
Analysis of a Block Arithmetic Coding:
Discrete Divide and Conquer Recurrences

Michael Drmota
Inst. Discrete Mathematics and Geometry,

TU Wien,
A-1040 Wien, Austria,

Email: michael.drmota@tuwien.ac.at

Wojciech Szpankowski
Department of Computer Science,

Purdue University,
West Lafayette, IN 47907-2066 U.S.A.,

Email: spa@cs.purdue.edu

Abstract—In 1993 Boncelet introduced a block arithmetic
scheme for entropy coding that combines advantages of stream
arithmetic coding with algorithmic simplicity. It is a vari able-
to-fixed length encoding in which the source sequence is parti-
tioned into variable length phrases that are encoded by a fixed
length dictionary pointer. The parsing is accomplished through
a complete parsing tree whose leaves represent phrases. This
tree, in its suboptimal heuristic version, is constructed by a
simple divide and conquer algorithm, whose analysis is the
subject of this paper. For a memoryless source, we first derive
the average redundancy and compare it to the (asymptotically)
optimal Tunstall’s algorithm. Then we prove a central limit
theorem for the phrase length. To establish these results, we
apply powerful techniques such as Dirichlet series, Mellin-Perron
formula, and (extended) Tauberian theorems of Wiener-Ikehara.

I. I NTRODUCTION

We present a comprehensive analysis of a data compression
algorithm due to Boncelet [3] known asBlock Arithmetic
Coding (BAC). Boncelet’s algorithm is a variable-to-fixed
data compression scheme. To recall, a variable-to-fixed length
encoder partitions a source string over anm-ary alphabetA
into a concatenation of variable-length phrases. Each phrase
belongs to a given dictionary of source strings. A uniquely
parsable dictionary is represented by acomplete parsing tree,
i.e., a tree in which every internal node has allm children
nodes. The dictionary entries correspond to theleavesof the
associated parsing tree. The encoder represents each parsed
string by a fixed length binary code corresponding to its
dictionary entry. There are several well known variable-to-
fixed algorithms; e.g., Tunstall and Khodak schemes (cf. [10],
[17], [25]). Boncelet’s algorithm is based on adivide and
conquerstrategy, and therefore is fast and easy to implement.

Arithmetic entropy coders have been intensively studied in
literature [9], [20], [21]. They are stream coders: an arbitrary
long input sequence outputs a corresponding output stream.
One disadvantage is that long input blocks are prone to the
effect of transmission errors. Furthermore, in some applica-
tions the encoding and decoding are too complicated to be
done in real time. On the other hand, Tunstall variable-to-
fixed length scheme requires searching a codebook to find the
most probable input sequence for the next splitting. To cir-
cumvent these difficulties, Boncelet designed a simple divide
and conquer scheme that we briefly describe next.

In its simplest form – to which we restrict ourselves –
Boncelet builds a parsing tree by splitting a fixed numbern of
leaves (codewords) into subtrees of predetermined number of
leaves. The number of leaves in each subtree is proportional
to the probability of the alphabet symbols. For example, for
a binary alphabet with probabilitiesp1 and p2 = 1 − p1 the
expected phrase lengthd(n) satisfies the following recurrence
(other parameters such as variance, generating function ofthe
phrase length fulfill similar recurrences)

d(n) = 1 + p1d (⌊p1n+ δ⌋) + p2d (⌈p2n− δ⌉)

where is δ is a constant. This equation is an example of
a generaldiscrete divide and conquer recurrencethat we
studied extensively in [11]. We shall adopt it here in order to
present a comprehensive analysis of the Boncelet’s algorithm
performance including its redundancy and limiting distribution
of the phrase length.

A question arises how the Boncelet algorithm compares to
the (asymptotically) optimal Tunstall algorithm. In Theorem 1
and Corollary 1 we provide an answer by first computing the
redundancy of the Boncelet scheme (i.e., the excess of code
length over the optimal code length) and compare it to the
redundancy of the Tunstall code. Then in Theorem 2 we also
prove that the phrase length of Boncelet’s scheme obeys the
central limit law, as the Tunstall algorithm [10].

