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An Asymptotic Analysis of Unlabeled k-Trees
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Abstract. In this paper we solve theasymptotic counting problemfor unlabeledk-trees. By applying a proper singu-
larity analysis of generating functions we show that the numbersUn of unlabeledk-trees of sizen are asymptotically
given byUn ∼ ckn−5/2(ρ1k)−n, whereck > 0 andρ1k > 0 denotes the radius of convergence of the generating
functionU(z) =

∑

n≥0
Unzn. Furthermore we prove that the number ofleavesand more generally the number of

nodesof given degree satisfy a central limit theorem with mean value and variance that are asymptotically linear in
the number of hedra where a hedron is a(k + 1)-clique in ak-tree.
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1 Introduction
A k-tree is – in some sense – a generalization of a tree and can be defined recursively: ak-tree is either a
complete graph onk vertices or a graph obtained from a smallerk-tree by adjoining a new vertex together
with k edges connecting it to ak-clique of the smallerk-tree. In particular, a1-tree is a usual tree.

The notion of ak-tree originates from the parametertree-width tw(G) of a graphG, which is the
minimum width among all possible tree decompositions ofG, or equivalently, tw(G) is the minimumk
such thatG is a subgraph of ak-tree. The concept of tree-width is of central importance tothe analysis
of graphs with forbidden minors of Robertson and Seymour [20] and received more algorithmic attention
due to the general complexity result of Courcelle about monadic second-order logic graph properties
decidability for graphs with bounded tree-width [3, 4]. It seems that many NP-hard problems on graphs
of bounded tree-width can be solved in polynomial time [13].A k-tree, as a bounded tree-width graph,
is exactly the maximal graph with a fixed tree-widthk such that no more edges can be added without
increasing its tree width.

Labeledk-trees have been already counted by Beineke, Pippert, Moon and Foata [2, 18, 9] four decades
ago that the numberBn of k-trees havingn labeled vertices isBn =

(

n
k

)

(k(n − k) + 1)n−k−2. Instead
the counting problem of unlabeledk-trees is much more difficult. Only the case of2-trees was already
solved by Harary and Palmer [15, 16] and Fowleret al [10] by using dissimilarity characteristic theorem.
The general case was a long standing open problem and was solved just recently by Gainer-Dewar [11].
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Subsequently both Gessel and Gainer-Dewar [12] simplified the generating function approach for unla-
beledk-trees by coloring the vertices of ak-tree in(k+1) colors such that adjacent vertices have different
colors. This breaks the symmetry ofk-trees and avoids the use of compatible cyclical orientation of each
(k + 1)-clique in ak-tree.

The purpose of this paper is to provide a first asymptotic analysis ofk-trees. First we will solve the
asymptotic counting problemand show (see Theorem 1) the numbersUn of unlabeledk-trees of sizen
are asymptotically given by

Un ∼ ckn−5/2(ρ1k)−n,

whereck > 0 and ρ1k > 0 denotes the radius of convergence of the generating function U(z) =
∑

n≥0 Unzn. This is in complete accordance with Otter’s result for trees [19], Labelleet al. result
for unlabeled2-trees [17], and also with the corresponding results for labeledk-trees.

Second we provide a first structural analysis of unlabeledk-trees. We prove that the number ofleaves
and more generally the number ofnodesof given degree satisfy a central limit theorem with mean value
and variance that are asymptotically linear in the number ofhedra (Theorems 2 and 3) where a hedron is
a (k + 1)-clique in ak-tree. This is also a natural generalization of corresponding results for (unlabeled)
trees, see [6].

Actually we expect that unlabeledk-trees have many asymptotic properties in common with trees. For
example, it is very likely thatk-trees scaled by1/

√
n converge weakly to the so-calledcontinuum random

treeas it holds for unlabeled trees (see [1, 14]). In this case it would follow that the diameterDn scaled
by 1/

√
n has a limiting distribution etc.

However, there are other parameters of interest – like the maximum degree – that cannot characterized
by a continuum tree property. Anyway, as in the case of trees (see [5]) we expect that the maximum degree
of k-trees should be concentrated atc log n (for a proper constantc > 0). We plan to work on these (and
related) questions in a follow-up paper.

