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Divide-and-conquer recurrences are one of the most studied equations in computer science. Yet,
discrete versions of these recurrences, namely

T (n) = an +

m∑

j=1

bjT (⌊pjn + δj⌋) +

m∑

j=1

b̄jT
(⌈

pjn + δj

⌉)

for some known sequence an and given bj , bj , pj and δj , δj , present some challenges. The discrete
nature of this recurrence (represented by the floor and ceiling functions) introduces certain oscil-
lations not captured by the traditional Master Theorem, for example due to Akra and Bazzi who
primary studied the continuous version of the recurrence. We apply powerful techniques such as
Dirichlet series, Mellin-Perron formula, and (extended) Tauberian theorems of Wiener-Ikehara to
provide a complete and precise solution to this basic computer science recurrence. We illustrate

applicability of our results on several examples including a popular and fast arithmetic coding
algorithm due to Boncelet for which we estimate its average redundancy and prove the Central
Limit Theorem for the phrase length. To the best of our knowledge, discrete divide and con-
quer recurrences were not studied in this generality and such detail; in particular, this allows us to
compare the redundancy of Boncelet’s algorithm to the (asymptotically) optimal Tunstall scheme.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Com-

plexity]: Nonnumerical Algorithms and Problems—Computations on discrete structures; G.2.1
[Discrete Mathematics]: Combinatorics—Generating functions; counting problems

General Terms: Algorithms

Additional Key Words and Phrases: Divide-and-conquer recurrence, mergesort, Karatsuba algo-
rithm, Strassen algorithm, Boncelet’s data compression algorithm, Dirichlet series, Mellin-Perron
formula, Tauberian theorem

1. INTRODUCTION

Divide and conquer is a very popular strategy to design algorithms. It splits the in-
put into several smaller subproblems, solving each subproblem separately, and then
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knitting together to solve the original problem. Typical examples include heap-
sort, mergesort, discrete Fourier transform, queues, sorting networks, compression
algorithms, and so forth [Flajolet and Sedgewick 2008; Cormen et al. 1990; Knuth
1998; Roura 2001; Szpankowski 2001]. While it is relatively easy to determine the
general growth order for the algorithm complexity, a precise asymptotic analysis is
often appreciably more subtle. Our goal is to present such an analysis for discrete
divide and conquer recurrences.

The complexity of a divide and conquer algorithm is well described by its divide
and conquer recurrence. We assume that the problem is split into m subproblems.
It is natural to assume that there is a cost associated with combining subproblems
together to find the solution. We denote such a cost by an, where n is the size of
the original problem. In addition, each subproblem may contribute in a different
way to the final solution; we represent this by coefficients bj and bj for 1 ≤ j ≤
m. Finally, we postulate that the original input n is divided into subproblems of
size ⌊hj(n)⌋ and ⌈hj(n)⌉, 1 ≤ j ≤ m, where hj(x) and hj(x) are functions that
satisfy hj(x) ∼ hj(x) ∼ pjx for x → ∞ and for some 0 < pj < 1. We aim at
presenting precise asymptotic solutions of discrete divide and conquer recurrences
of the following form [Cormen et al. 1990]

T (n) = an +

m∑

j=1

bjT (⌊hj(n)⌋) +

m∑

j=1

bjT
(⌈

hj(n)
⌉)

(n ≥ 2). (1)

A popular approach to solve this recurrence is to relax it to a continuous version
of the following form (hereafter we assume bj = 0 for simplicity)

T (x) = a(x) +

m∑

j=1

bjT (hj(x)), x > 1, (2)

where hj(x) ∼ pjx with 0 < pj < 1, and solve it using a Master Theorem as for
example in [Cormen et al. 1990; Roura 2001]. This is usually quite powerful and
provides the order of growth for T (x). The most general solution of (2) is due
to Akra and Bazzi [Akra and Bazzi 1998] who proved (under certain regularity
assumptions, namely that a′(x) is of polynomial growth and that hj(x) − pjx =
O(x/(log x)2))

T (x) = Θ

(
xs0

(
1 +

∫ x

1

a(u)

us0+1
du

))
,

where s0 is a unique real root of
∑

j

bjps
j = 1. (3)

Actually this also leads directly to

T (n) = Θ


ns0


1 +

n∑

j=1

aj

js0+1






in the discrete version provided that an+1 − an is at most of polynomial growth.
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For more precise results of the continuous version one can apply Mellin transform
techniques [Flajolet et al. 1995; Flajolet and Sedgewick 2008; Szpankowski 2001].
Indeed, let

t(s) =

∫ ∞

0

T (x)xs−1dx

be the Mellin transform of T (x). Then using standard properties of the Mellin
transform applied to the (slightly simplified) divide and conquer recurrence T (x) =
a(x) +

∑m
j=1 bjT (pjx) we arrive at

t(s) =
a(s) + g(s)

1 −
∑m

j=1 bjp−s
i

,

where a(s) is the Mellin transform of a(x), and g(s) is an additional function due
to the initial conditions. Suppose that a(s) and g(s) are analytic for ℜ(s) ∈ (c, d)
such that s0 ∈ (c, d), where s0 is the root of 1 =

∑
j bjp−s

i . Then we recover the
asymptotics of T (x) showing that

T (x) ∼ Cxs0 or T (x) ∼ Ψ(log x)xs0

where C is a constant, and Ψ(t) is a (in general) discontinuous periodic function
when the logarithms log pj are rationally related (i.e., all ratios (log pi)/(log pj) are
rational, see Definition 1)

Discrete versions of the divide and conquer recurrence, given by (1) are more
subtle and require a different approach. We will use Dirichlet series (closely related
to the Mellin transform) that better captures the discrete nature of the recurrence,
and then apply Tauberian theorems (and also the Mellin-Perron formula) to obtain
asymptotics for T (n). Precise results are presented in Theorem 2 in Section 3. In
the particular case of sequences an of the form an = Cna(log n)b (with C > 0 and
a, b ≥ 0) Theorem 2 has a more applicable form that we state in Theorem 1 of
Section 2.

As in the continuous case the solution depends crucially on the relation between
log p1, . . . , log pm; when log p1, . . . , log pm are rationally related the final solution
will exhibit some oscillation that disappears when log p1, . . . , log pm are irrationally
related. This phenomenon was already observed for other discrete recurrences [De-
lange 1975; Fayolle et al. 1986; Flajolet and Sedgewick 2008; Grabner and Hwang
2005; Szpankowski 2001].

As a featured application of our results and techniques developed for solving the
general discrete divide and conquer recurrence, we shall present a comprehensive
analysis of a data compression algorithm due to Boncelet [Boncelet 1993], where we
need even more precise results than stated in Theorem 2. Boncelet’s algorithm is a
variable-to-fixed data compression scheme. One of the best variable-to-fixed scheme
belongs to Tunstall [Tunstall 1967]; another variation is due to Khodak [Khodak
1969]. Boncelet’s algorithm is based on the divide and conquer strategy, and there-
fore is very fast and easy to implement. The question arises how it compares to
the (asymptotically) optimal Tunstall algorithm. In Theorem 3 and Corollary 1
we provide an answer by first computing the redundancy of the Boncelet scheme
(i.e., the excess of code length over the optimal code length) and compare it to the
redundancy of the Tunstall code. In this case precise asymptotics of the Boncelet

Journal of the ACM, Vol. V, No. N, Month 20YY.



4 · M. Drmota and W. Szpankowski

recurrence are crucial. We also prove in Theorem 7 of Section 6 that the phrase
length of the Boncelet’s algorithm obeys the central limit law, as for the Tunstall
algorithm [Drmota et al. 2010]. This result actually generalizes divide and conquer
recurrences to divide and conquer functional recurrences and allows us – under
some additional assumptions – to prove a general central limit theorem.

The literature on continuous divide and conquer recurrence is very extensive.
We mention here [Akra and Bazzi 1998; Choi and Golin 2001; Cormen et al. 1990].
The discrete version of the recurrence has received much less attention, especially
with respect to precise asymptotics. Flajolet and Golin [Flajolet and Golin 1954]
and Cheung et al. [Cheung et al. 2008] use similar techniques to ours, however,
their recurrence is a simpler one with p1 = p2 = 1/2. Erdős et al. [Erdös et al.
1987] apply renewal theory and Hwang [Hwang 2000] (cf. also [Grabner and Hwang
2005; Hwang and Janson 2011]) analytic techniques when dealing with similar re-
currences. The approach presented in this paper is generalized and somewhat
simplified by using a combination of methods such as Tauberian theorems and
Mellin-Perron techniques. To the best of our knowledge, there is no comprehensive
analysis of the discrete divide and conquer recurrences and therefore there is no
precise redundancy analysis for the Boncelet algorithm.

The paper is organized as follows. In the next section we present a short (but more
applicable) version of our main result with several applications. The main result
is then formulated in Section 3. The results for the Boncelet coding algorithm are
presented in Sections 4 and 6. All proofs are delayed till Sections 5. Furthermore,
in Appendix A we discuss analytic continuations properties of certain Dirichlet
series, and in the Appendix B we present the Wiener-Ikehara Tauberian theorem
and several extensions.

2. A DISCRETE MASTER THEOREM AND APPLICATIONS

In this section, we first present a version of the discrete master theorem for special
toll functions an = Cna(log n)b (C > 0, a, b ≥ 0). Then we discuss a number of
examples illustrating our master theorem.

2.1 A Simplified Discrete Master Theorem

We now consider a special toll function an = Cna(log n)b and formulate our mas-
ter theorem in this case. Its proof will follow from our general Discrete Master
Theorem 2 presented in Section 3 and proved in Section 5.

It turns out that asymptotic behavior of T (n) may depend on a relation between
log p1, . . . log pm. Therefore, we need the following definition.

Definition 1. We say that log p1, . . . , log pm are rationally related if there exists a
positive real number L such that log p1, . . . , log pm are integer multiples of L, that
is, log pj = −njL, nj ∈ Z>0, (1 ≤ j ≤ m). Equivalently this means that all ratios
(log pi)/(log pj) are rational. Without loss of generality we can assume that L is
as large as possible which implies that gcd(n1, . . . , nm) = 1. Similarly, we say that
log p1, . . . , log pm are irrationally related if they are not rationally related.

Example. If m = 1, then we are always in the rationally related case. In the
binary case m = 2, the numbers log p1, log p2 are rationally related if and only if
the ratio (log p1)/(log p2) is rational.
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Now we are in the position to formulate our first (simplified) discrete master
theorem.

Theorem 1 (Discrete Master Theorem — Special Case). Let T (n) be
the divide and conquer recurrence defined in (1) with an = Cna(log n)b (C > 0,
a, b ≥ 0) such that:

(A1) bj and bj are non-negative with bj + bj > 0,

(A2) hj(x) and hj(x) are increasing and non-negative functions such that hj(x) =
pjx + O(x1−δ) and hj(x) = pjx + O(x1−δ) for positive pj < 1 and δ > 0, with
hj(n) < n and hj(n) ≤ n − 1 for all n ≥ 2.

Furthermore, let s0 be the unique real solution of the equation

m∑

j=1

(bj + bj)ps0

j = 1.

Then the sequence T (n) has the following asymptotic behavior:

(i) If a > s0, then

T (n) =

{
C′na(log n)b + O

(
na(log n)b−1

)
if b > 0,

C′na + O(na−δ′

) if b = 0,

where δ′ = min{a − s0, δ} and

C′ =
C

1 −∑m
j=1(bj + bj)pa

j

.

(ii) If a = s0, then

T (n) = C′′na(log n)b+1 + O
(
na(log n)b

)

with

C′′ =
C

(b + 1)
∑m

j=1(bj + bj)pa
j log(1/pj)

.

(iii) If a < s0 (or if we just assume that an = O(na) for some a < s0 as long
as an is a non-negative and non-decreasing sequence), then for log p1, . . . , log pm

irrationally related

T (n) ∼ C′′′ns0 ,

where C′′′ is a positive constant. If log p1, . . . , log pm are rationally related and
if we also assume that

T (n + 1) − T (n) = O
(
ns0−η

)
(4)

for some η > 1 − δ, then

T (n) = Ψ(log n) ns0 + O
(

ns0−η′

)

where Ψ(t) is a positive and periodic continuous function with period L and η′ >
0.
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Remark 1. It should be remarked that the order of magnitude of T (n) can be
checked easily by the Akra-Bazzi theorem [Akra and Bazzi 1998]. In particular, if
we just know an upper bound for an which is of the form an = O(na(log n)b) – even
if an is not necessarily increasing – the Akra-Bazzi theorem provides an upper bound
for T (n) which is of form stated in Theorem 1. Hence the theorem can be easily
adapted to cover an of the form an = Cna(log n)b +O((na1(log n)b1 ) with a1 < a or
with a1 = a but b1 < b. We split up the solution T (n) into T (n) = T1(n) + T2(n),

where T1(n) corresponds to a
(1)
n = Cna(log n)b, for which we can apply Theorem 1,

and T2(n) corresponds to the error term a
(2)
n = O((na1 (log n)b1 ), for which we apply

the Akra-Bazzi theorem.
The same idea can be used for a bootstrapping procedure. Theorem 1 provides

the asymptotic leading term for T (n) that is (for example, in case (i)) of the form
C′na(log n)b. Hence, by setting T (n) = C′na(log n)b + S(n) we obtain a recurrence
for S(n) that is precisely of the form (1) with a new sequence an that is of smaller
order than the previous one. At this step we can either apply Theorem 1 a second
time or the Akra-Bazzi theorem.

Remark 2. Theorem 1 can be extended to the case an = Cna(log n)b, where a > 0
and b is an arbitrary real number. The same result holds with the only exception
a = s0 and b = −1. In this case we obtain

T (n) = C′′na log log n + O
(
na(log n)−1

)

with

C′′ =
C∑m

j=1 bjpa
j log(1/pj)

.

Remark 3. The third case (iii): a < s0, is of particular interest. Let us consider
first the irrationally related case. Even in this case it is not immediate to describe
the constant C′′′ explicitly. It depends heavily on an and also on T (n) and can be
written as

C′′′ =
Ã(s0) +

∑m
j=1 bj(Gj(s0) − Ej(s0)) +

∑m
j=1 bj(Gj(s0) − Ej(s0))

s0

∑m
j=1(bj + bj)ps0

j log(1/pj)
(5)

with

Ã(s) =
∞∑

n=1

an+2 − an+1

ns
,

and

Gj(s) =
∑

n<nj(1)

T (⌊hj(n + 2)⌋) − T (⌊hj(n + 1)⌋)

ns
+

T (2) − T (⌊hj(nj(1) + 1)⌋)

nj(1)
,(6)

Ej(s) =

∞∑

k=1

(T (k + 2) − T (k + 1))

(
1

(k/pj)s
− 1

nj(k)s

)
, (7)

where nj(k) = max{n ≥ 1 : hj(n + 1) < k + 2}, and

Gj(s) =
∑

n<nj(1)

T
(⌈

hj(n + 2)
⌉)

− T
(⌈

hj(n + 1)
⌉)

ns
+

T (2) − T
(⌈

hj(nj(1) + 1)
⌉)

nj(1)
,
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Ej(s) =

∞∑

k=1

(T (k + 2) − T (k + 1))

(
1

(k/pj)s
− 1

nj(k)s

)
,

where nj(k) = min{n ≥ 1 : hj(n + 2) > k + 1}. We will show in the proof that
the series Ã(s0), Ej(s0) and Ej(s0) actually converge. It should be also mentioned
that there is no general error term in the asymptotic relation T (n) ∼ C′′′ns0 .