Literature on Boncelet’s algorithm anddiscretedivide and
conquer recurrences is very scarce. To the best of our knowl-
edge, there is no precise redundancy analysis for the Boncelet’s
algorithm. In [3] some bounds on the average phrase length
are derived. The Central Limit Law for the phrase length
presented in Theorem 2 is new, too. Furthermore, we believe
our contribution goes beyond analyzing precisely Boncelet’s
algorithm performance. We accomplish it by developing a
methodology for solving generaldiscretedivide and conquer
recurrences (cf. [11]). The literature oncontinuousdivide and
conquer recurrence is very extensive [1], [6], [5], however,
the discrete version of the recurrence has received much less
attention. Flajolet and Golin [13] and Cheung et al. [4] use
similar techniques to ours, however, their recurrences aremuch
simpler and restricted top1 = 0.5 (see also [12], [16]). We
apply a combination of methods such as Tauberian theorems
and Mellin-Perron techniques.

1



II. M AIN RESULTS

Let us start with a succinct description of the Boncelet algo-
rithm in terms of its parsing tree. We consider a memoryless
source over a general alphabetA of sizem with probabilities
of symbols denoted aspi for i = 1, . . . ,m.

For fixed n (representing the number of leaves in the
parsing tree and hence also the number of distinct phrases or
codewords), the algorithm in each step createsm subtrees of
predetermined number,ni, of leaves (phrases). This continues
recursively until less thanm leaves are left. For example, for
a binary alphabet, the rootn is split into two subtrees with the
number of leaves, respectively, equal ton1 = ⌊p1n+ δ⌋ and
n2 = ⌈p2n− δ⌉ for someδ ∈ (0, 1) that satisfies2p1+δ < 2.

Let {v1, . . . vn} denote the phrases of the Boncelet code
that correspond to the paths from the root to leaves of the
parsing tree, and letℓ(v1), . . . , ℓ(vn) be the correspond-
ing phrase lengths. Furthermore, if(i1, i2, . . . , iℓ(vk)) (with
ij ∈ {1, . . . ,m}) encodes the path from the root to phrase
vk we setP (vk) = pi1pi2 · · · piℓ(vk)

. ThenP (v1), . . . , P (vn)
sum up to1 and represent a probability distribution on the
phrases that corresponds to the distribution of phrases for
a memoryless source. We denote byDn the length of a
phrase corresponding to the probability distributionP , that is,
P[Dn = ℓ(vk)] = P (vk). Its probability generating function
is defined asC(n, y) = E yDn =

∑n
j=1 P (vj)y

ℓ(vj). For a
binary alphabet, the Boncelet splitting procedure leads tothe
following recurrence onC(n, y) for n ≥ 2

C(n, y) = p1 y C (⌊p1n+ δ⌋ , y)+p2 y C (⌈p2n− δ⌉ , y) (1)

with initial conditionsC(0, y) = 0 andC(1, y) = 1 and some
δ. Then the average phrase length,d(n), defined asEDn :=
d(n) =

∑n
j=1 P (vj) ℓ(vj) = C′(n, 1) satisfies the following

recurrence

d(n) = 1 + p1d (⌊p1n+ δ⌋) + p2d (⌈p2n− δ⌉) (2)

with d(0) = d(1) = 0. In general, for anm-ary alphabet
recurrence (2) becomes

C(n, y) = y

m∑

i=1

piC([pin+ δi], y) (3)

where[x] is the quantized value ofx; in our case it is replaced
either by the floor function or the ceiling function.

These recurrences (1)–(3) are special cases of a general
divide and conquer recurrence of the following form: For
m ≥ 1, let p1, . . . , pm, b1, . . . , bm andb′1, . . . , b

′
m be positive

real numbers such thatpj < 1 for 1 ≤ j ≤ m. Then given
T (0) ≤ T (1) for n ≥ 2 we set

T (n) = an +
m∑

j=1

bjT (⌊pjn+ δj⌋) +
m∑

j=1

b′jT
(⌈
pjn+ δ′j

⌉)

(4)
where(an)n≥2 is a knownnon-negativeand non-decreasing
sequence. We also assume that2pj + δj < 2 and2pj + δ′j ≤ 1
(for 1 ≤ j ≤ m). In the next section we present in Theorem 3
a general solution of (4) as proved in [11]; we note that it’s

proof requires powerful tools of analytic combinatorics such
as Dirichlet series [2], [24] and complex asymptotics [24].