The plan of the paper is as follows. In Section 2 we recall the combinatorial background from [12], in
particular a system of equations for generating functions.This system is then used to solve the asymptotic
counting problem in Section 3. Finally the number of leaves and the number of nodes of given degree are
discussed in Sections 4 and 5.

2 Combinatorics of Unlabeled k-Trees
Here we shall use the terminology introduced in [11, 12] to state the system of equations for the generating
functions. Letg ∈ Sm be a permutation of{1, 2, · · · , m} that hasℓi cycles of sizei, 1 ≤ i ≤ k,
in its cyclic decomposition. Then its cycle typeλ = (1ℓ1 , 2ℓ2, · · · , kℓk) is a partition ofm = ℓ1 +
2ℓ2 + · · · + kℓk. (In what follows we will denote byλ ⊢ m that λ is a partition ofm.) Furthermore
zλ = 1ℓ1ℓ1!2

ℓ2ℓ2! · · · kℓkℓk! denotes the number of permutations of cycle typeλ.
A hedron is a(k + 1)-clique in ak-tree and a front is ak-clique in ak-tree. According to the inductive

construction of ak-tree, the number of vertices in ak-tree havingn hedra isk + 1 + (n− 1) = n + k. A
colored hedron-labeledk-tree is ak-tree that has each vertex colored from the set{1′, 2′, · · · , (k +1)′} so
that any two adjacent vertices are colored differently, andeach hedron is labeled with a distinct number
from {1, 2, · · · , n}. The only automorphism that preserves hedra and colors of a colored hedron-labeled
k-tree is the identity automorphism, for which we can ignore the colors of vertices.k-coding trees have
labeled black vertices and colored vertices. Each edge connects a labeled black vertex with a colored
vertex from colors{1, 2, · · · , k + 1}. To construct ak-coding tree from a colored hedron-labeledk-tree,
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we color each front of a hedron with a distinct color from{1, 2, · · · , k + 1}. The correspondingk-coding
tree has each black vertex labeled withi representing each hedron of thek-tree with labeli and each
j-colored vertex representing each front of thek-tree with colorj. We connect a black vertex with a
colored vertex if and only if the corresponding hedron contains the corresponding front. As a result,
a colored hedron-labeledk-tree is bijective to ak-coding tree. Under the action ofSn andSk+1, the
orbits of colored hedron-labeledk-tree, which are unlabeledk-trees are bijective to the orbits of unlabeled
k-coding trees under the actionSk+1. See Figure 1 for an example. In [12] the following system of
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Fig. 1: The bijection between an unlabeled colored2-tree (left) and an unlabeled2-coding tree (right).

equations was set up that determines the generating function U(z) for unlabeledk-trees by

U(z) = B(z) + C(z) − E(z),

where

B(z) =
∑

λ⊢k+1

Bλ(z)

zλ
(1)

C(z) =
∑

µ⊢k

Cµ(z)

zµ
(2)

E(z) =
∑

µ⊢k

B̄µ(z)Cµ(z)

zµ
(3)

Bλ(z) = z
∏

i

Cλi (zi) (4)

B̄µ(z) = z
∏

i

Cµi (zi) (5)

Cµ(z) = exp

[

∞
∑

m=1

B̄µm(zm)

m

]

. (6)

HereB(z) is the generating function for color-orbits of black-rooted unlabeledk-coding trees,C(z)
is the generating function for color-orbits of colored-rooted unlabeledk-coding trees andE(z) is the
generating function for color-orbits of unlabeledk-coding trees rooted at an edge. We call an unlabeled
k-coding tree anj-reduced black-rooted tree if it is a black-rooted tree withall the neighbors of the root
are colored by{1, 2, · · · , j − 1, j + 1 · · · , k + 1}. B̄(z) is the generating function forj-reduced black-
rooted tree. For anyπ ∈ Sk+1, Bλ(z) is the generating function for black-rooted tree that are fixed
by π whereπ has cycle typeλ. For anyσ ∈ Sk, B̄µ(z) (resp. Cµ(z)) is the generating function for
reduced black-rooted tree (resp. colored-rooted tree) that are fixed byσ whereσ has cycle typeµ. Here
B̄µ(z) = B̄λ(z), Cµ(z) = Cλ(z) if λ is obtained fromµ by adding a part1. Cλi(z) is the generating
function for color-rooted trees that are fixed byπi andλi denotes the cycle type of permutationπi where
π ∈ Sk+1 has cycle typeλ andi is a part ofλ. Finally, the above products overi range over all partsi of
λ or µ, respectively, that is, ifi is containedm times inλ then it appearsm times in the product.
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3 Asymptotics of unlabeled k-trees
Let Un = [zn]U(z) denote the number of unlabeledk-trees of sizen. Then we have the following
asymptotic property.