In the rationally related case the periodic function Ψ(t) has a convergent Fourier
series Ψ(t) =

∑
k cke2kπix/L, where the Fourier coefficients are given by

ck =
Ã(sk) +

∑m
j=1 bj(Gj(sk) − Ej(sk)) +

∑m
j=1 bj(Gj(sk) − Ej(sk))

sk

∑m
j=1(bj + bj)ps0

j log(1/pj)
, (8)

where sk = s0 + 2kπi/L. In particular the constant coefficient c0 equals C′′′.
Note that it cannot be deduced from this representation that the Fourier series is
convergent. This makes the problem really subtle.

Remark 4. It turns out that the assumption (4): T (n + 1) − T (n) = O(ns0−η),
which we call small growth condition, is essential for the result T (n) ∼ Ψ(log n) ns0

actually holds, see the counter examples in Example 3. On the other hand the small
growth condition (4) is actually easy to check in practice. (Note also that in most
applications we have δ = 1 so that any η > 0 is sufficient.)

For example, if there exists n0 such that for all n ≥ n0 there exist j such that

⌊hj(n)⌋ = ⌊hj(n + 1)⌋ (and bj > 0) or ⌈hj(n)⌉ = ⌈hj(n + 1)⌉ (and bj > 0),
(9)

then the small growth condition (4) is satisfied for all η < s0 −s′, where s′ is defined
as the maximum of a and the real solutions of the equations

m∑

ℓ=1

(bℓ + bℓ)p
s
ℓ − bjps

j = 1

for which bj > 0, 1 ≤ j ≤ m, and

m∑

ℓ=1

(bℓ + bℓ)p
s
ℓ − bjps

j = 1

for which bj > 0, 1 ≤ j ≤ m. (The difference sequence S(n) = T (n + 1) − T (n)
satisfies a divide-and-conquer-like recurrence with a trivial upper bound of the form
Cns0−η.)

In particular, if p1 = p and p2 = 1 − p and if

h1(n) = p1n + δ and h2(n) = p2n − δ

(where b1 > 0 and b2 > 0) then it is easy to check that (9) holds and consequently
the small growth condition (4) is satisfied. This means that we do not have to care
about (4) for recurrences of the form

T (n) = an + b T (⌊pn + δ⌋) + b T (⌈(1 − p)n − δ⌉).

The proof runs as follows. Assume that ⌊p1n + δ⌋ < ⌊p1(n + 1) + δ⌋. This means
that (with m = ⌊p1n + δ⌋) m ≤ p1n + δ < m + 1 ≤ p1(n + 1) + δ. If we set x =
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{p1n+δ} = p1n+δ−m, then we have x+p1 ≥ 1 or p2 ≤ x. Since h1(n)+h2(n) = n
it follows that h2(n) = ⌈h2(n)⌉ − x. Hence h2(n + 1) = h2(n) + p2 ≤ ⌈h2(n)⌉ and
consequently ⌈hj(n)⌉ = ⌈hj(n + 1)⌉.

Note that if p1 is irrational, then we can also work with h1(n) = p1n + δ and
h2(n) = p2n − δ (where b1 > 0 and b2 > 0).

Remark 5. In several applications of case (ii) the second order term is of interest,
however, in contrast to the leading term the behavior of the second order term
depends again on the arithmetic properties of the log pi. For example, if a = b =
s0 = 0, that is, the recurrence is of the form

T (n) =

m∑

j=1

bjT (⌊pjn⌋) + C

with b1 + · · · + bm = 1 and if we are in the irrationally related case, then

T (n) = C′′ log n + C′′
2 + o(1),

where

C′′ =
C∑m

j=1 bj log(1/pj)

and C′′
2 is a constant that can be computed similarly as C′′′; see Example 10.

Furthermore, if we can assume a corresponding small growth condition of the form
T (n + 1) − T (n) = O(n−η) for some η > 0, then

T (n) = C′′ log n + Ψ(log n) + o(1),

where Ψ(t) is a continuous periodic function.
A similar statement holds in the case a = s0 = 1, b = 0. Here the correspond-

ing small growth condition is T (n + 1) − T (n) = O(n1−η) (for some η > 0), see
Examples 6 and 10.

2.2 Applications

We first illustrate our theorem on a few simple divide and conquer recurrences.
Some of these examples are also discussed in [Leighton 1996], where the growth
order of T (n) is determined. Note that we only consider examples for the case (iii)
and (ii), since they are more interesting.

Example 1. Consider the recurrence

T (n) = 2 T (⌊n/2⌋) + 3 T (⌊n/6⌋) + n log n.

Here we have a = b = 1. Furthermore the equation

2 · 2−s + 3 · 6−s = 1

has the (real) solution s0 = 1.402 . . . > 1 and it is easy to check that log(1/2) and
log(1/6) are irrationally related. Namely, if log(1/2)/ log(1/6) were rational, say
c/d then it would follow that 2d = 6c. However, this equation has no non-zero
integer solution. Hence by case (iii) we obtain

T (n) ∼ C′′′ns0 (n → ∞)

Journal of the ACM, Vol. V, No. N, Month 20YY.
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for some constant C′′′ > 0. By using (5) we find numerically that C′′′ = 5.61 . . ..
Note that n1(k) = 2k + 2 and n2(k) = 6k + 10. Figure 1 shows the precise behavior
of T (n).

Fig. 1. T (n) versus n from Example 1.

Example 2. The recurrence

T (n) = 2T (⌊n/2⌋) + 1 (with T (1) = 1)

is formally of the kind covered by Theorem 1: we have a = b = 0 and s0 = 1 > 0.
Since m = 1 we are in the rationally related case. However, it is easy to check that

T (n) = 2⌊log2 n⌋+1 − 1.

In particular we have T (2k) = 2k+1 − 1 and T (2k − 1) = 2k − 1. Consequently, the
small growth condition (4) is not satisfied. Actually we can write

T (n) = nΨ(log2 n) − 1

with Ψ(t) = 21−{t}, where {x} = x − ⌊x⌋ denotes the fractional part of x, that
is, the assertion of Theorem 1 holds formally, however, the the periodic function is
discontinuous at t = 0.

Next consider the same kind of recurrence with a different sequence an, namely

T (n) = 2 T (⌊n/2⌋) + log2 n

with T (1) = 0. Here a = 0, b = 1, and s0 = 1 > 0. Again the small growth
property (4) is not satisfied. By induction it follows that T (n) has the following
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explicit representation:

T (n) =
∑

0≤k≤log2 n

2k log2

(
⌊n/2k⌋)

)
= n

∑

0≤ℓ≤⌊log2 n⌋
2−{log2 n}−ℓ log2

(
⌊2{log2 n}+ℓ⌋)

)
.

Hence we have

T (n) = nΨ(log2 n) + O(log n),

where

Ψ(t) = 2−{t}
∑

ℓ≥0

2−ℓ log2

(
⌊2{t}+ℓ⌋

)

is a periodic function that is discontinuous for the countable (and dense) set {{log2 m} :
m ∈ Z≥1}.

Example 3. The two recurrences of Example 2 give rise to the conjecture that
Theorem 1 might be generalized to the case, where the small growth property (4)
is not satisfied. However, this is certainly not true as the two following counter

examples show. They indicate that there is probably no easy characterization
when we have T (n) ∼ ns0Ψ(log n) for a periodic function Ψ(t).

For example consider the recurrence

T (n) = 2 T

(⌊
2

3
n

⌋)

with T (1) = 1. Here we have T (n) = 2k for nk ≤ n < nk+1, where n0 = 1
and nk+1 =

⌈
3
2 nk

⌉
. It is clear that c1(3/2)k ≤ nk ≤ c2(3/2)k for some positive

constants c1, c2, however, the precise behaviour of nk is erratic so that we cannot
expect a precise behaviour of the kind nk = c(3/2)k + O(1) and consequently not
a representation of the form T (n) ∼ ns0 Ψ(log n), since the jumps from T (nk − 1)
to T (nk) cannot be covered with the help of a single function Ψ(t).

Next consider the recurrence

T (n) = 2 T

(⌊
n + 2

√
n + 1

2

⌋)
(n ≥ 6)

with T (n) = 1 for 1 ≤ n ≤ 5. Here we have (again) T (n) = 2k for nk ≤ n < nk+1,
where n1 = 6 and nk+1 = ⌈2nk + 1 − 2

√
2nk⌉. It follows that nk is asymp-

totically of the form nk = c12k − c22k/2 + O(1) (for certain positive constants
c1, c2). Consequently it is again not possible to represent T (n) asymptotically as
T (n) ∼ nΨ(log n).

Example 4. The recurrence

T (n) = T (⌊n/2⌋) + 2 T (⌈n/2⌉) + n

is related to the Karatsuba algorithm [Karatsuba and Ofman 1963; Knuth 1998].
Here we have s0 = log(1/3)/ log(1/2) = 1.5849 . . . and s0 > a = 1. Furthermore,
since m = 1, we are in the rationally related case. Here the small growth condition
(4) is satisfied so that we can apply Theorem 1 to obtain

T (n) = Ψ(log n) n
log 3
log 2 · (1 + o(1)) (n → ∞)
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with some continuous periodic function Ψ(t).
In a similar manner, the Strassen algorithm [Cormen et al. 1990; Strassen 1969]

for matrix multiplications results in the following recurrence

T (n) = T (⌊n/2⌋) + 6 T (⌈n/2⌉) + n2.

Here we have m = 1, s0 = log 7/ log 2 ≈ 2.81 and a = 2, and again we get an
representation of the form

T (n) = Ψ(log n) n
log 7
log 2 · (1 + o(1)) (n → ∞)

with some periodic function Ψ(t).

Example 5. The next two examples show that a small change in the recurrence
might change the asymptotic behaviour significantly. First let

T (n) = T (⌊n/2⌋) + T (⌈n/4⌉)

with T (1) = 1. Here we have s0 = log((1 +
√

5)/2) log 2 ≈ 0.6942 and we are in
the rationally related case. Furthermore it follows easily that T (n + 1) − T (n) ≤ 1.
Hence the small growth condition (4) is satisfied and we obtain

T (n) ∼ ns0Ψ(log2 n)

for a continuous periodic function Ψ(t).
However, if we just replace the appearing ceiling function by the floor function,

that is,

T̃ (n) = T̃ (⌊n/2⌋) + T̃ (⌊n/4⌋) for n ≥ 4

and T̃ (1) = T̃ (2) = T̃ (3) = 1, then the small growth condition (4) is not satisfied .
We get T̃ (n) = Fk for 2k−1 ≤ n < 2k, where Fk denotes the k-th Fibonacci number.
This leads to

T̃ (n) ∼ ns0 Ψ̃(log2 n),

where Ψ̃(t) = ((1 +
√

5)/2)1−{t}/
√

5 is discontinuous for t = 0; see also Figure 2.

Example 6. The recurrences

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + n − 1,

Y (n) = Y (⌊n/2⌋) + Y (⌈n/2⌉) + ⌊n/2⌋,

U(n) = U(⌊n/2⌋) + U(⌈n/2⌉) + n − ⌊n/2⌋
⌈n/2⌉ + 1

+
⌈n/2⌉

⌊n/2⌋ + 1
⌊n/2⌋

are related to Mergesort (see [Flajolet and Golin 1954]). For all three recurrences
we have a = s0 = 1 and we are (again) in the rationally related case. Here it is
immediate to derive a-priori bounds of the form T (n + 1) − T (n) = O(log n) (and
corresponding ones for Y (n) and U(n)).

Hence, we obtain asymptotic expansions of the form

C n log n + nΨ(log n) + o(n) (n → ∞),

where C = 1/ log 2 for T (n) and U(n) and C = 1/(2 log 2) for Y (n), and Ψ(t) is a
continuous periodic function.
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(a) (b)

Fig. 2. Illustration to Example 5: (a) recurrence T (n) = T (⌊n/2⌋) + T (⌈n/4⌉), (b) recurrence
T (n) = T (⌊n/2⌋) + T (⌊n/2⌋).

Example 7. Consider now

T (n) = T (⌊n/2⌋) + log n.

Here we have a = s0 = 0 and consequently, according to case (ii) we have

T (n) =
1

2 log 2
(log n)2 + O(log n).

Example 8. Next consider the recurrence

T (n) = 2 T (⌊n/2⌋) +
8

9
T (⌊3n/4⌋) +

n2

log n
.

Here a = s0 = 2. Hence, by the extended case (ii) (described in Remark 2) we have

T (n) =
2

log 2 + log(4/3)
n2log log n + O(n2/ log n).

Example 9. The solution of the recurrence

T (n) =
1

3
T

(⌊
n

3
+

1

2

⌋)
+

2

3
T

(⌈
2n

3
− 1

2

⌉)
+ 1

with initial value T (1) = 0 is asymptotically given by

T (n) =
1

H
log n + C + o(1),
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with H = 1
3 log 3 + 2

3 log 3
2 ≈ 0.6365 and some constant C. By Remark 5, we

are in the irrationally related case. With the help of Theorem 3 we can compute
C ≈ −0.0813. Its precise form is C = −α/H , where

α =
∑

m≥1

T (m + 2) − T (m + 1)

3

(
log

⌈
3m +

5

2

⌉
− log(3m)

)

+ 2
∑

m≥1

T (m + 2) − T (m + 1)

3

(
log

⌊
3

2
m +

5

4

⌋
− log(

3m

2
)

)

+
log 3

3
− H −

1
3 log2 3 + 2

3 log2 3
2

2H
≈ 0.0518.

We will use this example for computing the redundancy of the binary Boncelet code
with p = 1/3 in Section 4.

Example 10. Let s2(k) denote the binary sum-of-digits function of a non-negative
integer k and let T (n) =

∑
k<n s2(k) the partial sums. Then T (n) satisfies the

recurrence

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + ⌊n/2⌋
and T (1) = 0. It is a well known fact (originally due to [Delange 1975]) that T (n)
is given by

T (n) =
1

2
n log2 n + nΨ(log2 n),

where Ψ(t) a periodic function that is even continuous. There are several different
representations for Ψ(t). For example we have

Ψ(t) = 2−{t}
∑

ℓ≥0

2−ℓg
(

2ℓ+{t}
)

+
1 − {x}

2
,

where

g(t) =

∫ t

0

(
⌊2{s/2}⌋ − 1

2

)
ds.

Example 11. The recurrence

T (n) =
1

4
T (⌊n/2⌋) +

1

4
T (⌈n/2⌉) +

1

n

is not covered by Theorem 1 since an is decreasing. Hence, T (n) is not increasing,
either. However, we can adapt the proof methods of Theorem 1. Formally we have
a = s0 = −1 < 0 and, since m = 1, we are in the rationally related case. It follows
that

Tn =
1

log 2

log n

n
+

Ψ(log n)

n
+ o

(
1

n

)

with a periodic function Ψ(t).

