i) If log(1/p1),...log(1/p,,) are rationally related, then
where (a,,)>2 iS @ knownnon-negativeand non-decreasing
sequence. We also assume tat+d; < 2 and2p; +4; < 1 R, = Hla —:O\Z(log n) (lo; ) 9)

n n

(for 1 < j < m). In the next section we present in Theorem 3
a general solution of (4) as proved in [11]; we note that itwhere ¥ (¢) is a periodic function of bounded variation.



We should compare the redundancy of Boncelet’s algorithimrm (15) for some entire functiol(s) and some analytic
to asymptotically optimal Tunstall algorithm. From [10R2Z] function E(s) that is analytic forR(s) > max{sg, 0.} — 1.

we know that the redundancy of the Tunstall code is For the precise asymptotic analysis, we appeal to the Tauber
H H, 1 theorem by Wiener-lkehara [7], [19], and an analysis based o
T _ _ e in-
R, = Togn ( log H 2H) +o (1Ogn) the Mellin-Perron formula [2], [24]. Both approaches rely o

the singular behavior of'(s). From this representation it is
for irrational case; in the rational case there is also aopiézi clear that the asymptotic behavior 5{n) will depend on the
term in the leading asymptotics. singular behavior ofd(s) and the roots of (10) (that include
Example. Considep = 1/3 andg = 2/3. Then one computes 50)- . ) . .
Actually, we have to deal with three different situations.
- dm+2)—d(m+1) (log Pm_i_ g-‘ _1Og(3m)) If o, < so, then the asymptotics df'(n) is driven by the

= 3 recurrence; in the case, = sg there is an interaction between
B the internal structure of the recurrence and the sequepce
d 2)—d 1 3 5 . - .

+2 Z (m+2) 3 (m+1) (10g bm + ZJ — log(—)) (resonance); and in the casg > sy the asymptotic behavior
m>1 of a,, dominates.

n log 3 i Hy 0.0518 In [11] we proved a Master Theorem for our general discrete
3 7 g divide and conquer recurrence that we state below in sfightl

while for the Tunstall code- log H — 2 ~ 0.0496. simplified form.

Theorem 3 DISCRETEMASTER THEOREM): Let T'(n) be

Finally, we deal with the limiting distribution of the ph®s the divide and conquer recurrence defined in (4), whew@nd

length D,,. The proof is presented in the next section. b; are non-negative with; +b; > 0 and the sequende.,),>2
Theorem 2:Consider a memoryless source generating i&non-negative and non-decreasing. kgtlenote the abscissa

sequence of length parsed by the Boncelet algorithm. Ifof absolute convergence of the Dirichlet seri¢és) and s

(p1,-..,pm) is not uniformly distributed, then the phrasehe real root of (10). Ifo, > sy > 0 assume further that,

length D,, satisfies the central limit law, that is, is nondecreasing sequence givendyy= Cn? (logn)® with
D, — ilogn C>0 (that iS,O'a = 0').
:1 Hl — N(0,1), (i) If log(1/p1),...,log(1/p.m) are irrationally related, then
(7% — ) logn T(n) becomes as — oo

where N (0, 1) denotes the standard normal distribution, and C1 +o(1)

log 1 H 1 if 0, <0 andsg <0,
EDnzT—i-O(l), Var D, ~ (H—i—ﬁ)logn Cylogn+ Ch+o(1)
if 0, < spandsy =0,
for n — oo. C3(logn)*t! . (14 o(1))
I1l. ANALYSIS AND ASYMPTOTICS if 0 =s50=0,
We first present a general solution to our general discrete  Can* - (1+0(1))
divide and conquer recurrence (4). We use analytic tools, in " if o4 < 50 @andso >0, (11)
particular Dirichlet series. For our purpose, we define the Csn (logn)® '(_1+0(1))
following Dirichlet series if oo =s0>0anda # -1,
- - Csn® loglogn - (14 o(1))
T(S):ZT(”+2)—T("+1) X(s):za"”_a"“. if 0, =350 >0anda=—1,
1 n® ’ oo n’ Cs (logn)*(1 + o(1))

if o, =0 andsy <0,
C7n% (logn)® - (1 + o(1))
if o, > sg ando, > 0,

Recall thata,, of (4) is non-negative and non-decreasing and
we also assume that > 0 and bfj > 0. If the sequence,
is constant (fom > ng) we seto, = —oo. Otherwise we set