Theorem 1 The numbers of unlabeledk-trees are asymptotically given by

Un =
1

k!

[3 − k + (k − 1)(kρ1k)−1/k]

2
√

2πk3ρ
−1/2

1k

[

m′(ρ1k)

m(ρ1k)

]3/2

(kρ1k)2−2/kn−5/2(ρ1k)−n(1 + O(n−1)). (7)

wherem(z) = z exp
[

k
∑∞

m=2 B̄1k(zm)/m
]

, B̄1k(z) = m(z)ekB̄
1k (z) andρ1k is the unique real positive

solution ofm(z) = (ek)−1.

Proof: Forµ = 1k, from eq. (5) and (6), we have

B̄1k(z) = z exp

[

k
∞
∑

m=1

B̄1k(zm)

m

]

= exp(kB̄1k(z)) · z · exp

[

k
∞
∑

m=2

B̄1k(zm)

m

]

.

Setting

m(z) = z exp

[

k
∞
∑

m=2

B̄1k(zm)

m

]

,

andB̄1k(z) = T (m(z)) for some power seriesT (z) we thus obtainT (z) = z exp(kT (z)). Hence, if
W (z) denotes the classical tree function that is given byW (z) = z exp(W (z)) it follows thatT (z) =
1
kW (kz). It is very well known thatW (z) has radius of convergenceρ = 1/e, that it has a singular
expansion of the form

W (z) = 1 −
√

2(1 − ez)1/2 +
2

3
(1 − ez) + · · ·

aroundz = 1/e and thatW (z) can be analytically continued to a region of the form{z ∈ C : |z| <
1/e + η} \ [1/e,∞) for someη > 0. In particular it follows thatT (z) has corresponding properties, of
course its radius of convergence equals1/(ke). Actually, in what follows we will only need thatT (z) is
analytic in a so-called∆-domain

∆α(M, φ) = {z | |z| < M, z 6= α, | arg(z − α)| > φ}

where0 < φ < π
2 . (Analyticity in ∆-domains is used totransferthe singular expansion of the generating

function into an asymptotic expansion for the coefficients,see [8].) In our case we know thatT (z) is
analytic in∆1/(ke)(1/(ke) + η, φ).

Let ρ1k be the unique dominant singularity of̄B1k(z), then we shall show(4k)−1 ≤ ρ1k ≤ (ek)−1.
SinceB̄1k(z), T (z) andm(z) have positive coefficients and̄B1k(z) = T (m(z)), we have[zn]B̄1k(z) ≥
[zn]T (z) which indicates the radius of convergence forB̄1k(z) is at most that forT (z) which is(ek)−1.
On the other hand, the radius of convergence forB̄1k(z) is at least that forM(z) whereM(z) = z(1 −
kM(z))−1 and accordinglyρ1k ≥ (4k)−1.

The next step we shall prove that the dominant singularityz = ρ1k of B̄1k(z) is of square root type,
too. Sincem(z) has radius of convergence

√
ρ1k > ρ1k it follows that it is analytic atz = ρ1k . More
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precisely the singular expansion ofB̄1k(z) close toz = ρ1k comes from composing the singular expansion
of T (z) at 1/(ek) with the analytic expansion ofm(z) at ρ1,k. In this context we also observe that
m(ρ1k) = (ek)−1 andm′(ρ1k) > 1. According to this we get the local expansion

B̄1k(z) =
1

k
−

√
2

k

[

1 − m(z)

m(ρ1k)

]1/2

+
2

3k

[

1 − m(z)

m(ρ1k)

]

+
∑

i≥3

(−1)imi

[

1 − m(z)

m(ρ1k)

]i/2

=
1

k
−

√
2

k

[

(ρ1k − z)m′(ρ1k)

m(ρ1k)

]1/2

+
2

3k

[

(ρ1k − z)m′(ρ1k)

m(ρ1k)

]

+ O(ρ1k − z)3/2.