3. DIRICHLET SERIES AND DISCRETE DIVIDE AND CONQUER RECURRENCES

In this section we present the full version of our theorem concerning the precise
asymptotic behavior of discrete divide and conquer recurrence.
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3.1 Divide and Conquer Recurrence

Let us recall the general form of divide and conquer recurrences that we will analyze.
For m ≥ 1, let b1, . . . , bm and b1, . . . , bm be positive real numbers and hj(x) and
hj(x) non-decreasing positive functions with hj(x) = pjx + O(x1−δ) and hj(x) =
pjx + O(x1−δ) for some positive numbers pj < 1 and some δ > 0 (for 1 ≤ j ≤ m).
We consider a (general) divide and conquer recurrence: given T (0) ≤ T (1) for n ≥ 2
we set

T (n) = an +

m∑

j=1

bjT (⌊hj(x)⌋) +

m∑

j=1

bjT
(⌈

hj(x)
⌉)

(n ≥ 2), (10)

= an +

m∑

j=1

bjT
(⌊

pjx + O(x1−δ)
⌋)

+

m∑

j=1

bjT
(⌈

pjx + O(x1−δ)
⌉)

where (an)n≥2 is a known non-negative and non-decreasing sequence. We also
assume that hj(n) < n and hj(n) ≤ n − 1 (for n ≥ 2 and 1 ≤ j ≤ m) so that the
recurrence is well defined. It follows by induction that T (n) is nondecreasing, too.
In order to solve recurrence (10), we use Dirichlet series [Apostol 1976; Szpankowski
2001]. In fact, in the proof presented in Section 5 we make use of the following
Dirichlet series

T̃ (s) =
∞∑

n=1

T (n + 2) − T (n + 1)

ns
(11)

from which we can calculate
∑n−2

i=1 (T (i + 2) − T (i + 1)) = T (n) − T (2).
For an asymptotic solution of recurrence (10), we will make some assumptions

regarding the Dirichlet series of the known sequence an. We postulate that the
abscissa of absolute convergence σa of the Dirichlet series

Ã(s) =

∞∑

n=1

an+2 − an+1

ns
(12)

is finite (or −∞), that is, Ã(s) represents an analytic function for ℜ(s) > σa. For
example, if we know that an is non-decreasing and

an = O(na(log n)b)

for some real number a and b, then Ã(s) converges (absolutely) for ℜ(s) > a. In
particular, we have σa ≤ a.

Analytically, these observations follow from the fact, proved in Section 5, that
the Dirichlet series T̃ (s) can be expressed as

T̃ (s) =
Ã(s) + B(s)

1 −∑m
j=1(bj + bj) ps

j

(13)

for some analytic function B(s) and Ã(s) defined in (12). For the asymptotic anal-
ysis, we appeal to the Tauberian theorem by Wiener-Ikehara and an analysis based
on the Mellin-Perron formula (see Appendix B and Section 5.3). Both approaches

rely on the singular behavior of T̃ (s). By the Mellin-Perron formula, we shall
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Fig. 3. Illustration to the asymptotic analysis of the divide and conquer recurrence

observe that

T (n) = T (2) +
1

2πi

∫ c+i∞

c−i∞
T̃ (s)

(n − 3
2 )s

s
ds. (14)

Hence, the asymptotic behavior of T (n) depends on the singular behavior of Ã(s),
on the singularity at s = 0, and on the roots of the denominator in (13), that is,
roots of the characteristic equation

m∑

j=1

(bj + bj) ps
j = 1. (15)

We denote by s0 the unique real solution of this equation.
A master theorem has usually three (major) parts. In the first case the (asymp-

totic) behavior of an dominates the asymptotics of T (n), in the second case, there
is an interaction between the internal structure of the recurrence and the sequence
an (resonance), and in the third case the behavior of the solution is driven by the
recurrence and does not depend on an; see the three cases of Theorem 1. This also
corresponds to an interplay between the poles s = 0, s = σa and s0 that determines
the asymptotic behavior as illustrated in Figure 3. In fact, the pole of the largest
value dictates asymptotics and determines the leading term.

We will handle these cases separately. If s0 < σa or if s0 = σa (that is, we
are in the first two cases) we have to assume some regularity properties about the

sequence an in order to cope with the asymptotics of T (n). We assume that Ã(s)
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has a certain extension to a region that contains the line ℜ(s) = σa with a pole-like
singularity at s = σa. To be more precise, we will assume that there exist functions
F̃ (s), g0(s), . . . , gJ(s) that are analytic in a region that contains the half plane
ℜ(s) ≥ σa such that

Ã(s) = g0(s)

(
log 1

s−σa

)β0

(s − σa)α0
+

J∑

j=1

gj(s)

(
log 1

s−σa

)βj

(s − σa)αj
+ F̃ (s), (16)

where g0(σa) 6= 0, βj are non-negative integers, α0 is real, and α1, . . . , αJ are
complex numbers with ℜ(αj) < α0 (1 ≤ j ≤ J), and β0 is non-negative if α0 is
contained in the set {0, −1, −2, . . .}.

As demonstrated in Appendix A, this is certainly the case if an is a linear com-
bination of sequences of the form

na(log n)b

(or related to such sequences with floor and ceiling functions). For example, if b is

not a negative integer, then the corresponding Dirichlet series Ã(s) of the sequence
an = na(log n)b can be expressed as

Ã(s) = a
Γ(b + 1)

(s − a)b+1
+

Γ(b + 1)

(s − a)b
+ F̃ (s),

where F̃ (s) is analytic for ℜ(s) > a − 1, see Theorem 9 of Appendix A. Therefore,
if a 6= 0, then

σa = a and α0 = b + 1

and if a = 0 and b 6= 0 (and not a negative integer), then

σa = a = 0 and α0 = b.

Of course, if a = b = 0 then Ã(s) = 0 and σa = −∞.
If s0 = σa or if s0 > σa, then the zeros of the characteristic equation (15)

determines the asymptotic behavior. It turns out – as already seen – we need to
consider two different scenarios depending whether log p1, . . . , log pm are rationally
related or not (cf. Definition 1). This governs the location of the roots of our
characteristic equation (15). The following property of the roots of (15) is due to
[Schachinger 2001] (cf. also [Drmota et al. 2010; Flajolet et al. 2010]).

Lemma 1. Let s0 be the unique real solution of equation (15). Then all other
solutions s′ of (15) satisfy ℜ(s′) ≤ s0.
(i) If log p1, . . . , log pm are irrationally related, then s0 is the only solution of (15)
on ℜ(s) = s0.
(ii) If log p1, . . . , log pm are rationally related, then there are infinitely many solu-
tions sk, k ∈ Z, with ℜ(sk) = s0 which are given by

sk = s0 + k
2πi

L
(k ∈ Z),

where L > 0 is the largest real number such that log pj are all integer multiples of
L. Furthermore, there exists δ > 0 such that all remaining solutions of (15) satisfy
ℜ(s) ≤ s0 − δ.
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3.2 General Discrete Master Theorem

We are now ready to formulate our main results regarding the asymptotic solutions
of discrete divide and conquer recurrences. Note that the irrational case is easier
to handle whereas the rational case needs additional assumptions on the Dirichlet
series. Nevertheless these assumptions are usually easy to establish in practice.

As discussed, our Discrete Master Theorem shows that for sequences an of prac-
tical importance such as

an = na(log n)b

the solution T (n) of the divide and conquer recurrence grows as

T (n) ∼ C na′

(log n)b′

(log log n)c′

(17)

with a′ = max{a, s0}) when log p1, . . . , log pm are irrationally related. For rationally
related log p1, . . . , log pm, it is either of the form (17) or (if s0 > a) there appears
an oscillation in the form of

T (n) ∼ Ψ(log n) ns0 (18)

with a continuous periodic function Ψ(t). The proof of the following general result
will be given in Section 5.

Theorem 2 (Discrete Master Theorem – Full Version). Let T (n) be the
divide and conquer recurrence defined in (10) such that:

(A1) bj and bj are non-negative with bj + bj > 0,

(A2) hj(x) and hj(x) are increasing and non-negative functions such that hj(x) =
pjx + O(x1−δ) and hj(x) = pjx + O(x1−δ) for positive pj < 1 and δ > 0, with
hj(2) < 2, hj(2) ≤ 1,

(A3) the sequence (an)n≥2 is non-negative and non-decreasing.

(A4) Let σa denote the abscissa of absolute convergence of the Dirichlet series Ã(s)

and s0 be the real root of (15). If σa ≥ s0 ≥ 0 assume further that Ã(s) has a
representation of the form (16), where F̃ (s), g0(s), . . . , gJ(s) are analytic in a
region that contains the half plane ℜ(s) ≥ σa with g0(σa) 6= 0, α0 is real and
ℜ(αj) < α0 (1 ≤ j ≤ J).

(i) If log p1, . . . , log pm are irrationally related, then as n → ∞

T (n) =





C1 + o(1) if σa < 0 and s0 < 0,
C2 log n + C′

2 + o(1) if σa < s0 and s0 = 0,
C3(log n)α0+1(log log n)β0−I · (1 + o(1)) if σa = s0 = 0,
C4 ns0 · (1 + o(1)) if σa < s0 and s0 > 0,
C5ns0 (log n)α0 (log log n)β0−I · (1 + o(1)) if σa = s0 > 0,
C6 (log n)α0 (log log n)β0−I(1 + o(1)) if σa = 0 and s0 < 0,
C7 nσa (log n)α0−1(log log n)β0−I · (1 + o(1)) if σa > s0 and σa > 0,

(19)
with positive real constants C1, C2, C3, C4, C5, C6, C7, where in particular if α0 /∈
{0, −1, −2, . . .} we have I = 0. We only have I = 1 if α0 ∈ {0, −1, −2, . . .}, β0 > 0

Journal of the ACM, Vol. V, No. N, Month 20YY.



18 · M. Drmota and W. Szpankowski

and if in the corresponding cases of (19) we have

σa = s0 = 0 and α0 ≤ −2,
σa = s0 > 0 and α0 ≤ −1,
if σa = 0, s0 < 0, and α0 ≤ −1, or
σa > s0 and σa > 0.

(ii) If log p1, . . . , log pm are rationally related and if in the case s0 = σa the Fourier
series, with L defined in Lemma 1(ii),

∑

k∈Z\{0}

Ã(s0 + 2πik/L)

s0 + 2πik/L
e2πikx/L (20)

is convergent for x ∈ R and represents an integrable function, then T (n) behaves
as in the irrationally related case with the following two exceptions:

T (n) =

{
C2 log n + Ψ2(log n) + O(n−η′

) if σa < s0 and s0 = 0,

Ψ4(log n) ns0 + O(ns0−η′

) if σa < s0 and s0 > 0,
(21)

where C2 and Ψ4(t) are positive and Ψ2(t), Ψ4(t) are continuous periodic functions
with period L and η′ > 0, provided that the small growth condition

T (n + 1) − T (n) = O(ns0−η) (22)

holds for some η > 1 − δ.

Remark 6. We should point out that the periodic functions Ψ2(t) and Ψ4(t) that
appear in the second part of Theorem 2 have building blocks of the form

λ−t/L
∑

n≥1

Bn
λ⌊ t−log n

L ⌋+1

λ − 1

for some λ > 1 and a sequence Bn such that the series
∑

n≥1 Bnλ−(log n)/L is
absolutely convergent. This representation suggests that the periodic functions
should have countably many discontinuities and, thus, should not have absolutely
convergent Fourier series. Nevertheless the small growth condition (22) ensures
that the final periodic function is actually continuous (see Lemma 4), however, this
property is not immediate. Actually we can expect Hölder continuous functions,
that is |Ψ(s) − Ψ(t)| ≤ C|s − t|η for some η > 0 and absolutely convergent Fourier
series, see [Grabner and Hwang 2005].

Remark 7. The condition (20) for Ã(s) looks artificial. However, it is really needed

in the proof in order to control the polar singularities of T̃ (s) at sk, k ∈ Z \ {0}.
Nevertheless it is no real restriction in practice. As shown in Appendix A the
condition (20) is satisfied for sequences of the form an = na(log n)b.

We now briefly show how Theorem 1 can be deduced from Theorem 2 which we
prove in Section 5.

Case a > s0:
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We recall that if an = Cna(log n)b, then we have σa = a if a or b are different from
zero and σa = −∞ if a = b = 0. Suppose that we are in the first case. By Theo-
rems 9 and 10 of Appendix A the Dirichlet series Ã(s) satisfies the assumptions of
Theorem 2. Recall that α0 = b+1 and that β0 = I = 0. Consequently the last case
of (19) applies and we obtain the asymptotic leading term for T (n) ∼ C′na(log n)b.
The constant C′ can be either determined from the proof of Theorem 2 or more
directly by inserting C′na(log n)b into the recurrence and comparing coefficients –
we leave the easy details to the reader.

In order to obtain the remainder term we follow Remark 1. We set T (n) =
C′na(log n)b + S(n) and using the relation

(
pjn + O(n1−δ)

)a (
log(pjn + O(n1−δ)

)b
= na(log n)bpa

j + O
(
na(log n)b−1

)

we obtain (if b > 0) a recurrence for S(n) of the form

S(n) =

m∑

j=1

bjS (⌊hj(n)⌋) +

m∑

j=1

bjS
(⌈

hj(n)
⌉)

+ O
(
na(log n)b−1

)
.

Hence by the Akra-Bazzi theorem it follows that S(n) = O
(
na(log n)b−1

)
, too. If

b = 0, then the error term is replaced by O(na−δ) and we get even a better estimate
for S(n).

Finally if a = b = 0 and s0 < 0, then we are in the first case of Theorem 2 and

we observe that T (n) = C′ + o(1), where C′ = C/
(

1 −∑m
j=1(bj + bj)

)
. By setting

T (n) = C′ + S(n) we get a homogeneous recurrence for S(n) and the Akra-Bazzi
theorem proves S(n) = O(ns0 ).

Case a = s0:
If a > 0 or b > 0, then σa = a. If a > 0, then we apply the fifth case of Theorem 2
(with α0 = b+1 and β0 = I = 0) and obtain T (n) ∼ C′′na(log n)b+1. As in case (i)
we obtain C′′ explicitly and also the error term with a bootstrapping procedure.

If a = 0 and b > 0, then we have σa = s0 = 0 and α0 = b. Consequently the third
case of Theorem 2 applies. Again the constant as well the error term are derived
as above.

Case a < s0:
Observe that a < s0 implies σa < s0. Consequently we can apply the fourth
case of Theorem 2 and obtain T (n) ∼ C′′′ns0 in the irrationally related case and
T (n) ∼ Ψ(log n)ns0 in the rationally related case.

Finally we mention that the extensions of Theorem 1 discussed in Remarks 2–4
are also covered by Theorem 2. We leave the details to the reader.

4. BONCELET’S ARITHMETIC CODING ALGORITHM

We present a novel application of our analytic approach to discrete divide and
conquer recurrences by computing the redundancy of a practical variable-to-fixed
compression algorithm due to Boncelet [Boncelet 1993]. To recall, a variable-to-
fixed length encoder partitions the source string, say over an m-ary alphabet A,
into a concatenation of variable-length phrases. Each phrase belongs to a given
dictionary of source strings. A uniquely parsable dictionary is represented by a
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complete parsing tree, i.e., a tree in which every internal node has all m children
nodes. The dictionary entries correspond to the leaves of the associated parsing
tree. The encoder represents each parsed string by the fixed length binary code
word corresponding to its dictionary entry. There are several well known variable-
to-fixed algorithms; e.g., Tunstall and Khodak schemes (cf. [Drmota et al. 2010;
Khodak 1969; Tunstall 1967]). Boncelet’s algorithm, described next, is a practical
and computationally fast algorithm that is coming into use. Therefore, we compare
its redundancy to the (asymptotically) optimal Tunstall’s algorithm.