Our first result concerns the average redundancy of Bon-
celet’s algorithm. To present it succinctly, we need to introduce
some properties ofpi.

Definition 1: We say that log(1/p1), . . . , log(1/pm) are
rationally related if there exists a positive real numberL
such thatlog(1/p1), . . . , log(1/pm) are integer multiples of
L, that is, log(1/pj) = njL, nj ∈ Z, (1 ≤ j ≤
m) where gcd(n1, . . . , nm) = 1. Similarly, we say that
log(1/p1), . . . , log(1/pm) are irrationally related if they are
not rationally related.
Example. If m = 1, then we are always in the rationally
related case. In the binary casem = 2, the numberslog(1/p1),
log(1/p2) are rationally related if and only if the ratio
log(1/p1)/ log(1/p2) is rational.

Theorem 1:Consider anm-ary memoryless source with
positive probabilitiespi > 0 and the entropy rateH =∑m

i=1 pi log(1/pi). Let d(n) = EDn denote the expected
phrase length of the binary Boncelet code.
(i) If log(1/p1), . . . log(1/pm) are irrationally related, then

d(n) =
1

H
logn−

α

H
+ o(1), (5)

where

α = E
′
(0)−G

′
(0)−H −

H2

2H
, (6)

H2 =
∑m

i=1 pi log
2 pi, andE

′
(0) andG

′
(0) are the derivatives

at s = 0 of the Dirichlet series defined in Section III.A (for a
binary alphabet).
(ii) If log(1/p1), . . . log(1/pm) are rationally related, then

d(n) =
1

H
logn−

α+Ψ(logn)

H
+O(n−η) (7)

for someη > 0, whereΨ(t) is a periodic function of bounded
variation that has usually an infinite number of discontinuities.

For practical data compression algorithms, it is important
to achieve low redundancy defined as the excess of the code
length over the optimal code lengthnH . For variable-to-fixed
codes, the average redundancy is expressed as [10], [22]

Rn =
logn

EDn
−H =

logn

d(n)
−H.

Our previous results imply immediately the following.
Corollary 1: Let Rn denote the redundancy of the Boncelet

code.
(i) If log(1/p1), . . . log(1/pm) are irrationally related, then

Rn =
Hα

logn
+ o

(
1

logn

)
(8)

with α defined in (6).
(ii) If log(1/p1), . . . log(1/pm) are rationally related, then

Rn =
H(α+Ψ(logn))

logn
+ o

(
1

logn

)
(9)

whereΨ(t) is a periodic function of bounded variation.



We should compare the redundancy of Boncelet’s algorithm
to asymptotically optimal Tunstall algorithm. From [10], [22]
we know that the redundancy of the Tunstall code is

RT
n =

H

logn

(
− logH −

H2

2H

)
+ o

(
1

logn

)

for irrational case; in the rational case there is also a periodic
term in the leading asymptotics.

Example. Considerp = 1/3 andq = 2/3. Then one computes

α =
∑

m≥1

d(m+ 2)− d(m+ 1)

3

(
log

⌈
3m+

5

2

⌉
− log(3m)

)

+ 2
∑

m≥1

d(m+ 2)− d(m+ 1)

3

(
log

⌊
3

2
m+

5

4

⌋
− log(

3m

2
)

)

+
log 3

3
−H −

H2

2H
≈ 0.0518

while for the Tunstall code− logH − H2

2H ≈ 0.0496.

Finally, we deal with the limiting distribution of the phrase
lengthDn. The proof is presented in the next section.

Theorem 2:Consider a memoryless source generating a
sequence of lengthn parsed by the Boncelet algorithm. If
(p1, . . . , pm) is not uniformly distributed, then the phrase
lengthDn satisfies the central limit law, that is,

Dn − 1
H logn√(

H2

H3 − 1
H

)
logn

→ N(0, 1),

whereN(0, 1) denotes the standard normal distribution, and

EDn =
logn

H
+O(1), VarDn ∼

(
H2

H3
−

1

H

)
logn

for n → ∞.
III. A NALYSIS AND ASYMPTOTICS

We first present a general solution to our general discrete
divide and conquer recurrence (4). We use analytic tools, in
particular Dirichlet series. For our purpose, we define the
following Dirichlet series

T̃ (s) =

∞∑

n=1

T (n+ 2)− T (n+ 1)

ns
, Ã(s) =

∞∑

n=1

an+2 − an+1

ns
.