HenceforthC1k(z) = z−1/kB̄1k(z)1/k hasz = ρ1k as dominant singularity of square root type, too, and
a local expansion of the form

C1k(z) = (kρ1k)−1/k + a(ρ1k − z)1/2 + b(ρ1k − z) + c(ρ1k − z)3/2 + O(ρ1k − z)2 (8)

wherea, b are given by

a = −
√

2(kρ1k)(k−1)/k

k2ρ1k

[

m′(ρ1k)

m(ρ1k)

]1/2

, b =
3 − k

3k3

(kρ1k)(k−1)/k

ρ1k

[

m′(ρ1k)

m(ρ1k)

]

.

Actually the functionsB̄1k(z), C1k(z) = C1k+1(z), andB1k+1(z) have the same radius of convergence
ρ1k (which is a square-root singularity).

Furthermore we observe that for anyk ≥ 2 andµ 6= 1k, B̄µ(z) andCµ(z) are analytic atz = ρ1k .
Let ρµ be the unique dominant singularity of̄Bµ(z). Since the number of black-rooted trees that are
fixed by permutation of typeµ 6= 1k is less than or equal to those fixed by identity permutation, i.e.,
[zn]B̄µ(z) ≤ [zn]B̄1k(z) it follows thatρµ ≥ ρ1k . Therefore it remains to proveρµ 6= ρ1k . In the caseµ
has exactlyj parts of size1 where0 < j < k, then we have

B̄µ(z) = zCµ(z)j
∏

i6=1

Cµi(zi) and Cµ(z) = exp(B̄µ(z)) exp

[

∞
∑

m=2

B̄µm(zm)

m

]

(9)

which lead to

B̄µ(z) = z
∏

i6=1

Cµi(zi) exp(jB̄µ(z)) exp

[

j

∞
∑

m=2

B̄µm(zm)

m

]

. (10)

By settingB̄µ(z) = y, it follows that(ρµ, B̄µ(ρµ)) is the unique solution of

M(z, y) = z
∏

i6=1

Cµi (zi) exp(jy) exp

[

j

∞
∑

m=2

B̄µm(zm)

m

]

My(z, y) = jz
∏

i6=1

Cµi (zi) exp(jy) exp

[

j

∞
∑

m=2

B̄µm(zm)

m

]

= 1,
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and consequentlȳBµ(ρµ) = 1/j. Recall thatB̄1k(ρ1k) = 1/k, thus, we havekB̄1k(ρ1k) = jB̄µ(ρµ) =
1. If ρµ = ρ1k , thenkB̄1k(ρ1k) > jB̄µ(ρ1k) = 1, which contradicts the relationkB̄1k(ρ1k) = 1.
Therefore we can conclude thatρ1k < ρµ and from eq. (9), eq. (10),Cµ(z) also has dominant singularity
ρµ. In the caseµ has no part of size1, thenB̄µ(z) is a product ofCµi(zi) wherei ≥ 2 andµi has part of
size1. Consequently we haveρµ > min{ρµi : i ∈ µ} > ρ1k . Now we can conclude for anyk ≥ 2 and
µ 6= 1k, ρ1k < ρµ, namelyB̄µ(z) andCµ(z) are analytic atz = ρ1k .

Summing up, sinceB1k+1(z) = zC1k(z)k+1 has a square-root singularity atz = ρ1k andBλ for any
λ 6= 1k+1 is analytic atρ1k , the dominant term in the singular expansion ofU(z) comes from

B1k+1(z)

z1k+1

+
C1k(z)

z1k

− C1k(z)B̄1k(z)

z1k

=
−kzC1k(z)k+1

(k + 1)!
+

C1k(z)

k!
.