Boncelet describes his algorithm in terms of a parsing tree. For fixed n (rep-
resenting the number of leaves in the parsing tree and hence also the number of
distinct phrases), the algorithm in each step creates two subtrees of predetermined
number of leaves (phrases). Thus at the root, n is split into two subtrees with
the number of leaves, respectively, equal to n1 =

⌊
p1n + 1

2

⌋
and n2 =

⌊
p2n + 1

2

⌋
.

This continues recursively until only 1 or 2 leaves are left. Note that this splitting
procedure does not assure that n1 + n2 = n. For example if p1 = 3

8 and p2 = 5
8 ,

then n = 4 would be split into n1 = 2 and n2 = 3. Therefore, we propose to modify
the splitting as follows n1 = ⌊p1n + δ⌋ and n2 = ⌈p2n − δ⌉ for some δ ∈ (0, 1) that
satisfies 2p1 + δ < 2.

Let {v1, . . . vn} denote phrases of the Boncelet code that correspond to the paths
from the root to leaves of the parsing tree, and let ℓ(v1), . . . , ℓ(vn) be the corre-
sponding phrase lengths. Observe that while the parsing tree in the Boncelet’s al-
gorithm is fixed, a randomly generated sequence is partitioned into random length
phrases. Therefore, one can talk about the probabilities of phrases denoted as
P (v1), . . . , P (vn). Here we restrict the analysis to a binary alphabet and denote
the probabilities by p := p1 and q := p2 = 1 − p.

For sequences generated by a binary memoryless source, we aim at understanding
the probabilistic behavior of the phrase length that we denote as Dn. Its probability
generating function is defined as

C(n, y) = E[yDn ]

which can also be represented as

C(n, y) =
n∑

j=1

P (vj)yℓ(vj).

The Boncelet’s splitting procedure leads to the following recurrence on C(n, y) for
n ≥ 2

C(n, y) = p y C (⌊pn + δ⌋ , y) + q y C (⌈qn − δ⌉ , y) (23)

with initial conditions C(0, y) = 0 and C(1, y) = 1.
Next let d(n) denote the average phrase length

E[Dn] := d(n) =

n∑

j=1

P (vj) ℓ(vj)

which is also given by d(n) = C′(n, 1) (where the derivative is taken with respect
to y) and satisfies the recurrence

d(n) = 1 + p1d (⌊p1n + δ⌋) + p2d (⌈p2n − δ⌉) (24)
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with d(0) = d(1) = 0. This recurrence falls exactly under our general divide and
conquer recurrence, hence Theorem 2 applies.

Theorem 3. Consider a binary memoryless source with positive probabilities p1 = p
and p2 = q and the entropy rate H = p log(1/p) + q log(1/q). Let d(n) = E[Dn]
denote the expected phrase length of the binary Boncelet code.
(i) If the ratio (log p)/(log q) is irrational, then

d(n) =
1

H
log n − α

H
+ o(1), (25)

where

α = Ẽ′(0) − G̃′(0) − H − H2

2H
, (26)

H2 = p log2 p + q log2 q, and Ẽ′(0) and G̃′(0) are the derivatives at s = 0 of the
Dirichlet series defined in (32) of Section 5 and Remark 3 of Section 2.
(ii) If (log p)/(log q) is rational, then

d(n) =
1

H
log n − α + Ψ(log n)

H
+ O(n−η), (27)

where Ψ(t) is a periodic function and η > 0.

For practical data compression algorithms, it is important to achieve low redun-
dancy defined as the excess of the code length over the optimal code length nH .
For variable-to-fixed codes, the average redundancy is expressed as [Drmota et al.
2010; Savari and Gallager 1997]

Rn =
log n

E[Dn]
− H =

log n

d(n)
− H

since every phrase of average length d(n) requires log n bits to point to a dictionary
entry. Our previous results imply immediately the following corollary.

Corollary 1. Let Rn denote the redundancy of the binary Boncelet code with pos-
itive probabilities p1 = p and p2 = q.
(i) If the ratio (log p)/(log q) is irrational, then

Rn =
Hα

log n
+ o

(
1

log n

)
(28)

with α defined in (26).
(ii) If (log p)/(log q) is rational, then

Rn =
H(α + Ψ(log n))

log n
+ o

(
1

log n

)
(29)

where Ψ(t) is a periodic function.

We should compare the redundancy of Boncelet’s algorithm to the asymptotically
optimal Tunstall algorithm. From [Drmota et al. 2010; Savari and Gallager 1997]
we know that the redundancy of the Tunstall code is

RT
n =

H

log n

(
− log H − H2

2H

)
+ o

(
1

log n

)
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(provided that (log p)/(log q) is irrational; in the rational case there is also a periodic
term in the leading asymptotics). This should be compared to the redundancy of
the Boncelet algorithm.

Example. Consider p = 1/3 and q = 2/3. Then the recurrence for d(n) is precisely
the same as that of Example 9. Consequently α ≈ 0.0518 while for the Tunstall
code the corresponding constant is equal to − log H − H2

2H ≈ 0.0496.

5. ANALYSIS AND ASYMPTOTICS

We prove here a general asymptotic solution of the divide and conquer recurrence
(cf. Theorem 2). We first derive the appropriate Dirichlet series and apply Taube-
rian theorems for the irrationally related case, then discuss the Perron-Mellin for-
mula, and finally finish the proof of Theorem 2 for the rationally related case.

5.1 Dirichlet Series

As discussed in the previous section, the proof makes use of the Dirichlet series

T̃ (s) =
∞∑

n=1

T (n + 2) − T (n + 1)

ns
,

where we apply Tauberian theorems and the Mellin-Perron formula to obtain asymp-
totics for T (n) from singularities of T̃ (s).

By partial summation and using a-priori upper bounds for the sequence T (n),

it follows that T̃ (s) converges (absolutely) for s ∈ C with ℜ(s) > max{s0, σa, 0},
where s0 is the real solution of the equation (15), and σa is the abscissa of absolute
convergence of Ã(s).

Next we apply the recurrence relation (10) to T̃ (s). To simplify our presentation,
we assume that bj = 0, that is, we consider only the floor function on the right
hand side of the recurrence (10); those parts that contain the ceiling function can
be handled in the same way. We thus obtain

T̃ (s) = Ã(s) +
m∑

j=1

bj

∞∑

n=1

T (⌊hj(n + 2)⌋) − T (⌊hj(n + 1)⌋)

ns
.

For k ≥ 1 set

nj(k) := max{n ≥ 1 : hj(n + 1) < k + 2}.

By definition it is clear that nj(k + 1) ≥ nj(k) and

nj(k) =
n

pj
+ O

(
k1−δ

)
. (30)

Furthermore, by setting Gj(s) as in (6) of Remark 3 we obtain

∞∑

n=1

T (⌊hj(n + 2)⌋) − T (⌊hj(n + 1)⌋)

ns
= Gj(s) +

∞∑

k=1

T (k + 2) − T (k + 1)

nj(k)s
.
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We now compare the last sum to ps
j T̃ (s):

∞∑

k=1

T (k + 2) − T (k + 1)

nj(k)s
=

∞∑

k=1

T (k + 2) − T (k + 1)

(k/pj)s

−
∞∑

k=1

(T (k + 2) − T (k + 1))

(
1

(k/pj)s
− 1

nj(k)s

)

= ps
j T̃ (s) − Ej(s),

where Ej(s) is defined in (7) of Remark 3. Defining

E(s) =

m∑

j=1

bjEj(s) and G(s) =

m∑

j=1

bjGj(s)

we finally obtain the relation

T̃ (s) =
Ã(s) + G(s) − E(s)

1 −
∑m

j=1 bj ps
j

. (31)

As mentioned above, (almost) the same procedure applies if some of the bj are
positive, that is, the ceiling function also appear in the recurrence equation. The
only difference to (31) is that we arrive at a representation of the form

T̃ (s) =
Ã(s) + G̃(s) − Ẽ(s)

1 −∑m
j=1(bj + bj) ps

j

, (32)

with a properly modified functions G̃(s) and Ẽ(s), however, they have the same
analyticity properties as in (31), compare also with Remark 3.

By our previous assumptions, we know the analytic behaviors of

Ã(s) and



1 −
m∑

j=1

(bj + bj) ps
j




−1

:

Ã(s) has a pole-like singularity at s = σa (if σa ≥ s0) and a proper continuation to
a complex domain that contains the (punctuated) line ℜ(s) = σa, s 6= σa. On the
other hand,

1

1 −
∑m

j=1(bj + bj) ps
j

has a polar singularity at s = s0 (and infinitely many other poles on the line
ℜ(s) = s0 if the numbers log pj are rationally related), and also a meromorphic
continuation to a complex domain that contains the line ℜ(s) = s0. Furthermore,
G(s) is an entire function. It suffices to discuss Ej(s). First observe that (30)
implies

1

(k/pj)s
− 1

nj(k)s
= O

(
1

(k/pj)ℜ(s)+δ

)
.
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By partial summation (and by using again the a-priori estimates), it follows imme-
diately that the series

∞∑

k=1

(T (k + 2) − T (k + 1))
1

(k/pj)ℜ(s)+δ

converges for ℜ(s) > max{s0, σa, 0} − δ. Since T (n) is an increasing sequence, this
implies (absolute) convergence of the series Ej(s), just representing an analytic
function in this region, too.

In order to recover (asymptotically) T (n) from T̃ (s) we need to apply several
different techniques discussed in the next subsection. The main analytic tools are
Tauberian theorems (of Wiener-Ikehara which is discussed in detail in Appendix B)
and the Mellin-Perron formula (Theorem 4).

5.2 Tauberian Theorems

We are now ready to prove several parts of Theorem 2 with the help of Tauberian
theorems of Wiener-Ikehara type (see Appendix B). We recall that such theorems
apply in general to the so-called Mellin-Stieltjes transform

∫ ∞

1−
v−s dc(v) = s

∫ ∞

1

c(v)v−s−1 dv

of a non-negative and non-decreasing function c(v). If c(n) is a sequence of non-
negative numbers, then the Dirichlet series C(s) =

∑
n≥1 c(n)n−s is just the Mellin-

Stieltjes transform of the function c(v) =
∑

n≤v c(n):

C(s) =
∑

n≥1

c(n)n−s =

∫ ∞

1−
v−s dc(v) = s

∫ ∞

1

c(v)v−s−1 dv.

Informally, a Tauberian theorem is a correspondence between the singular behavior
of 1

s C(s) and the asymptotic behavior of c(v). In the context of Tauberian the-
orems of Wiener-Ikehara type one assumes that C(s) continues analytically to a
proper region, has only one (real) singularity s0 on the critical line ℜ(s) = s0, and
the singularity is of special type (for example a polar or algebraic singularity, see
Appendix B).

We recall that T̃ (s) is the Dirichlet series of the sequence c(n) = T (n+2)−T (n+
1). Hence

T (n) = c(n − 2) + T (2).

Consequently, if we know the asymptotic behavior of c(v) we also find that of T (n).

Notice that T̃ (s) is given by (32). Hence the dominant singularity of 1
s T̃ (s) is either

zero, or induced by the singular behavior of Ã(s), or induced by the zeros of the
denominator

1 −
m∑

j=1

(bj + bj)ps
j .

Here it is essential to assume that the log pj are irrationally related. Precisely in
this case the denominator has only the real zero s0 on the line ℜ(s) = s0. Hence
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Tauberian theorems can be applied in the irrationally related case if s0 ≥ σa. (For
the rational case we will apply a different approach to cover the case s0 ≥ σa.)

Our conclusions for the proof of the first part of Theorem 2 are summarized as
follows:

(1) σa < 0 and s0 < 0:
This is indeed a trivial case, since the dominant singularity is at s = 0 and the
series T̃ (s) converges for s = 0:

T̃ (0) =
∑

n≥1

(T (n + 2) − T (n + 1)),

hence

T (n) = C1 + o(1),

where C1 = T (2) + T̃ (0).

(2) σa < s0 and s0 = 0:
We can apply directly a proper version of the Wiener-Ikehara theorem (Theo-
rem 12 of Appendix B) that proves

T (n) = C2 log n · (1 + o(1)).

Observe, that s = 0 is a double pole of 1
s T̃ (s) that induces the log n-term in

the asymptotic expansion. Note that this does not prove the full version that
is stated in Theorem 2. By applying Theorem 5 of the next subsection (that is
based on a more refined analysis) we also arrive at an asymptotic expansion of
the form

T (n) = C2 log n + C′
2 + o(1).

(3) σa = s0 = 0:

In this case, we obtain at s = 0 the dominant singular term of 1
s T̃ (s) that is

given by

C
(log(1/s))β0

sα0+2
with C =

−g0(0)∑m
j=1(bj + bj) log pj

Hence, an application of Theorem 13 of Appendix B provides the asymptotic
leading term for T (n). Recall that we have to handle separately the case when
α0 is contained in the set {−2, −3, . . .} (and β0 > 0). In this case, only loga-
rithmic singularities remain.

(4) σa < s0 and s0 > 0:
Here the classical version of the Wiener-Ikehara theorem (Theorem 11 of Ap-
pendix B) applies. Note again that it is crucial that the denominator has only
one pole on the line ℜ(s) = s0.

(5) σa = s0 > 0:

Here the function 1
s T̃ (s) has the dominant singular term

C
(log(1/(s − σa)))β0

(s − σa)α0+1
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for some constant C > 0 (and there are no other singularities on the line
ℜ(s) = s0). Thus, an application of Theorem 13 of Appendix B provides the
asymptotic leading term for T (n). Observe that we have to handle separately
the case when α0 is contained in the set {−1, −2, . . .} (and β0 > 0).

(6) σa = 0 and s0 < 0:
The analysis of this case is very close to the previous one. The dominant
singular term of 1

s T̃ (s) is of the form

C
(log(1/s))β0

sα0+1
.

(7) σa > s0 and σa > 0:

In this case the singular behavior of Ã(s) dominates the asymptotic behavior of
1
s T̃ (s). An application of Theorem 13 of Appendix B provides the asymptotic
leading term of T (n).

5.3 Mellin-Perron Formula

One disadvantage of the use of Tauberian theorems is that they provide (usually)
only the asymptotic leading term and no error terms. In order to provide error terms
or second order terms one has to use more refined methods. In the framework of
Dirichlet series we can apply the Mellin-Perron formula that we recall next.

Below we shall use Iverson’s notation [[P ]] which is 1 if P is a true proposition
and 0 else.

Theorem 4 (see [Apostol 1976]). For a sequence c(n) define the Dirichlet series

C(s) =
∞∑

n=1

c(n)

ns

and assume that the abscissa of absolute convergence σa is finite or −∞. Then for
all σ > σa and all x > 0

∑

n<x

c(n) +
c(⌊x⌋)

2
[[x ∈ Z]] = lim

T →∞

1

2πi

∫ σ+iT

σ−iT

C(s)
xs

s
ds.