Recall thatan of (4) is non-negative and non-decreasing and
we also assume thatbj ≥ 0 and b′j ≥ 0. If the sequencean
is constant (forn ≥ n0) we setσa = −∞. Otherwise we set
σa = inf{σ : an = O(nσ)}. Thenσa is the the abscissa of
absolute convergenceσa of Ã(s). Furthermore, lets0 be the
unique real solution of the equation

m∑

j=1

(bj + b′j) p
s
j = 1. (10)

By using the Arka-Bazzi theorem [1] it follows thatT (n) =
O(nmax{s0,σa}+ε) for every ε > 0. This means that the
Dirichlet seriesT̃ (s) converges forℜ(s) > max{s0, σa}. We
will prove below that we actually have a representation of the

form (15) for some entire functionG(s) and some analytic
function E(s) that is analytic forℜ(s) > max{s0, σa} − 1.
For the precise asymptotic analysis, we appeal to the Tauberian
theorem by Wiener-Ikehara [7], [19], and an analysis based on
the Mellin-Perron formula [2], [24]. Both approaches rely on
the singular behavior of̃T (s). From this representation it is
clear that the asymptotic behavior ofT (n) will depend on the
singular behavior ofÃ(s) and the roots of (10) (that include
s0).

Actually, we have to deal with three different situations.
If σa < s0, then the asymptotics ofT (n) is driven by the
recurrence; in the caseσa = s0 there is an interaction between
the internal structure of the recurrence and the sequencean
(resonance); and in the caseσa > s0 the asymptotic behavior
of an dominates.

In [11] we proved a Master Theorem for our general discrete
divide and conquer recurrence that we state below in slightly
simplified form.

Theorem 3 (DISCRETEMASTER THEOREM): Let T (n) be
the divide and conquer recurrence defined in (4), wherebj and
b′j are non-negative withbj+b′j > 0 and the sequence(an)n≥2

is non-negative and non-decreasing. Letσa denote the abscissa
of absolute convergence of the Dirichlet seriesÃ(s) and s0
the real root of (10). Ifσa ≥ s0 ≥ 0 assume further thatan
is nondecreasing sequence given byan = Cnσ(logn)α with
C > 0 (that is,σa = σ).
(i) If log(1/p1), . . . , log(1/pm) are irrationally related, then
T (n) becomes asn → ∞

C1 + o(1)
if σa < 0 ands0 < 0,

C2 logn+ C′
2 + o(1)

if σa < s0 ands0 = 0,
C3(logn)

α+1 · (1 + o(1))
if σa = s0 = 0,

C4 n
s0 · (1 + o(1))

if σa < s0 ands0 > 0,
C5n

s0(logn)α+1 · (1 + o(1))
if σa = s0 > 0 andα 6= −1,

C5n
s0 log logn · (1 + o(1))

if σa = s0 > 0 andα = −1,
C6 (logn)

α(1 + o(1))
if σa = 0 ands0 < 0,

C7 n
σa(logn)α · (1 + o(1))

if σa > s0 andσa > 0,

(11)

where the explicitly computable constants
C1, C2, C3, C4, C5, C6, C7 are positive andC′

2 is real.
(ii) If log(1/p1), . . . , log(1/pm) are rationally related, then
T (n) behaves as in the irrationally related case with the
following two exceptions:

C2 logn+ Ψ2(log n) + o(1) if σa < s0 ands0 = 0,
Ψ4(logn)n

s0 · (1 + o(1)) if σa < s0 ands0 > 0,
(12)

whereC2 is positive andΨ2(t),Ψ4(t) are periodic functions
with periodL (with usually countably many discontinuities).



We now briefly summarize the main steps to establish
Theorem 3 and then provide a proof of Theorem 2.