All the other terms are all analytic atz = ρ1k . Together with the singular expansion ofC1k(z) shown in
eq. (8), we can calculate the constant for the term(ρ1k − z)1/2 in the singular expansion ofU(z), which

is
−kρ

1k

(k+1)!

(

k+1
1

)

a
kρ

1k
+ a

k! = 0. Similarly the constant for the term(ρ1k − z)3/2 in the singular expansion

of U(z) is

−kρ1k

(k − 1)!
a(b +

k − 1

3!
a2) =

√
2

k!

[3 − k + (k − 1)(kρ1k)−1/k]

3k3ρ1k

[

m′(ρ1k)

m(ρ1k)

]3/2

(kρ1k)(2k−2)/k

which is positive sinceρ1k ≤ (ek)−1 < k−1(1 − 2
k−1 )−k. Now we have derived the singular expansion

of U(z) at z = ρ1k :

U(z) = U(ρ1k) +

√
2

k!

[3 − k + (k − 1)(kρ1k)−1/k]

3k3ρ1k

[

(ρ1k − z)m′(ρ1k)

m(ρ1k)

]3/2

(kρ1k)2−2/k (11)

+ c1(ρ1k − z) + c2(ρ1k − z)2 + O(ρ1k − z)5/2.

By applying transfer theorem [5, Corollary 2.15], we get eq.(7) and the proof is complete. 2
4 Leaves of unlabeled k-trees
As we have explained in Section 2 unlabeledk-trees are bijective to the orbits of unlabeledk-coding tree
under the actionSk+1. We call a black node aleaf if only one of its colored neighbor connects with other
black nodes. It is obvious that this notion corresponds to the only meaningful notion of aleafof ak-tree.

In the sequel we shall weight each black node byz and each leaf byw. Let U(z, w) be the generating
function for unlabeled color-orbits of unlabeledk-coding trees, then we have:

Theorem 2 Let Xn be the random variable associated with the number of leaves of k-coding trees, that
is

P(Xn = r) =
[znwr ]U(z, w)

[zn]U(z, 1)
.

Then there exists positive constantsµ andσ2 such thatE(Xn) = µ n+O(1) andVar(Xn) = σ2 n+O(1).
FurthermoreXn satisfies a central limit theorem of type

Xn − E(Xn)
√

Var(Xn)
−→N(0, 1).
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Proof: Let B(z, w) be the generating function for color-orbits of black-rooted trees, letC(z, w) be the
generating function for color-orbits of color-rooted trees and letE(z, w) be the generating function for
color-orbits of coding trees rooted at an edge, then according to the dissymmetry theorem and Cauchy-
Frobenius theorem, we have

U(z, w) = B(z, w) + C(z, w) − E(z, w) (12)

where

B(z, w) =
∑

λ⊢k+1

Bλ(z, w)

zλ
, C(z, w) =

∑

µ⊢k

Cµ(z, w)

zµ
, Bλ(z, w) = z

∏

i

Cλi (zi, wi) + z(w − 1)

E(z, w) =
∑

µ⊢k

(B̄µ(z, w) − zw + z)Cµ(z, w) + z(w − 1)

zµ

B̄µ(z, w) = z
∏

i

Cµi(zi, wi) + z(w − 1) (13)

Cµ(z, w) = exp

[

∞
∑

m=1

B̄µm(zm, wm)

m

]

. (14)

Forµ = 1k, from eq. (13) and (14), we obtain

B̄1k(z, w) = z exp

[

k
∞
∑

m=1

B̄1k(zm, wm)

m

]

+ z(w − 1). (15)

We first show forµ 6= 1k andm ≥ 2, B̄µ(z, w) and B̄1k(zm, wm) are analytic if(z, w) is close to
(ρ1k , 1). For sufficiently smallǫ > 0, we consider|w| ≤ ρ

1k

ρ
1k +ǫ and|z| ≤ ρ1k + ǫ, then form ≥ 2,

|B̄µ(z, w)| ≤ B̄µ(|zw|, 1) ≤ B̄µ(ρ1k , 1) ≤ Kρ1k ,

|B̄1k(zm, wm)| ≤ B̄1k(|zw|m, 1) ≤ B̄1k((ρ1k)m, 1) ≤ M(ρ1k)m.