Note that – similarly to the Tauberian theorems – the Mellin-Perron formula
enables us to obtain precise information about the function c(v) =

∑
n≤v c(n) if we

know the behavior of 1
s C(s). In our context we have c(n) = T (n + 2) − T (n), that

is,

T (n) = T (2) + lim
T →∞

1

2πi

∫ c+iT

c−iT

T̃ (s)
(n − 3

2 )s

s
ds (33)

with

T̃ (s) =

∞∑

n=1

T (n + 2) − T (n + 1)

ns
.

As a first application we apply the Mellin-Perron formula of Theorem 4 for Dirich-
let series of the form

C(s) =
∑

n≥1

c(n)n−s =
B(s)

1 −
∑m

j=1 bjps
j

, (34)
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where we assume that the log pj are not rationally related and where B(s) is analytic
in a region that contains the real zero s0 of the denominator. This theorem can
be also applied to the proof of some parts of Theorem 2; in particular for the
(irrationally related) cases

if σa < 0 and s0 < 0,
if σa < s0 and s0 = 0, and
if σa < s0 and s0 > 0.

Note that Theorem 5 provides a second order term in the case σa < s0 = 0, see
also Remark 9.

Theorem 5. Suppose that 0 < pj < 1, 1 ≤ j ≤ m, are given such that log pj,
1 ≤ j ≤ m, are not rationally related and let s0 denote the real solution of the
equation

m∑

j=1

bjps
j = 1,

where bj > 0, 1 ≤ j ≤ m. Let C(s) =
∑

n≥1 c(n)n−s be a Dirichlet series with
non-negative coefficients c(n) that has a representation of the form (34), that is,

C(s) =
∑

n≥1

c(n)n−s =
B(s)

1 −
∑m

j=1 bjps
j

where B(s) is an analytic function for ℜ(s) ≥ s0 − η for some η > 0 and satisfies
B(s) = O(|s|α) in this region for some α < 1. Then

∑

n≤v

c(n) =





B(0)

1 −∑m
j=1 bj

+ o(1) if s0 < 0,

B(0)

H(0)
log v +

B′(0) + B(0)H2/H

H
+ o(1) if s0 = 0,

B(s0)

s0H(s0)
vs0 (1 + o(1)) if s0 > 0

,

where H(s) = −∑m
j=1 bjps

j log pj with H = H(0), and H2(s) =
∑m

j=1 bjps
j(log pj)2

with H2 = H2(0).

We quickly check that Theorem 5 is applicable for T̃ (s) in the above mentioned
cases. Since Ã(s) and G̃(s) are convergent Dirichlet series with non-negative co-
efficients that stay bounded for ℜ(s) ≥ s0 − η, however, for Ẽ(s) we only get an
estimate of the form Ẽ(s) = O(|s|α) for some α < 1 (we leave the details to the
reader). Thus, everything fits together.

Remark 8. Note that the case s0 < 0 is immediate since the series is convergent for
s = 0. Furthermore, the case s0 > 0 is covered by the Wiener-Ikehara theorem. The
case s0 = 0 is the most interesting case. Here the Wiener-Ikehara theorem provides
only the asymptotic leading term. However, the assumptions of Theorem 5 are
much stronger than those needed for the Wiener-Ikehara theorem. Actually we can
cover also multiple poles and obtain also corresponding (non-leading) terms in the
asymptotic expansion. In order to present these kind of techniques we will consider
the cases s0 > 0 and s0 = 0 in the following proof.
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Proof. We start with the case s0 > 0. We will use the Mellin-Perron formula of
Theorem 4, however, we cannot use it directly, since there are convergence problems.
Namely, if we shift the line of integration ℜ(s) > s0 to the left (to ℜ(s) = σ < s0)
and collect residues we obtain (with Z = {s ∈ C :

∑m
j=1 bjps

j = 1})

∑

n≤v

c(n) = lim
T →∞

∑

s′∈Z, ℜ(s′)>σ, |ℑ(s′)|<T

Res(C(s)
vs

s
, s = s′)

+
1

2πi
lim

T →∞

∫ σ+iT

σ−iT

C(s)
vs

s
ds

= lim
T →∞

∑

s′∈Z, ℜ(s′)>σ, |ℑ(s′)|<T

B(s′)vs′

s′H(s′)

+
1

2πi
lim

T →∞

∫ σ+iT

σ−iT

B(s)

1 −∑m
j=1 bjps

j

vs

s
ds

provided that the series of residues converges and the limit T → ∞ of the last
integral exists. The problem is that neither the series nor the integral above are
necessarily absolutely convergent since the integrand is only of order 1/s. We have
to introduce the auxiliary function

c1(v) =

∫ v

0




∑

n≤w

c(n)



 dw

which is also given by

c1(v) =
1

2πi

∫ c+i∞

c−i∞
C(s)

vs+1

s(s + 1)
ds =

1

2πi

∫ c+i∞

c−i∞

B(s)

1 −∑m
j=1 bjps

j

· vs+1

s(s + 1)
ds,

for c > s0. Note that there is no need to consider the limit T → ∞ in this
case since the series and the integral are now absolutely convergent. Hence, the
above procedure works without any convergence problem. In order to make the
presentation of our analysis slightly easier we additionally assume that the region
of analyticity of B(s) is large enough such that it covers all zeros in Z and also the
point −1. We now shift the line of integration to ℜ(s) = σ < min{−1, s0}. Then
we have to consider the (absolutely convergent) sum of residues

∑

s′∈Z,

Res

(
C(s)

vs+1

s(s + 1)
, s = s′

)
=
∑

s′∈Z

B(s′)

s′(s′ + 1)H(s′)
vs′+1,

the residues at s = 0 and s = −1:

B(0)

1 −∑m
j=1 bj

v, − B(−1)

1 −∑m
j=1 bjp−1

j

,

and the remaining (absolutely convergent) integral

1

2πi

∫ σ+i∞

σ−i∞
C(s)

vs+1

s(s + 1)
ds =

1

2πi

∫ σ+i∞

σ−i∞

B(s)

1 −∑m
j=1 bjps

j

vs+1

s(s + 1)
ds = O(v1+σ).
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Thus, we obtain

c1(v) =
B(s0)

s0(s0 + 1)H(s0)
(1 + Q(log v))v1+s0 + O(v1+s0−η)

for some η > 0, where

Q(x) =
∑

s′∈Z\{s0}

s0(s0 + 1)H(s0)B(s′)

s′(s′ + 1)H(s′)B(s0)
ex(s′−s0).

It is easy to show that Q(x) → 0 as x → ∞ (cf. also [Schachinger 2001, Lemma 4]
and [Szpankowski 2001]). Indeed, suppose that ε > 0 is given. Then there exists
S0 = S0(ε) > 0 such that

∑

s′∈Z, |s′|>S0

∣∣∣∣
s0(s0 + 1)H(s0)B(s′)

s′(s′ + 1)H(s′)B(s0)

∣∣∣∣ <
ε

2
.

Further, since ℜ(s′) < s0 for all s′ ∈ Z \{s0}, and by the assumption of irrationality
the zeros are not on the critical line ℜ(s) = s0 (except the real one), it follows that
there exists x0 = x0(ε) > 0 with

∣∣∣∣∣∣

∑

s′∈Z\{s0}, |s′|≤S0

s0(s0 + 1)H(s0)B(s′)

s′(s′ + 1)H(s′)B(s0)
ex(s′−s0)

∣∣∣∣∣∣
<

ε

2

for x ≥ x0. Hence |Q(x)| < ε for x ≥ x0(ε).
Note that we cannot obtain the rate of convergence for Q(x). This means that

we just get

c1(v) =
B(s0)

s0(s0 + 1)H(s0)
· v1+s0 + o(v1+s0 )

as v → ∞, where s′ with ℜ(s′) < s0 contribute to the error term. However, since,∑
n≤v c(n) is monotonely increasing in v (by assumption) it also follows that

∑

n≤v

c(n) ∼ B(s0)

s0H(s0)
vs0 ,

compare with the case s0 = 0 that we discuss next.
Now suppose that s0 = 0 which means that C(s) has a double pole as s = 0. We

can almost use the same analysis as above and obtain the asymptotic expansion

c1(v) =
B(0)

H
v log v +

B′(0) − B(0) + B(0)H2/H

H
v + o(v).

It is now an easy exercise to derive from this expansion the final result

∑

n≤v

c(n) =
B(0)

H
log v +

B′(0) + B(0)H2/H

H
+ o(1) (35)

in the following way. For simplicity we write c1(v) = C1v log v + C2v + o(v). By
the assumption

|c1(v) − C1v log v + C2v| ≤ εv
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for v ≥ v0. Set v′ = ε1/2v, then by monotonicity we obtain (for v ≥ v0)

∑

n≤v

c(n) ≤ c1(v + v′) − c1(v)

v′ ≤ 1

v′ (C1(v + v′) log(v + v′) + C2(v + v′)−

C1v log v − C2v) + ε
2v + v′

v′

= C1 log(v + v′) + C2 + C1
v

v′ log

(
1 +

v′

v

)
+ ε

2v + v′

v′

= C1 log v + C2 + C1 + O
(

ε1/2
)

,

where the O-constant is an absolute one. In a similar manner, we obtain the

corresponding lower bound (for v ≥ v0 + v
1/2
0 ). Hence, it follows that

∣∣∣∣∣∣

∑

n≤v

c(n) − C1 log v − C1 − C2

∣∣∣∣∣∣
≤ C′ε1/2

for v ≥ v0+v
1/2
0 . This proves

∑
n≤v c(n) = C1 log v+C1+C2+o(1) and consequently

(35).

Remark 9. The advantage of the preceding proof is its flexibility. For example,
we can apply the procedure for multiple poles and are able to derive asymptotic
expansions of the form

∑

n≤v

c(n) =

K∑

j=0

Aj
(log v)j

j!
vs0 + o(vs0 ).

Furthermore we can derive asymptotic expansions that are uniform in an additional
parameter when we have some control on the singularities in terms of the additional
parameter. We will use this generalization in the proof of the central limit theorem
for the phrase lengths of the Boncelet code (Theorem 7).

In principle it is also possible to obtain bounds for the error terms. How-
ever, they depend heavily on Diophantine approximation properties of the vector
(log p1, . . . log pm), see [Flajolet et al. 2010].

5.4 The Rationally Related Case

Unfortunately, the previous method generally is not applicable when there are sev-
eral poles (or infinitely many poles) on the line ℜ(s) = s0. This means that we
cannot use the above procedure when the log pj are rationally related. The reason
is that it does not follow automatically that an asymptotic expansion of the form

c1(v) =

∫ v

0

c(w) dw ∼ Ψ1(log v) · vs0+1

implies

c(v) ∼ Ψ(log v) · vs0

for certain periodic functions Ψ and Ψ1, even if c(v) is non-negative and non-
decreasing.
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Therefore we will apply an alternative approach which is – in some sense – more
direct and applies only in this case, but it proves a convergence result for c(v) of
the form

c(v) =
∑

n≤v

c(n) ∼ Ψ(log v) vs0 .

Suppose that log pj = −njL for coprime integers nj and a real number L >
0. Then the equation 1 =

∑m
j=1 bjps

j with the only real solution s0 becomes an
algebraic equation

1 −
m∑

j=1

bjznj = 0 with z = e−Ls.

with a single (dominating) real root z0 = e−Ls0 . We can factor this polynomial as

1 −
m∑

j=1

bjznj = (1 − eLs0z)P (z), P (e−Ls) 6= 0,

and obtain also a partial fraction decomposition of the form

1

1 −∑m
j=1 bjznj

=
1/P (e−Ls0)

1 − eLs0z
+

Q(z)

P (z)
.

Therefore, to study (33) with C(s) as in (33) it is natural in this context to consider
Mellin-Perron integrals of the form

1

2πi
lim

T →∞

∫ c+iT

c−iT

B(s)

1 − e−Lsλ

xs

s
ds

for some complex number λ 6= 0 and a Dirichlet series B(s). The corresponding
result is stated below in Theorem 6.

To derive asymptotics of the above integral (cf. Theorem 6 below) we need the
following two lemmas. The first lemma (Lemma 2) is also the basis of the proof of
the Mellin-Perron formula (cf. [Apostol 1976; Szpankowski 2001]). For the reader’s
convenience we provide a short proof of Lemma 2.

Lemma 2. Suppose that a and c are positive real numbers. Then
∣∣∣∣∣

1

2πi

∫ c+iT

c−iT

as ds

s
− 1

∣∣∣∣∣ ≤ ac

πT log a
(a > 1),

∣∣∣∣∣
1

2πi

∫ c+iT

c−iT

as ds

s

∣∣∣∣∣ ≤ ac

πT log(1/a)
(0 < a < 1),

∣∣∣∣∣
1

2πi

∫ c+iT

c−iT

as ds

s
− 1

2

∣∣∣∣∣ ≤ C

T
(a = 1).

Proof. Suppose first that a > 1. By considering the contour integral of the
function F (s) = as/s around the rectangle with vertices −A−iT, c−iT, c+iT, −A+
iT and letting A → ∞ one directly obtains the representation

1

2πi

∫ c+iT

c−iT

as ds

s
= Res(as/s; s = 0) +

1

2πi

∫ c

−∞

ax+iT

x + iT
dx +

1

2πi

∫ c

−∞

ax−iT

x − iT
dx.
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Since
∣∣∣∣

1

2πi

∫ c

−∞

ax±iT

x ± iT
dx

∣∣∣∣ ≤ ac

πT log a

we directly obtain the bound in the case a > 1.
The case 0 < a < 1 can be handled in the same way. And finally, in the case

a = 1 the integral can be explicitly calculated (and estimated).

Lemma 3. Suppose that L is a positive real number, λ a complex number different
from 0 and 1, and c a real number with c > 1

L log |λ|. Then we have for all real
numbers x > 1

1

2πi
lim

T →∞

∫ c+iT

c−iT

1

1 − e−Lsλ
· xs

s
ds =

λ⌊ log x
L ⌋+1 − 1

λ − 1
− 1

2
λ⌊ log x

L ⌋[[log x/L ∈ Z]]. (36)

Proof. By assumption we have |λe−Ls| < 1. Thus, by using a geometric series
expansion we get for all x > 1 such that log x/L is not an integer

1

2πi

∫ c+iT

c−iT

1

1 − e−Lsλ
· xs

s
ds =

∑

k≥0

λk 1

2πi

∫ c+iT

c−iT

( x

eLk

)s ds

s

=
∑

k≤ log x
L

λk + O



 1

T

∑

k≥0

|λ|k
(

x
eLk

)c

∣∣log
(

x
eLk

)∣∣





=
λ⌊ log x

L ⌋+1 − 1

λ − 1
+ O

(
1

T

xc

1 − 1
eLc |λ|

)
.

In the second line above we use the first part of Lemma 2 replacing the integral
by 1 plus the error term. Similarly we can proceed if log x/L is an integer which
implies (36).

Theorem 6. Let L be a positive real number, λ be a non-zero complex number,
and suppose that

B(s) =
∑

n≥1

Bnn−s

is a Dirichlet series that is absolutely convergent for ℜ(s) > 1
L log |λ| − η for some

η > 0. Then

1

2πi
lim

T →∞

∫ c+iT

c−iT

B(s)

1 − e−Lsλ

xs

s
ds =

∑

n≥1

Bn
λ

⌊
log(x/n)

L

⌋
+1

λ − 1
− 1

2

∑

n≥1

Bnλ

⌊
log(x/n)

L

⌋
[[log(x/n)/L ∈ Z]]

(37)

+ O
(

x
1
L log |λ|−η

)
.
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if |λ| > 1, and

1

2πi
lim

T →∞

∫ c+iT

c−iT

B(s)

1 − e−Ls

xs

s
ds =

∑

n≥1

Bn

(⌊
log(x/n)

L

⌋
+ 1

)
(38)

− 1

2

∑

n≥1

Bn[[log(x/n)/L ∈ Z]] + O
(
x−η

)
.

if λ = 1.