0q = inf{o : a, = O(n”)}. Theng, is the the abscissa of where the explicitly computable constants
absolute convergence, of A(s). Furthermore, let, be the C;,Cs,C3,Cy,C5,Cs,C7 are positive andCj is real.
unique real solution of the equation (i) If log(1/p1),...,log(1/py,) are rationally related, then
m T(n) behaves as in the irrationally related case with the
Z(bj + b})pj =1. (10) following two exceptions:
=t Calogn + Us(logn) + o(1) if o, < sg andsg =0,
By using the Arka-Bazzi theorem [1] it follows th&t(n) = Wy(logn)n® - (14 o(1)) if o, < sp andsg > 0,
O(nmax{so.oa}+<) for every ¢ > 0. This means that the (12)

Dirichlet seriesT’(s) converges fofR(s) > max{so,0,}. We whereC, is positive and¥,(t), U4(¢) are periodic functions
will prove below that we actually have a representation ef ttwith period L (with usually countably many discontinuities).



We now briefly summarize the main steps to establish By our previous assumptions, we know the analytic behav-

Theorem 3 and then provide a proof of Theorem 2. iors of A(s) and (1 — ZJ b pS . A(s) has a pole-like

A. Sketch of Proof of Theorem 3 singularity ats = o, (if o, > so) and a proper continuation
do a complex domain that contains the (punctuated) line
R(s) = 04, s # 04, as discussed in [11]. On the other
?and,(l — Z;.”Zl b; pj)—1 has a polar singularity at = sg
and infinitely many other poles on the link(s) = sg
~ _ if the numberslog(1/p;) are rationally related), and also a
T(s) = A(s)+ meromorphic continuation to a complex domain that contains
the lineR(s) = sy. Heuristically, the asymptotic behavior (of
+Zb Z (lpj(n+2) +6;]) = T (lpj(n+1) + 5-7'“, the partial sums) of the coefficients @f(s) is reflected by

We first apply the recurrence relation (4) to find the Diri¢hl
seriesT'(s). To simplify our presentation, we assume thiat=
0, that it, we consider only the floor function on the right han
side of the recurrence (4). We thus obtain

n=1 ne the singular behaviorNOf(s). Recall thatT(n) = O(n%)
Let implies that the serie%'(s) converges fof(s) > o. Hence,
B VH- 2 — 5jJ _g if s = o is a singularity ofT'(s), then we expect thal'(n)

- Dj behaves (more or less) likeZ. Actually there is a very precise

correspondence by Tauberian theorems (of Wiener-lkelmara a
Delange, see [7], [11], [19]) i is the only singularity on the
line R(s) = 0. Hence, Tauberian theorems can be applied if
thelog(1/p;) are irrationally related. In the rationally related

for some integelk. For thisk we have|p;(n+1) +4,] =
kE+1 and |p;(n+2)+4;| = k+ 2. For later use we split
betweenk < 0 andk > 1. Hence, setting

Gils) — Tk+2)—-T(k+1) case the problem is more subtle but can be handled with the
i(s) = Z (VJrzfajJ B 2)5 help of the Mellin-Perron formula stated next (Theorem 4).
3P +0; —2Sk=0 P In our formulation we use Iverson’s notatid#] which is
we obtain 1if P is a true proposition and else.
o0 Theorem 4 (see [2])For a sequencec(n) define the
3 T (lpj(n+2) +9;]) _ST (Lps(n+1) +9;]) Dirichlet seriesC(s) = >.°°, ¢(n)n~* and assume that
n=1 n abscissa of absolute convergencgis finite or —oo. Then
0 for all . and all 0
+ZTk+2 CT+1) oralo>o anJ)a x> .
k+2—0; 5 (lz]) o 2 z°
k=1 ({ 7 J 2) ;c(n) + 5 [z € Z] Th_r)moo el C(s) . ds.