A. Sketch of Proof of Theorem 3

We first apply the recurrence relation (4) to find the Dirichlet
seriesT̃ (s). To simplify our presentation, we assume thatb′j =
0, that it, we consider only the floor function on the right hand
side of the recurrence (4). We thus obtain

T̃ (s) = Ã(s)+

+
m∑

j=1

bj

∞∑

n=1

T (⌊pj(n+ 2) + δj⌋)− T (⌊pj(n+ 1) + δj⌋)

ns
.

Let

n =

⌊
k + 2− δj

pj

⌋
− 2

for some integerk. For this k we have⌊pj(n+ 1) + δj⌋ =
k + 1 and ⌊pj(n+ 2) + δj⌋ = k + 2. For later use we split
betweenk ≤ 0 andk ≥ 1. Hence, setting

Gj(s) =
∑

3pj+δj−2≤k≤0

T (k + 2)− T (k + 1)(⌊
k+2−δj

pj

⌋
− 2
)s

we obtain
∞∑

n=1

T (⌊pj(n+ 2) + δj⌋)− T (⌊pj(n+ 1) + δj⌋)

ns

= Gj(s) +
∞∑

k=1

T (k + 2)− T (k + 1)(⌊
k+2−δj

pj

⌋
− 2
)s .

We now compare the last sum topsj T̃ (s) and obtain

∞∑

k=1

T (k + 2)− T (k + 1)(⌊
k+2−δj

pj

⌋
− 2
)s =

∞∑

k=1

T (k + 2)− T (k + 1)

(k/pj)s

= psj T̃ (s)− Ej(s),

where

Ej(s) =

∞∑

k=1

(T (k + 2)− T (k + 1))

×



 1

(k/pj)s
−

1(⌊
k+2−δj

pj

⌋
− 2
)s



 . (13)

Defining E(s) =
∑m

j=1 bjEj(s) andG(s) =
∑m

j=1 bjGj(s)
we finally obtain the relation

T̃ (s) =
Ã(s) +G(s) − E(s)

1−
∑m

j=1 bj p
s
j

. (14)

The same procedure applies if some of theb′j are positive
leading to

T̃ (s) =
Ã(s) +G(s)− E(s)

1−
∑m

j=1(bj + b′j) p
s
j

, (15)

with a slightly modified functionsG(s) andE(s).

By our previous assumptions, we know the analytic behav-

iors of Ã(s) and
(
1−

∑m
j=1 bj p

s
j

)−1

: Ã(s) has a pole-like

singularity ats = σa (if σa ≥ s0) and a proper continuation
to a complex domain that contains the (punctuated) line
ℜ(s) = σa, s 6= σa, as discussed in [11]. On the other
hand,(1 −

∑m
j=1 bj p

s
j)

−1 has a polar singularity ats = s0
(and infinitely many other poles on the lineℜ(s) = s0
if the numberslog(1/pj) are rationally related), and also a
meromorphic continuation to a complex domain that contains
the lineℜ(s) = s0. Heuristically, the asymptotic behavior (of
the partial sums) of the coefficients of̃T (s) is reflected by
the singular behavior of̃T (s). Recall thatT (n) = O(nσ)
implies that the series̃T (s) converges forℜ(s) > σ. Hence,
if s = σ is a singularity ofT̃ (s), then we expect thatT (n)
behaves (more or less) likenσ. Actually there is a very precise
correspondence by Tauberian theorems (of Wiener-Ikehara and
Delange, see [7], [11], [19]) ifσ is the only singularity on the
line ℜ(s) = σ. Hence, Tauberian theorems can be applied if
the log(1/pj) are irrationally related. In the rationally related
case the problem is more subtle but can be handled with the
help of the Mellin-Perron formula stated next (Theorem 4).

In our formulation we use Iverson’s notation[[P ]] which is
1 if P is a true proposition and0 else.

Theorem 4 (see [2]):For a sequencec(n) define the
Dirichlet seriesC(s) =

∑∞
n=1 c(n)n

−s and assume that
abscissa of absolute convergenceσa is finite or −∞. Then
for all σ > σa and allx > 0

∑

n<x

c(n) +
c(⌊x⌋)

2
[[x ∈ Z]] = lim

T→∞

1

2πi

∫ σ+iT

σ−iT

C(s)
xs

s
ds.