Proof. We split the integral into an infinite sum of integrals according to the
series B(s) =

∑
n≥1 Bnn−s and apply (36) for each term by replacing x by x/n.

First assume that log(x/n)/L is not an integer for n ≥ 1. Hence, if x > neLk,
then we have

1

2πi

∫ c+iT

c−iT

n−s

1 − e−Lsλ

xs

s
ds =

λ

⌊
log(x/n)

L

⌋
+1 − 1

λ − 1
+

O


 1

T

∑

k≥0

|λ|k
(

x
eLkn

)c

∣∣log
(

x
eLkn

)∣∣


 ,

and if x < neLk, then we just have

1

2πi

∫ c+iT

c−iT

n−s

1 − e−Lsλ

xs

s
ds = O



 1

T

∑

k≥0

|λ|k
(

x
eLkn

)c

∣∣log
(

x
eLkn

)∣∣



 .

Further, for given x there are only finitely many pairs (k, n) with
∣∣∣

x

eLkn
− 1
∣∣∣ <

1

2
.

Hence, the series

∑

n≥1

∑

k≥0

Bn

|λ|k
(

x
eLkn

)c

∣∣log
(

x
eLkn

)∣∣

is convergent. Consequently, we find

1

2πi
lim

T →∞

∫ c+iT

c−iT

∑
n≥1 Bnn−s

1 − e−Lsλ

xs

s
ds =

1

λ − 1

∑

n<x

Bn

(
λ

⌊
log(x/n)

L

⌋
+1 − 1

)
+ O(1)

(and a similar expression if there are integers n ≥ 1 for which log(x/n)/L is an
integer). Finally, since

∑

n<x

Bn = O
(

n
1
L log |λ|−η

)

and
∑

n>x

Bnn− 1
L log |λ| = O

(
x−η

)
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it follows that

1

λ − 1

∑

n<x

Bn

(
λ

⌊
log(x/n)

L

⌋
+1 − 1

)
=

1

λ − 1

∑

n≥1

Bn

(
λ

⌊
log(x/n)

L

⌋
+1

)
+O

(
n

1
L log |λ|−η

)

(and similarly if there are integers n ≥ 1 for which log(x/n)/L is an integer). This
proves (40).

If λ = 1 we first observe that (36) rewrites to

1

2πi
lim

T →∞

∫ c+iT

c−iT

1

1 − e−Ls

xs

s
ds =

⌊
log x

L

⌋
+ 1 − 1

2
[[log x/L ∈ Z]].

Now the proof of (38) is very similar to that of (40).

Remark 10. The representations (37) and (38) have nice interpretations. When
|λ| > 1 set

Ψ(t) = λ−t/L
∑

n≥1

Bn
λ⌊ t−log n

L ⌋+1

λ − 1
− λ−t/L

2

∑

n≥1

Bnλ⌊ t−log n
L ⌋[[(t−log n)/L ∈ Z]]. (39)

Then Ψ(t) is a periodic function of bounded variation with period L, that has
(usually) countably many discontinuities for t = L{log n/L}, n ≥ 1 (where we
recall {x} = x − ⌊x⌋ is the fractional part of x). We arrive at

1

2πi
lim

T →∞

∫ c+iT

c−iT

B(s)

1 − e−Lsλ

xs

s
ds = x

1
L log λ Ψ (log x) + O

(
x

1
L log |λ|−η

)
.

Formally, this representation also follows by adding the residues of

B(s)/(1 − e−Lsλ)

at s = s0 + 2kπi/L (k ∈ Z) which are the zeros of 1 − eLsλ = 0. This means the
leading asymptotic follows (in this case) from a formal residue calculus.

Furthermore, if we go back to the original problem, where we have to discuss a
function of the form

B(s)

1 −∑m
j=1 bjps

j

,

for log pj rationally related, then we have

1

2πi
lim

T →∞

∫ c+iT

c−iT

B(s)

1 −∑m
j=1 bjps

j

xs

s
ds = xs0 Ψ (log x) + O

(
xs0−η

)
.

As mentioned above we split up the integral with the help of a partial fraction
decomposition of the rational function

1

1 −∑m
j=1 bjznj

.

The leading term can be handled directly with the help of Theorem 3. The re-
maining terms can use again (36) and obtains (finally) a second error term of order
O (xs0−η).
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Remark 11. If λ = 1 then the situation is even simpler. Set

C =
1

L

∑

n≥1

Bn

and

Ψ̃(t) =
∑

n≥1

Bn

(
−
{

t − log n

L

}
+ 1

)
− 1

2

∑

n≥1

Bn[[(t−log n)/L ∈ Z]]− 1

L

∑

n≥1

Bn log n.

Then Ψ̃(t) is a periodic function with period L, that has (usually) countably many
discontinuities for t = L{log n/L}, n ≥ 1, and we have

1

2πi
lim

T →∞

∫ c+iT

c−iT

B(s)

1 − e−Ls

xs

s
ds = C log x + Ψ̃ (log x) + O

(
x−η

)
.

Hence, by applying the same partial fraction decomposition as above we also obtain
(if s0 = 0 and if the log pj are rationally related)

1

2πi
lim

T →∞

∫ c+iT

c−iT

B(s)

1 −
∑m

j=1 bjps
j

xs

s
ds = C log x + Ψ̃ (log x) + O

(
x−η

)
.

We now can go back to our analysis, and recall that T̃ (s) is given by (32). Hence
Theorem 6 covers (together with the subsequent Remarks 10 and 11) the part
B(s) = Ã(s) + G̃(s), since they represent absolute convergent Dirichlet series. The
remaining function Ẽ(s) is actually much more difficult to handle. To simplify our
presentation, we will only discuss the case s0 > 0 that corresponds to λ > 1, the
case s0 = 0 can be handled in a similar way, see again Remark 11.

First of all, for function of the form

B(s) =
∑

n≥1

Bn

(
1

(n/p)s
− 1

hs
n

)
,

where Bn ≥ 0 and hn are integers satisfying hn = n/p + O(n1−δ), we find the
representation

1

2πi
lim

T →∞

∫ c+iT

c−iT

B(s)

1 − e−Lsλ

xs

s
ds =

1

1 − λ−1

∑

n<px

Bnλ

⌊
log(px/n)

L

⌋
− 1

1 − λ−1

∑

hn<x

Bnλ

⌊
log(x/hn)

L

⌋

+
1

2

∑

n≤px

Bnλ

⌊
log(px/n)

L

⌋
+1

[[log(px/n)/L ∈ Z]] (40)

−1

2

∑

hn≤x

Bnλ

⌊
log(x/hn)

L

⌋
+1

[[log(x/hn)/L ∈ Z]].

Set

Dn(x) :=
1

1 − λ−1
Bn

(
λ

⌊
log(px/n)

L

⌋
− λ

⌊
log(x/hn)

L

⌋)
+

1

2
Bnλ

⌊
log(px/n)

L

⌋
+1

[[log(px/n)/L ∈ Z]]

− 1

2
Bnλ

⌊
log(x/hn)

L

⌋
+1

[[log(x/hn)/L ∈ Z]].
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We next show that (in our context) the right hand side of (40) can be approximated
by the infinite sum together with an error term:

∑

n≥1

Dn(x) + O
(

xs0−η′

)

for some η′ > 0.
Recall that we have Bn = T (n + 2) − T (n + 1) and λ = eLs0 and by the small

growth assumption Bn = O(ns0−η) for some η > 1 − δ. Hence we have

∑

n: px<n<px+O(x1−δ)

Bnλ

⌊
log(x/hn)

L

⌋
= O

(
xs0−ηx1−δ

)
= O

(
xs0−(η+δ−1)

)
.

Next observe that Dn(x) can only be non-zero if there is an integer m such that
log(px/n) ≤ Lm ≤ log(x/hn) (or the other way round). Since we are only interested
in those n with n ≥ px this means that m ≤ 0. Now fix an integer m ≤ 0 and let
Im be the set of integers n with the property that Dn(x) 6= 0. It is clear that all
integers n ∈ Im have to satisfy n ∼ pxe−mL, and since hn = n/p + O(n1−δ) the
cardinality of Im is bounded by O

(
(pxe−mL)1−δ

)
. Consequently it follows that

∑

n≥px

Dn(x) = O




∑

m≤0

(
pxe−mL

)s0−η (
pxe−mL

)1−δ
λm





= O



xs0−(η+δ−1)
∑

m≤0

λm η+δ−1
s0 O

(
xs0−(η+δ−1)

)


 .

Now if we define a periodic function Ψ(t) by

Ψ(t) =
λ−t/L

1 − λ−1

∑

n≥1

Bn

(
λ

⌊
t−log(n/p)

L

⌋
− λ⌊ t−log hn

L ⌋
)

− λ−t/L

2

∑

n≥1

Bnλ

⌊
t−log(n/p)

L

⌋
[[(t − log(n/p))/L ∈ Z]]

+
λ−t/L

2

∑

n≥1

Bnλ⌊ t−log hn
L ⌋[[(t − log hn)/L ∈ Z]], (41)

then

1

2πi
lim

T →∞

∫ c+iT

c−iT

B(s)

1 − e−Lsλ

xs

s
ds = x

1
L log λ Ψ (log x) + O

(
x

1
L log |λ|−η′

)
.

Summing up, we can handle all parts of T̃ (s) (given by (32)) with the help of these
techniques. If s0 > σa and s0 > 0, we obtain

1

2πi
lim

T →∞

∫ c+iT

c−iT

T̃ (s)
xs

s
ds = xs0 Ψ(log x) + O

(
xs0−η′

)
, (42)

where η′ > 0 and Ψ(t) is a positive and periodic function (with period L) that has
building blocks of the forms (39) and (41).

If we now set x = n then we obtain

T (n + 1) + T (n + 2)

2
= ns0 Ψ(log n) + O

(
ns0−η′

)
.
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However, by applying the small growth property (22) this also implies that

T (n) = ns0 Ψ(log n) + O
(

ns0−η′

)
. (43)

Remark 12. We note that the small growth property (22) was essential in the
proof. If (22) is not satisfied, then it is not clear that the sum

∑
n Dn(x) converges.

Actually, the counter examples from Example 3 show that it might diverge (although
the partial sums are bounded).

The final goal is to present some properties of the periodic function Ψ(t).

Lemma 4. Suppose that s0 > σa, s0 > 0, that we are in the rationally related case,
and that the small growth property (22) is satisfied. Then the periodic function Ψ(t)
of (42) is continuous and of bounded variation. It is has a convergent Fourier series
Ψ(t) =

∑
k cke2kπix/L, where

ck =
Ã(sk) +

∑m
j=1 bj(Gj(sk) − Ej(sk)) +

∑m
j=1 bj(Gj(sk) − Ej(sk))

sk

∑m
j=1(bj + bj)ps0

j log(1/pj)
,

with sk = s0 + 2kπi/L, as presented in (8).

Proof. By definition the function Ψ(t) is a finite sum of absolutely (and locally
uniformly) convergent series of functions Ψk(t) of bounded variation, for example

Ψk(t) = Cλ−t/L(ak+1−ak)

(
λ⌊(t−log(n/p))/L⌋ − 1

2
λ⌊(t−log(n/p))/L⌋[[(t − log k)/L ∈ Z]]

)

see (39) and (41). Consequently Ψ(t) is of bounded variation, too. Furthermore
since functions Ψk(t) of these series have the property that the limits Ψk(t + 0) =
limu→0+ Ψk(t + u) and Ψk(t − 0) = limu→0+ Ψk(t − u) exist and satisfy Ψk(t) =
1
2 (Ψk(t + 0) + Ψk(t − 0)) for all t, the same property holds for Ψ(t). Consequently,
in order to prove continuity we only have to check that Ψ(t + 0) = Ψ(t − 0) for all
potential discontinuities of Ψ(t).

Again by definition the only potential discontinuities of Ψ(t) are those t for which
there exists an integer m with t ≡ log m mod L. (Recall that pj = e−Lnj so that
log(k/pj)/L = log(k)/L + ni. Furthermore nj(k) is always an integer.) For all
other t all functions Ψk(t) are continuous for all k so that Ψ(t) is continuous, too.

We now compare T (⌊meLr − 1⌋) and T (⌊meLr + 2⌋) for a fixed integer m and for
integers r → ∞. By (43) if follows that

T (⌊meLr − 1⌋) = ⌊meLr − 1⌋s0Ψ
(
log⌊meLr − 1⌋

)
+ O

(
(meLr)s0−η′

)

= ms0 λrΨ
(
log m − c′

re−Lr/m
)

+ O
(

ms0λr(1−η′/s0)
)

,

where c′
r is a sequence of positive numbers that are bounded by 1 ≤ c′

r ≤ 2 (at
least for sufficiently large r). Similarly we find

T (⌊meLr + 2⌋) = ms0 λrΨ
(
log m + c′′

r e−Lr/m
)

+ O
(

ms0 λr(1−η′/s0)
)

,

for a corresponding sequence of positive numbers c′′
r that are bounded by 1 ≤ c′′

r ≤ 3
(for sufficiently large r). Finally be the small growth property (22) we have

T (⌊meLr + 2⌋) − T (⌊meLr − 1⌋) = O
(

ms0λr(1−η/s0)
)

.
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Putting these things together it follow that

lim
r→∞

(
Ψ
(
log m + c′′

r e−Lr/m
)

− Ψ
(
log m − c′

re−Lr/m
))

= 0

which implies Ψ(t + 0) = Ψ(t − 0) for t that satisfy t ≡ log m mod L. As mentioned
above this implies continuity of Ψ(t).

In order to obtain the Fourier series expansion of Ψ(t) we just have to check the
corresponding ones for the summands Ψk(t) (that are immediate) and sum over k.
It is also easy to check that the Fourier coefficients coincide with (8). However,
since all functions Ψk(t) are discontinuous the corresponding Fourier series are not
absolutely convergent. Therefore it cannot be deduced (in this way) that the Fourier
series of Ψ(t) is absolutely convergent.

We recall that the case s0 = 0 (that corresponds to λ = 1) can be handled in a
similar way.

5.5 Finishing the Proof

It remains to complete the proof of Theorem 2 in the rationally related case. Actu-
ally we only have to (re)consider the cases, where s0 ≥ σa. Namely, if σa > s0, then
the zeros of the equation (15) do not contribute to the leading analytic behavior of

T̃ (s) and we can apply proper Tauberian theorems. In what follows we comment
on the differences in the cases of interest.

2. σa < s0 and s0 = 0:
This case is basically handled in Theorem 6, in particular see Remark 11. As
mentioned above we also have to adapt the considerations following Remark 11
to the case s0 = 0 (which is immediate). There is also a proper variant of
Lemma 4 that ensures continuity of Ψ2(t).