We now compare the last sumpgT(s) and obtain Note that the Mellin-Perron formula enables us to obtain

T(k+2)—Tk+1) =T(k+2)—T(k+1) precise information about the functiaf{v) = >_ -, c(n)

k25 | 5)° - (k/p;)* if we know the behavior of£C(s). In our context we have
k=1 ({ pj J ) k=1 ¢(n) =T(n+2) — T(n), that is,
c+iT 3\s
=piL(s) = Ei(s), T(n)=T(2)+ lim —/ Tv(s)u ds (16)
T—o0 2m1 0T s
where
o0 whereT'(s) is given by (15). Informally, one shifts the line
Z (k+2)=T(k+1)) of integration to the left and collects the contributionenfr
k=1 the residues of the (polar) singularities at= o,, s = so
1 1 and s = 0; if the log(1/p;) are rationally related there are
X Gip s (e, (13) infinitely many polar singularities on the lirfg(s) = so that
J QTJJ 2) contribute to the periodic tern¥(¢). Details can be found in
Defining E(s) = 377" b;E;(s) andG(s) = X7, b;G(s) [11].
we finally obtain the relation ' B. Proof of Theorem 2
B g( )+ G(s) — E(s) Finally we indicate the proof of Theorem 2 for the non-
T(s) = ) (14) symmetric binary case. For simplicity, we shall writdor p;
1_ZJ 1 05 P} andq for po =1—p # p;.
The same procedure app"es if some of ﬂjeare positive We recall thaC(n, y) satisfies the recurrence (1) with initial
leading to ' conditionsC(0,y) = 0 and C(1,y) = 1. It is clear that for
~ g(s) +G(s) — E(s) every fixed positive real number we can apply Theorem 3.
T(s) = 1-57 (b, +0,)p3’ (15)  However, we have to be careful since we need an asymptotic
VEG)

o . representation fo€'(n,y) uniformly for y in an interval that
with a slightly modified functiong7(s) and E(s). containsl in its interior. Note thaC'(n,1) = 1.



For the proof of Theorem 2, one has to consider tH&y the convergence theorem for the Laplace transform or

Dirichlet series

Cls,1) :Z C(n+2,y)—C’(n—|—1,y).

nS

n=1
For simplicity we just consider here the cage> 1. Then
C(s,y) converges fofR(s) > so(y), wheresy(y) denotes the
real zero of the equatiop(p**! + ¢°*1) = 1. We find

Goncharov theorem (see [24]) this proves the normal limitin
distribution asn — oo and also convergence of (centralized)
moments.
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—1)— E(s,
Cls,y) = 1(3 y(p.)9+l _,_(qsfz)’

where E(s,y) converges fofR(s) > so(y) — 1 and satisfies
E(0,y) =0 and E(s, 1) = 0.

Then by the Wiener-lkehara theorem only the residue dtl
so(y) contributes to the main asymptotic leading term. (Recal
that we just consider the cage> 1 and the irrationally related
case). We thus have

(y=1) = Bls.u)m-3/2
sL—ypt gt OV

_ ((y=1) = E(s0(y),9))(n — 3/2)%W)
= s S (1+0(1)).
—s0(y)(log(p)p oW *! + log(q)g* W) +1)) 7

The essential but non-trivial observation is that this gstptic
relation holds uniform for in an interval around. In order (8]
to make this precise we can use the Mellin-Perron formulg,

from Theorem 4
C —C(2 — et C L%)S d
(n,y) = (,y)+2 . (5,9) s
™ c—100 S

and apply the methods presented in [11] which can be madg
uniform in y; this works for the irrationally related case aj ]
well as for the rationally related case. Hence we find (in i
cases)

(31
(4
(5]
(6]

C(n,y) ~ Res <

[10]

[13]
C(n,y) = (1+ Oy — 1))n*@ (1 + o(1))

14

uniformly for realy that are contained in an interval arounc[l ]
1; note that the casg < 1 can be handled similarly and leadd15]
to the same result. Finally by using the local expansion (16]

o) = L+ (5~ ) - 1P +0(-1°). 47)

and by settingy = e¢!/(°s™""* e obtain 18]

s 1 Hy 1\¢ 3/ 19
n*W = exp <Et logn + <ﬁ — E) 35 +O0(t°/ 10g”)>[ ]
[20]

and consequently
[21]

E {ennt/m] e (n ewm)
) [22]
1 H. 1\¢
exp <Et logn + <H_§’ - E) 5) (14 o(1)).
Hence, we arrive at
E {etwn—% mgn)/m} — o~ (t/H)VIogoR {ew/m

(18)

[23]
[24]

[25]

M
T

e (

) +o(1).
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