Note that the Mellin-Perron formula enables us to obtain
precise information about the functionc(v) =

∑
n≥v c(n)

if we know the behavior of1sC(s). In our context we have
c(n) = T (n+ 2)− T (n), that is,

T (n) = T (2) + lim
T→∞

1

2πi

∫ c+iT

c−iT

T̃ (s)
(n− 3

2 )
s

s
ds (16)

where T̃ (s) is given by (15). Informally, one shifts the line
of integration to the left and collects the contributions from
the residues of the (polar) singularities ats = σa, s = s0
and s = 0; if the log(1/pj) are rationally related there are
infinitely many polar singularities on the lineℜ(s) = s0 that
contribute to the periodic termΨ(t). Details can be found in
[11].

B. Proof of Theorem 2

Finally we indicate the proof of Theorem 2 for the non-
symmetric binary case. For simplicity, we shall writep for p1
andq for p2 = 1− p 6= p1.

We recall thatC(n, y) satisfies the recurrence (1) with initial
conditionsC(0, y) = 0 andC(1, y) = 1. It is clear that for
every fixed positive real numbery we can apply Theorem 3.
However, we have to be careful since we need an asymptotic
representation forC(n, y) uniformly for y in an interval that
contains1 in its interior. Note thatC(n, 1) = 1.



For the proof of Theorem 2, one has to consider the
Dirichlet series

C(s, y) =

∞∑

n=1

C(n+ 2, y)− C(n+ 1, y)

ns
.

For simplicity we just consider here the casey > 1. Then
C(s, y) converges forℜ(s) > s0(y), wheres0(y) denotes the
real zero of the equationy(ps+1 + qs+1) = 1. We find

C(s, y) =
(y − 1)− Ẽ(s, y)

1− y(ps+1 + qs+1)
,

whereE(s, y) converges forℜ(s) > s0(y) − 1 and satisfies
Ẽ(0, y) = 0 and Ẽ(s, 1) = 0.

Then by the Wiener-Ikehara theorem only the residue at
s0(y) contributes to the main asymptotic leading term. (Recall
that we just consider the casey > 1 and the irrationally related
case). We thus have

C(n, y) ∼ Res

(
((y − 1)− Ẽ(s, y))(n− 3/2)s

s(1− y(ps+1 + qs+1))
; s = s0(y)

)

=
((y − 1)− Ẽ(s0(y), y))(n− 3/2)s0(y)

−s0(y)(log(p)ps0(y)+1 + log(q)qs0(y)+1))
(1 + o(1)).

The essential but non-trivial observation is that this asymptotic
relation holds uniform fory in an interval around1. In order
to make this precise we can use the Mellin-Perron formula
from Theorem 4

C(n, y) = C(2, y) +
1

2πi

∫ c+i∞

c−i∞
C(s, y)

(
n− 3

2

)s

s
ds

and apply the methods presented in [11] which can be made
uniform in y; this works for the irrationally related case as
well as for the rationally related case. Hence we find (in all
cases)

C(n, y) = (1 +O(y − 1))ns0(y)(1 + o(1))

uniformly for real y that are contained in an interval around
1; note that the casey ≤ 1 can be handled similarly and leads
to the same result. Finally by using the local expansion

s0(y) =
y − 1

H
+

(
H2

2H3
−

1

H

)
(y−1)2+O((y−1)3), (17)

and by settingy = et/(logn)1/2 we obtain

ns0(y) = exp

(
1

H
t
√
logn+

(
H2

H3
−

1

H

)
t2

2
+O(t3/

√
logn)

)

and consequently

E

[
eDnt/

√
logn

]
= C

(
n, et/

√
logn

)
=

exp

(
1

H
t
√
logn+

(
H2

H3
−

1

H

)
t2

2

)
(1 + o(1)).

Hence, we arrive at

E

[
et(Dn− 1

H logn)/
√
logn

]
= e−(t/H)

√
log v

E

[
eDnt/

√
logn

]

(18)

= e
t2

2 (
H2
H3 − 1

H ) + o(1).

By the convergence theorem for the Laplace transform or
Goncharov theorem (see [24]) this proves the normal limiting
distribution asn → ∞ and also convergence of (centralized)
moments.
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