3. σa = s0 = 0:
In this case we apply proper generalizations of Tauberian theorems. Recall that
in this case the dominant singular term of 1

s T̃ (s) is given by

C
(log(1/s))β0

sα0+2

and there are infinitely many simple poles at s = 2πik/L (k ∈ Z \ {0}). Of
course we have α0 ≥ 0, otherwise the sequence an would not be non-decreasing.
Here we need a slightly modified version of Theorem 12 or Theorem 13, resp.,
that can be found in Appendix B. Here the proof requires that the Fourier
series (20) converges and represents an integrable function, see also Remark 13.
However, this property is only required in the proof, the asymptotic leading
term does not depend on the Fourier series (20).

4. σa < s0 and s0 > 0:
Here we use Theorem 6, Remark 10 together with the discussion preceding
Lemma 4, in particular we apply (43). Finally Lemma 4 implies that Ψ4(t) is
continuous.

5. σa = s0 and s0 > 0:
This case is very similar to Case 3.
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6. EXTENSION: CENTRAL LIMIT LAW FOR BONCELET’S ALGORITHMS

So far we mostly dealt with divide and conquer recurrences representing a parameter
of interest, e.g., the average code length. However, in Section 4 we encounter a
simple divide and conquer functional recurrence (23) for the underlying generating
function C(n, y). This recurrence can be solved for y in a compact set and — under
some additional assumptions regarding the growth of the mean and the variance –
we can establish a general central limit law. In this section we do exactly this for
the Boncelet algorithm, as an illustration of the power of our technique.

We prove the following result.

Theorem 7. Consider a biased memoryless source (i.e., p 6= q) generating a se-
quence of length n parsed by the Boncelet algorithm. The phrase length Dn satisfies
the central limit law, that is,

Dn − 1
H log n√(

H2

H3 − 1
H

)
log n

→ N(0, 1),

where N(0, 1) denotes the standard normal distribution, and

E[Dn] =
log n

H
+ O(1), Var[Dn] ∼

(
H2

H3
− 1

H

)
log n

for n → ∞.

Proof. We recall that C(n, y) satisfies the recurrence (23) with initial conditions
C(0, y) = 0 and C(1, y) = 1. It is clear that for every fixed positive real number
y we can apply Theorem 2. However, we have to be careful since we need an
asymptotic representation for C(n, y) uniformly for y in an interval that contains
1 in its interior. Note that C(n, 1) = 1.

To deal with C(n, y), one has to consider the Dirichlet series

C(s, y) =

∞∑

n=1

C(n + 2, y) − C(n + 1, y)

ns
.

For simplicity we just consider here the case y > 1. (The case y ≤ 1 can be handled
in a similar way.) Then C(s, y) converges for ℜ(s) > s0(y), where s0(y) denotes
the real zero of the equation y(ps+1 + qs+1) = 1. We find

C(s, y) =
(y − 1) − Ẽ(s, y)

1 − y(ps+1 + qs+1)
,

where

Ẽ(s, y) = py
∞∑

k=1

(C(k + 2, y)) − C(k + 1, y))



 1

(k/p)s
− 1(⌈

k+2−δ
p

⌉
− 2
)s





+ qy

∞∑

k=1

(C(k + 2, y)) − C(k + 1, y))


 1

(k/q)s
− 1(⌊

k+1+δ
q

⌋
− 1
)s




converges for ℜ(s) > s0(y) − 1 and satisfies Ẽ(0, y) = 0 and Ẽ(s, 1) = 0.
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Suppose first that we are in the irrational case. Then by the Wiener-Ikehara
theorem only the residue at s0(y) contributes to the main asymptotic leading term.
(Recall that we consider the case y > 1). We thus have

C(n, y) ∼ Res

(
((y − 1) − Ẽ(s, y))(n − 3/2)s

s(1 − y(ps+1 + qs+1))
; s = s0(y)

)

=
((y − 1) − Ẽ(s0(y), y))(n − 3/2)s0(y)

−s0(y)(log(p)ps0(y)+1 + log(q)qs0(y)+1))
(1 + o(1)).

The essential but non-trivial observation is that this asymptotic relation holds uni-
form for y in an interval around 1. In order to make this precise we can use the
Mellin-Perron formula from Theorem 4

C(n, y) = C(2, y) +
1

2πi

∫ c+i∞

c−i∞
C(s, y)

(
n − 3

2

)s

s
ds

and apply the methods presented in the proof of Theorem 5, compare also with
[Drmota et al. 2010]. We observe that the sum of residues (that is denoted by Q(x)
in the proof of Theorem 5) converges to 0 uniformly in y. This follows from the fact
that the zeros of the equation y(ps+1 + qs+1) = 1 vary continuously in y. Hence, if
y in contained in some (compact) interval Y and snr(y) denotes one of the non-real
zeros, then

min
y∈Y

ℜ(snr(y) − s0(y)) > 0.

Hence we find

C(n, y) = (1 + O(y − 1))ns0(y)(1 + o(1))

uniformly for real y that are contained in an interval around 1. Finally by using
the local expansion

s0(y) =
y − 1

H
+

(
H2

2H3
− 1

H

)
(y − 1)2 + O((y − 1)3), (44)

and by setting y = et/(log n)1/2

we obtain

ns0(y) = exp

(
log n

(
y − 1

H
−
(

1

H
− H2

2H3

)
(y − 1)2 + O(|z − 1|3)

))

= exp

(
1

H
t
√

log n +
1

H

t2

2
−
(

1

H
− H2

2H3

)
t2 + O(t3/

√
log n)

)

= exp

(
1

H
t
√

log n +

(
H2

H3
− 1

H

)
t2

2
+ O(t3/

√
log n)

)
,

and consequently

E

[
eDnt/

√
log n

]
= C

(
n, et/

√
log n

)
= exp

(
1

H
t
√

log n +

(
H2

H3
− 1

H

)
t2

2

)
(1+o(1)).

Hence, we arrive at

E

[
et(Dn− 1

H log n)/
√

log n
]

= e−(t/H)
√

log v
E

[
eDnt/

√
log n

]
(45)

= e
t2

2 ( H2
H3 − 1

H ) + o(1).
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By the convergence theorem for the Laplace transform (see [Szpankowski 2001])
this proves the normal limiting distribution as n → ∞ and also convergence of
(centralized) moments.

In the rational case we can use a similar procedure. However, we have to use a
proper variation of the proof of Theorem 3, from which we obtain estimates that
are uniform in (real) y. Formally, we just have to add the residues coming from the
zeros sk(y) = s0(y)+k2πi/L for k 6= 0 (where L > 0 is the largest real number such
that log p and log q are integer multiples of L). These terms lead to an additional
contribution of the form

∑

k∈Z\{0}

((y − 1) − Ẽ(sk(y), y))(n − 3/2)sk(y)

−sk(y)(log(p)psk(y)+1 + log(q)qsk(y)+1))
= O(|y − 1|ns0(y)).

Since (y −1)− Ẽ(sk(y), y) = O(|y −1|), this suggest that these additional terms are
bounded by O(|y−1|ns0(y)). Actually this can be checked rigorously by adapting the

methods from Section 5. Hence, if we set y = et/(log n)1/2

this term is asymptotically
negligible and the central limit theorem follows also in the rational case.

In passing we observe that the phrase length Dn follows the same central limit
law as the Tunstall algorithm [Drmota et al. 2010].

Appendix

A. ANALYTIC CONTINUATION OF DIRICHLET SERIES

Dirichlet series of special sequences are frequently used in the present paper. In
particular we are interested in the Dirichlet series of sequences of the form

c(n) = nσ(log n)α.

It is clear that the Dirichlet series C(s) =
∑

n≥1 c(n)n−s converges (absolutely)
for complex s with ℜ(s) > σ + 1. We also know that the abscissa of absolute
convergence is given by σa = σ + 1. However, it is not immediate that C(s)
has a certain analytic continuation to a larger region (that does not contain the
singularity s = σa. Nevertheless, such continuation properties do hold (see [Grabner
and Thuswaldner 1996]).

Theorem 8. Suppose that σ and α are real numbers and let C(s) be the Dirichlet
series

C(s) =
∑

n≥2

nσ(log n)αn−s.

(i) If α is not a negative integer, then C(s) can be represented as

C(s) =
Γ(α + 1)

(s − σ − 1)α+1
+ G(s),

where G(s) is an entire function.
(ii) If α = −k is a negative integer, then we have

C(s) =
(−1)k

(k − 1)!
(s − σ − 1)k−1 log(s − σ + 1) + G(s),

where G(s) is an entire function.
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Proof. We do not provide a full proof but sketch the arguments from [Grabner
and Thuswaldner 1996] where even a slightly more general situation was considered.
Furthermore it is sufficient to consider the case σ = 0.

First it follows form the Euler Maclaurin summation that C(s) can be represented
(for ℜ(s) > 1) as

C(s) =

∫ ∞

2

(log v)α

vs
dv +

(log 2)α

2s+1
+

∫ ∞

2

(
{v} − 1

2

)(
α(log v)α−1 − s(log v)α

)
v−s−1 dv,

where the second integral on the right hand side represents a function that is ana-
lytic for ℜ(s) > 0. Furthermore, by using the substitution z = (s − 1) log v the first
integral can be rewritten as

∫ ∞

2

(log v)α

vs
dv = (s − 1)−α−1

∫ ∞

(s−1) log 2

zαe−z dz.

The latter integral is precisely the incomplete Γ-function.
If α is not a negative integer, then [Abramowitz and Stegun 1964]

∫ ∞

w

zαe−z dz = Γ(α + 1) − wα+1
∞∑

m=0

(−1)m

m!

wm

(m + α + 1)

and if α = −k is a negative integer, then [Abramowitz and Stegun 1964]
∫ ∞

w

z−ke−z dz = Γk−1(−k + 1) +
(−1)k

(k − 1)!
log(w)

− wα+1
∞∑

m=0, m 6=k−1

(−1)m

m!

wm

(m + α + 1)
,

where Γk(z) = Γ(z) − (−1)k/(k!(k + z)). Hence the conclusion follows.

Note that the above method is quite flexible. For example, if

c(n) = nσ(log n)α + O(nσ−δ)

for some δ > 0, then we obtain a similar representation except that G(s) is not any
more an entire function but a function that is analytic for ℜ(s) > σ + 1 − δ.

It is now easy to apply Theorem 8 to sequences of the form

c(n) = an+2 − an+1,

where

an = na(log n)b.

Theorem 9. Suppose that an = na(log n)b, where a and b are real numbers, and

let Ã(s) be the Dirichlet series

Ã(s) =
∑

n≥1

an+2 − an+1

ns
.

(i) If b is not a negative integer, then Ã(s) can be represented as

Ã(s) = a
Γ(b + 1)

(s − a)b+1
+

Γ(b + 1)

(s − a)b
+ G(s),
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where G(s) is analytic for ℜ(s) > a − 1.
(ii) If b = −k is a negative integer, then we have

Ã(s) = a
(−1)k

(k − 1)!
(s − a)k−1 log(s − a)

+
k(−1)k

(k − 1)!
(s − a)k log(s − a) + G(s),

where G(s) is analytic for ℜ(s) > a − 1.

Proof. This follows from the simple fact that

an+2 − an+1 = ana−1(log n)b
(
1 + O(n−1)

)

+ bna−1(log n)b−1
(
1 + O(n−1)

)
.

Note that Theorem 9 is even more flexible than Theorem 8. For example, we can
also consider sequences of the form an = (⌊ρn + τ⌋)

a
for some ρ with 0 < ρ < 1 (or

similarly defined sequences). In this case one could argue, as in Section 5.1, that

Ã(s) = ρsB(s) + R(s),

where B(s) is the Dirichlet series of the differences (n + 2)a − (n + 1)a and R(s) is
analytic for ℜ(s) > a − 1.

Finally we show that condition (20) of Theorem 2 is satisfied for sequences an =
na(log n)b.

Theorem 10. Suppose that an = na(log n)b and let Ã(s) denote the corresponding
Dirichlet series. Then the Fourier series

∑

k∈Z\{0}

Ã(a + 2πik/L)

a + 2πik/L
e2πikx/L (A.1)

is convergent for x ∈ R and represents an integrable function.

Proof. We restrict ourselves to the case a = 1, which means that the sequence
an+2 − an+1 consists (mainly) of the two terms (log n)b and (log n)b−1. To simplify
the presentation, we only discuss the function

A(s) =
∑

n≥2

(log n)bn−s

instead of Ã(s) (and neglect the error terms, since they be handled easily).
Following the proof of Theorem 8 we have to discuss the three integrals

A1(s) =

∫ ∞

2

(log v)b

vs
dv,

A2(s) =

∫ ∞

2

(
{v} − 1

2

)
b(log v)b−1v−s−1 dv,

A3(s) = s

∫ ∞

2

(
{v} − 1

2

)
(log v)bv−s−1 dv.
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Let us start with A3(s) which we represent as

A3(s) = s

∫ ∞

0

v−sh(v) dv,

where h(v) = 0 for 0 ≤ v < 2 and h(v)/v is of bounded variation on [2, ∞). (Note
that in our case, h(v) is not continuous if v is an integer.) Set

F (x) = L
∑

m∈Z

h(ex+mL).

Then F (x) is periodic (with period L) and also of bounded variation. Hence it has
a convergent Fourier series with Fourier coefficients (see [Korner 1989])

fk =
1

L

∫ L

0

F (x)e−2πikx/L dx =

∫ L

0

∑

m∈Z

h(ex+mL)e−(x+mL)2πik/L dx

=

∫ ∞

−∞
h(ex) e−x2πik/L dx =

∫ ∞

0

h(v) v−(1+2πik/L) dv

=
A3(1 + 2πik/L)

1 + 2πik/L
.

Consequently the Fourier series with Fourier coefficients A3(1 + 2πik/L)/(1 +
2πik/L) is convergent. Furthermore, it is integrable, since the set of discontinuities
of F (x) is countable and F (x) equals its Fourier series at all points of continuity
(here we use the fact that fk = O(1/k)).

Similarly we can handle A2(s). We represent it as

A2(s) =

∫ ∞

2

h(v)v−s dv,

where h(v)/v is of bounded variation on [2, ∞). Here the corresponding periodic
function is given by

F (x) = L

∫ ∞

2

h(v)
e−L{(x−log v)/L}

v(1 − e−L)
dv.

Finally, we have to consider A1(s). By Theorem 8 we know that A1(s) has an
analytic continuation to the slit region C\ (−∞, 1]. In particular it follows that the
limit

lim
ε→0+

A1(1 + ε + 2πik/L)

exists and equals to (the analytically continued value) A1(1 + 2πik/L) . By partial
integration it follows that (for real t)

∫ ∞

2

(log v)b

v1+ε+it
dv =

(log 2)b

ε + it
2−ε−it +

b

ε + it

∫ ∞

2

(log v)b−1

v1+ε+it
dv.

This implies that

A1(1 + it) = O

(
1

t

)
.

Consequently the Fourier series with Fourier coefficients A1(1 + 2πik/L)/(1 +
2πik/L), k 6= 0, converges absolutely. This completes the proof of the Theorem.
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B. TAUBERIAN THEOREMS

The main analytic problem in the present paper is to obtain asymptotic information
on the partial sums

c(v) =
∑

n≤v

c(n)

from analytic properties of the Dirichlet series

C(s) =
∑

n≥1

c(n)n−s.

The classical Tauberian theorem of Wiener-Ikehara, as presented in Theorem 11,
is a very strong tool in this context. Actually it applies to the Mellin-Stieltjes
transforms (see [Korevaar 2002]) that is closely related to Dirichlet series:

C(s) =
∑

n≥1

c(n)n−s =

∫ ∞

1−
v−s dc(v).

Theorem 11 (Wiener-Ikehara; cf. [Korevaar 2002]). Let c(v) be non-negative and
non-decreasing on [1, ∞) such that the Mellin-Stieltjes transform

C(s) =

∫ ∞

1−
v−s dc(v) = s

∫ ∞

1

c(v)v−s−1 dv

exists for ℜ(s) > 1. Suppose that for some constant A0 > 0, the analytic function

F (s) =
1

s
C(s) − A0

s − 1
(ℜ(s) > 1)

has a continuous extension to the closed half-plane ℜ(s) ≥ 1. Then

c(v) ∼ A0v

as v → ∞.

Theorem 11 is quite flexible. For example, it is sufficient to assume that c(v)(log v)b

is non-decreasing for some real b (and v ≥ 2). Furthermore it is clear that it gener-
alizes directly to the case when C(s) converges for ℜ(s) > s0 and has a continuous
extension to the closed half-plane ℜ(s) ≥ s0 (for s0 ≥ 0). It also applies if C(s)
behaves like a pole of higher order for s → s0, however, the asymptotic result has
to be adjusted accordingly.

Theorem 12. Let c(v) be non-negative and non-decreasing on [1, ∞) such that the
Mellin-Stieltjes transform C(s) exists for ℜ(s) > s0 for some s0 ≥ 0 and suppose
that there exist real constants A0, . . . , AK (with AK > 0) such that

F̃ (s) =
1

s
C(s) −

K∑

j=0

Aj

(s − s0)j+1
(B.1)

has a continuous extension to the closed half-plane ℜ(s) ≥ s0. Then we have

c(v) ∼ AK

K!
(log v)Kvs0 (v → ∞). (B.2)
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We indicate how Theorem 12 can be deduced from (a slight variation of) Theo-
rem 11 when K = 2 and s0 = 1. Let

1

s
C(s) =

∫ ∞

1

c(v)v−s−1 ds =
A1

(s − 1)2
+

A0

s − 1
+ F̃ (s)

with some A1 > 0 and some function F̃ (s) that is analytic for ℜ(s) > 1 and has a
continuous extension to the half plane ℜ(s) ≥ 1. By subtracting A0/(s − 1) and by
splitting up the integral into two parts we obtain

∫ ∞

2

(c(v) − A0v) v−s−1 dv =
A1

(s − 1)2
+ F̃ (s)

−
∫ 2

1

(c(v) − A0v) v−s−1 dv

Hence, by integrating with respect to s (from 2 to s) we have
∫ ∞

2

(
c(v) − A0v

log v

)
v−s−1 dv =

A1

s − 1
− A1 −

∫ s

2

F̃ (t) dt +

∫ ∞

2

(
c(v) − A0v

log v

)
v−3 dv

+

∫ s

2

∫ 2

1

(c(v) − A0v)v−t−1 dv dt.

We can apply a slight generalization of Theorem 11 to (c(v)−A0v)/ log v. Note that
the right hand side is of the form A1/(s − 1) + F (s), where F (s) has a continuous
continuation to the half plane ℜ(s) ≥ 1. The point is that the function (c(v) −
A0v)/ log v is not necessarily non-negative and non-decreasing. However, there is
certainly a constant C > 0 such that (c(v) − A0v)/ log v + Cv ≥ 0, and A1 on the
right hand side can be replaced by A1 + C. Furthermore, the proof of Theorem 11
has some flexibility. As mentioned above the proof of Theorem 11 can be easily
modified so that it also applies to a function of the form (c(v) − A0v)/ log v, where
it is only assumed that c(v) is non-decreasing [Korevaar 2002].

Note that the cases s0 > 0 and s0 = 0 of Theorem 2 have to be handled sepa-
rately.1 Furthermore, the case s0 < 0 is not applicable in this setting. Namely if
c(v) > 0 and non-decreasing, then C(s) cannot converge for s with ℜ(s) < 0.
Note also that we cannot expect a more precise asymptotic expansion in this
generality. For example if c(v) = (A1 log v + A0 + sin(log2 v))v with A1 > 2.
Then c(v) is positive and non-decreasing, so (B.1) is satisfied but we do not have
c(v) = (A1 log v + A0 + o(1))v.

Remark 13. The above mentioned proof method of Theorem 12 also applies to
situations, where 1

s C(s) has a representation of the form

1

s
C(s) =

∫ ∞

1

c(v)v−s−1 ds =
A1

(s − 1)2
+
∑

m∈Z

A0,m

s + imτ − 1
+ F̃ (s)

with some A1 > 0 and some function F̃ (s) that is analytic for ℜ(s) > 1 and has a
continuous extension to the half plane ℜ(s) ≥ 1. Furthermore we have to assume

1The approach we present works for s0 > 0. For s0 = 0 we have to adjust parts of the proof of
Theorem 11.
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that the Fourier series
∑

m∈Z

A0,meimτx

is convergent and represents an integrable function. Note that this condition corre-
sponds to the condition (20) in Theorem 2. Under these assumptions the previous
proof works, too, and it follows that c(v) ∼ A1v log v.

This kind of reasoning is precisely what is needed in Section 5.5, where we com-
pleted the proof of Theorem 2 in the rationally related case.

There are even more general versions by [Delange 1954] that cover singularities
of algebraic-logarithmic type that we state next. Note that this theorem requires
an analytic continuation property and not only a continuity property.

Theorem 13 ([Delange 1954]). Let c(v) be non-negative and non-decreasing on
[1, ∞) such that the Mellin-Stieltjes transform C(s) exists for ℜ(s) > s0 for some
s0 > 0 and suppose that there exist functions F̃ (s), g0(s), . . . , gJ(s) that are analytic
in a region that contains half plane ℜ(s) ≥ s0 such that

1

s
C(s) = g0(s)

(
log 1

s−s0

)β0

(s − s0)α0
+

J∑

j=1

gj(s)

(
log 1

s−s0

)βj

(s − s0)αj
+ F̃ (s),

where g0(s0) 6= 0, βj are non-negative integers, α0 is real but not a negative in-
teger when it is non-zero, and α1, . . . , αJ are complex numbers with ℜ(αj) < α0.
Furthermore β0 > 0 if α0 is contained in the set {0, −1, −2, . . .}. Then, as v → ∞,

c(v) ∼ g0(s0)

Γ(α0)
(log v)α0−1(log log v)β0 vs0 (B.3)

if α0 is not contained in the set {0, −1, −2, . . .} and

c(v) ∼ (−1)α0 (−α0)!β0g0(s0)(log v)α0−1(log log v)β0−1vs0 (B.4)

if α0 is contained in the set {0, −1, −2, . . .} and β0 > 0.

Interestingly, Theorem 11 generalizes – partly – to the case, where there are
infinitely many poles on the line ℜ(s) = s0, where one obtains a fluctuating factor
in the asymptotic expansion.

The drawback of this generalization is that it only applies if the appearing peri-
odic function has an absolutely convergent Fourier series. Unfortunately we cannot
check this in general although we can expect this property provided that the small
growth assumption (22) is satisfied, see also [Grabner and Hwang 2005].

Anyway, we could not find such a theorem in the literature, so we present it here.

Theorem 14. Let c(v) be non-negative and non-decreasing on [1, ∞) such that the
Mellin-Stieltjes transform C(s) exists for ℜ(s) > s0, where s0 > 0. Assume that
the function

F̃ (s) =
1

s
C(s) −

∑

m∈Z

Am

s − s0 − imτ
, (B.5)
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with some real τ > 0 and real coefficients Am, where A0 > 0, has a continuous
extension to the closed half-plane ℜ(s) ≥ s0. Furthermore assume that the Fourier
series

Ψ(x) =
∑

m∈Z

Am eimτx

is absolutely convergent and has bounded derivative. Then

c(v) ∼ Ψ(log v) vs0 (v → ∞). (B.6)

The proof is an extension of the approach from [Korevaar 2002]. For the reader’s
convenience we give it here. Let

Kλ(t) =
1 − cos(λt)

πλt2
=

λ

2π

(
sin(λt/2)

λt/2

)2

denote the Fejer kernel.

Lemma 5. Let κ > 0 and

h(t) =
∑

m∈Z

Ameimτt

be an absolutely convergent Fourier series with bounded derivative. Then

∫ ∞

0

Kλ(u − t)h(t) dt = h(u) + o(1) (λ → ∞) (B.7)

uniformly for u ≥ 1.

Proof. Let m0 = m0(ε) be defined by

∑

|m|>m0(ε)

|Am| < ε

and suppose that for λ0 = λ0(ε) > κm0(ε) we have

∑

|m|≤m0(ε)

|mAm| < ε λ0(ε).

Furthermore we note that for u ≥ 1

∫ ∞

u

Kλ(t) dt = O

(
1

λ

)
(λ → ∞).
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Consequently it follows for λ ≥ λ0(ε)

∫ ∞

0

Kλ(u − t)h(t) dt =
∑

m∈Z

Am

∫ ∞

0

Kλ(u − t)eimτt dt

=
∑

m∈Z

Am

∫ ∞

−∞
Kλ(t)eimτ(u−t) dt + O

(∫ ∞

u

Kλ(t) dt

)

=
∑

m∈Z

AmeimκuK̂λ(κm) + O

(
1

λ

)

=
∑

m∈Z

Ameimκu

(
1 − |κm|

λ

)
+ O

(
1

λ

)

=
∑

|m|≤λ/κ

Ameimκu + O


 1

λ

∑

|m|≤λ/κ

|mAm|


+ O

(
1

λ

)
.

Since λ0 > κm0 we have
∣∣∣∣∣∣
h(u) −

∑

|m|≤λ/κ

Ameimκu

∣∣∣∣∣∣
≤

∑

|m|>m0(ε)

|Am| < ε.

Furthermore

1

λ

∑

|m|≤λ/κ

|mAm| ≤ 1

λ

∑

|m|≤m0

|mAm| +
1

λ

∑

m0<|m|≤λ/κ

|mAm|

< ε +
∑

|m|>m0

|Am|

< 2ε.

Of course this proves (B.7).

Lemma 6. Let ℓ(t) be non-negative for t ≥ 0 such that the Laplace transform

L(z) =

∫ ∞

0

ℓ(t)e−zt dt

exists for ℜ(z) > 0. Suppose further that there exists a bounded and integrable
function h(t) (for t ≥ 0) with the property that

G(z) = L(z) − H(z)

has a continuous extension to the closed half-plane ℜ(z) ≥ 0, where H(z) denotes
the Laplace transform of h(t). Then

lim
u→∞

(∫ ∞

0

Kλ(u − t)ℓ(t) dt −
∫ ∞

0

Kλ(u − t)h(t) dt

)
= 0

Proof. Let K̂λ(y) = max{1 − |y|/λ, 0} denote the Fourier transform of Kλ(t)
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which is non-negative and has support [−λ, λ]. Then we have for x > 0
∫ ∞

0

Kλ(u − t)ℓ(t)eixt dt =

∫ ∞

0

Kλ(u − t)h(t)eixt dt

+
1

2π

∫ λ

−λ

K̂λ(y)G(x + iy)eiuy dy.

By assumption the right hand side has a finite limit as x → 0+. Hence, by the
monotone convergence theorem it follows that Kλ(u−t)ℓ(t) is integrable over (0, ∞)
and it follows that

∫ ∞

0

Kλ(u − t)ℓ(t) dt =

∫ ∞

0

Kλ(u − t)h(t) dt +
1

2π

∫ λ

−λ

K̂λ(y)G(iy)eiuy dy.

Finally, the Riemann-Lebesgue lemma implies

lim
u→∞

1

2π

∫ λ

−λ

K̂λ(y)G(iy)eiuy dy = 0.

This proves the lemma.

With the help of these preliminaries we prove Theorem 12.

Proof Proof of Theorem 14. We set ℓ(t) = e−s0ta(et). Then for ℜ(z) > 0

L(z) =

∫ ∞

0

ℓ(t)e−zt dt =

∫ ∞

1

a(v)v−(s0+z)−1 dv =
A(s0 + z)

s0 + z
.

Furthermore observe that the Laplace transform of Ψ(t) (for ℜ(z) > 0) is given by

H(z) =

∫ ∞

0

Ψ(t)e−tz dt =
∑

m∈Z

Am

z − imτ

Hence, by assumption the function

G(z) = L(z) − H(z) =
A(s0 + z)

s0 + z
−
∑

m∈Z

Am

z − imτ

has a continuous extension to the half-plane ℜ(z) ≥ 0. Consequently by Lemma 6

lim
u→∞

(∫ ∞

0

Kλ(u − t)e−s0ta(et) dt −
∫ ∞

0

Kλ(u − t)Ψ(t) dt

)
= 0

Since Ψ(t) is bounded it also follows that the second integral is uniformly bounded
in λ and u. Hence

lim sup
u→∞

∫ ∞

0

Kλ(u − t)ℓ(t) dt ≤ C

for some constant that is uniform in λ. Since a(v) is positive and non-decreasing it
follows that
∫ ∞

0

Kλ(u−t)ℓ(t) dt ≥ ℓ(u−1/
√

λ)e−2s0/
√

λ

∫ 1/
√

λ

−1/
√

λ

Kλ(t) dt = ℓ(u−1/
√

λ)
(

1 + O(1/
√

λ)
)
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and consequently

lim sup
u→∞

ℓ(u − 1/
√

λ) ≤ C
(

1 + O(1/
√

λ)
)

.

This shows that ℓ(t) is a bounded function.
Now, for given ε > 0 choose λ0 = λ0(ε) > 1/ε2 such that

∣∣∣∣
∫ ∞

0

Kλ0(u − t)Ψ(t) dt − Ψ(u)

∣∣∣∣ < ε.

Since Ψ(t) has bounded derivative we also have |Ψ(u)−Ψ(u−1/
√

λ0)| ≤ C/
√

λ0 ≤
Cε. Putting these estimates together it follows that

lim sup
u→∞

(
ℓ(u − 1/

√
λ0)

(
1 + O(1/

√
λ0)
)

− Ψ(u − 1/
√

λ0)
)

≤ (1 + C)ε

and consequently

lim sup
u→∞

(ℓ(u) − Ψ(u)) ≤ 0.

Similarly we obtain estimates from below. We just have to observe that

∫ ∞

0

Kλ(u − t)ℓ(t) dt ≤ ℓ(u + 1/
√

λ)e2s0/
√

λ

∫ 1/
√

λ

−1/
√

λ

Kλ(t) dt + O

(∫

1/
√

λ

Kλ(t) dt

)

= ℓ(u + 1/
√

λ)
(

1 + O(1/
√

λ)
)

+ O
(

1/
√

λ
)

and obtain in the same way

lim inf
u→∞

(ℓ(u) − Ψ(u)) ≥ 0.

Hence, ℓ(u) = Ψ(u) + o(1) and consequently a(v) = (Ψ(log v) + o(1)) vs0 . Fi-
nally, since a(v) is non-decreasing we have min Ψ(u) > 0 and consequently a(v) ∼
Ψ(log v)vs0 .
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