The last inequality holds becausēBµ(z, 1) andB̄1k(z, 1) are convex forz ∈ [0, ρ1k ] andz ∈ [0, (ρ1k)2],
respectively. Now we set

F (y, z, w) = z exp

[

ky + k

∞
∑

m=2

B̄1k(zm, wm)

m

]

+ z(w − 1)

thatF (y, z, w) is analytic for(y, z, w) around(0, 0, 0) andF (y, 0, w) ≡ 0, F (0, z, w) 6≡ 0. Furthermore,
the coefficients ofF (y, z, w) are all non-negative, then̄B1k(z, w) is the unique solution ofF (y, z, w) = y
that can be expressed as

B̄1k(z, w) = α(z, w) − β(z, w)

[

1 − z

ρ1k(w)

]1/2

,

whereα(z, w), β(z, w), ρ1k (w) are analytic for|w−1| ≤ ǫ, |z−ρ1k(w)| < ε, arg(z−ρ1k(w))| > φ (for
someφ ∈ (0, π/2)) andǫ is sufficiently small. Furthermore,β(ρ1k(w), w) 6= 0 andB̄1k(ρ1k(w), w) =
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α(ρ1k(w), w) = k−1 + (w − 1)ρ1k(w). SinceB̄1k(z, w) = zC1k(z, w)k + z(w − 1), C1k(z, w) has a
corresponding representation

C1k(z, w) = a(z, w) + b(z, w)

[

1 − z

ρ1k(w)

]1/2

(16)

wherea(z, w), b(z, w) are analytic functions around(z, w) = (ρ1k , 1), b(ρ1k(w), w) 6= 0, C1k(ρ1k(w), w) =
a(ρ1k(w), w) = (kρ1k(w))−1/k. Analogous toB̄1k(z, w), for m ≥ 2 and µ 6= 1k, Cµ(z, w) and
C1k(zm, wm) are analytic if(z, w) is close to(ρ1k , 1). Consequently forz ∈ Uρ

1k
(w) and|w − 1| ≤ ǫ,

U(z, w) has the expansion

U(z, w) = − kz

(k + 1)!
C1k(z, w)k+1 +

1

k!
C1k(z, w) + H1(z, w)

whereH1(z, w) is analytic function around(z, w) = (ρ1k , 1). By substitutingC1k(z, w) by its singular
expansion in eq. (16),U(z, w) can be expanded locally aroundz = ρ1k andw = 1, i.e.,

U(z, w) = g(z, w) +

[

−zak(z, w)

(k − 1)!
+

1

k!
+ O(ρ1k(w) − z)

]

b(z, w)

[

1 − z

ρ1k(w)

]1/2

,

Since−ρ1k(w)
ak(ρ

1k (w),w)

(k−1)! + 1
k! = 0, together with the facta(z, w) = a(ρ1k(w), w) + O(ρ1k(w) − z)

andb(ρ1k(w), w) 6= 0, we can conclude

U(z, w) = g(z, w) + f(z, w)

[

1 − z

ρ1k(w)

]3/2

(17)

wheref(ρ1k , 1) 6= 0 from Section 3 and thereforef(ρ1k(w), w) 6= 0. By applying [5, Theorem 2.25]
to eq. (17), there is a central limit theorem for(Xn − E(Xn))/

√
n. More precisely there existµ and

σ2 with E(Xn) = µ n + O(1) andVar(Xn) = σ2 n + O(1) whereµ = −ρ′1k(1)/ρ1k(1) andσ2 =
−ρ′′1k(1)/ρ1k(1) + µ + µ2. By applying Lemma 4 of [7] it actually follows thatσ2 > 0 andXn satisfies
a central limit theorem as stated. 2
5 The degree distribution of unlabeled k-trees
We again refer to the unlabeledk-coding trees and consider here the degree distribution. Clearly every
black node in thek-coding tree has degreek + 1. So we concentrate on the degree distribution of colored
nodes. First of all we change the statistics slightly by measuring the size according to the number of
colored nodes. Formally the variablex (instead ofz) takes care of the number of colored nodes. Now let
U(x) be the generating function for unlabeled color-orbits of unlabeledk-coding trees, letB(x) be the
generating function for color-orbits of black-rooted trees, letC(x) be the generating function for color-
orbits of color-rooted trees and letE(x) be the generating function for color-orbits of unlabeledk-coding
trees rooted at an edge, then we have similarly to the above:

U(x) = B(x) + C(x) − E(x) (18)
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where

B(x) =
∑

λ⊢k+1

Bλ(x)

zλ

C(x) =
∑

µ⊢k

Cµ(x)

zµ

E(x) =
∑

µ⊢k

B̄µ(x)Cµ(x)

zµ

Bλ(x) =
∏

i

Cλi(xi)

B̄µ(x) =
∏

i

Cµi(xi)

Cµ(x) = x exp

[

∞
∑

m=1

B̄µm(xm)

m

]

.

In completely the same way as in Section 3, we can find the singular expansion ofU(x) given by

U(x) = U(γ1k) + c1(γ1k − x) + r(γ1k − x)3/2 + c2(γ1k − x)2 + O((γ1k − x)5/2)

for some positive constantr and some constantsc1, c2. FurthermoreB̄1k(γ1k) = 1/k, it follows that
ρ1k = γ1k .

Now we give each colored node of degreedi with weightui. Letu = (u1, · · · , uM ), m = (m1, · · · , mM )
wheremi ≥ 0 andd = (d1, · · · , dM ) wheredi > 0, then the coefficient ofxn

u
m in the generating func-

tion U (d)(x,u) is the number of of unlabeledk-trees that there aremi colored nodes out ofn total colored
nodes having degreedi. Then we have

Theorem 3 Let Yn,d = (Y
(1)
n,d1

, · · · , Y (M)
n,dM

) be the random vector of the number of colored nodes in an
unlabeledk-tree that have degrees(d1, · · · , dM ), that is,

P(Yn,d = m) =
[xn

u
m]U (d)(x,u)

[xn]U (d)(x,1)
.

Then there exists anM -dimensional vectorµ and anM × M positive semidefinite matrixΣ such that
E(Yn,d) = µ n+O(1) andCov(Yn,d) = Σ n+O(1). FurthermoreYn,d satisfies a central limit theorem
of the form

Yn,d − E(Yn,d)√
n

−→N(0, Σ).

Proof: Let C(d)(x,u) be the generating function for color-orbits of colored-rooted trees that has each
colored node of degreedi weighted byui. Let P (d)(x,u) be the generating function for the trees whose
root is only connected with the root of a color-orbit of colored node-rooted tree, so thatC(d)(x,1) =
P (d)(x,1). Let B(d)(x,u) be the generating function for color-orbits of black-rooted trees that has
each node of degreedi weighted byui. E(d)(x,u) be the generating function for color-orbits of unla-
beledk-coding trees rooted at an edge that has each node of degreedi weighted byui. Here we intro-
duceP (d)(x,u) to distinguish the case that the colored root has degreedi for some1 ≤ i ≤ M . Let

Z(Sp, B̄
(d)
µ (x,u)) represent the generating function forSp-orbits of objects counted bȳB(d)

µ (x,u):

Z(Sp, B̄
(d)
µ (x,u)) = Z(Sp, B̄

(d)
µ (x,u), B̄

(d)
µ2 (x2,u2), · · · , B̄(d)

µp (xp,up))

=
∑

λ⊢p

1

zλ
B̄(d)

µ (x,u)λ1 B̄
(d)
µ2 (x2,u2)λ2 · · · B̄(d)

µp (xp,up)λp
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whereλ = (1λ1 , · · · , pλp). Then the generating functionU(x,u) for unlabeledk-trees with colored nodes
of degreed is given by

U (d)(x,u) = B(d)(x,u) + C(d)(x,u) − E(d)(x,u) (19)

where

B(d)(x,u) =
∑

λ⊢k+1

B
(d)
λ (x,u)

zλ
, C(d)(x,u) =

∑

µ⊢k

C
(d)
µ (x,u)

zµ
, B

(d)
λ (x,u) =

∏

i

P
(d)
λi (xi,ui)

E(d)(x,u) =
∑

µ⊢k

B̄
(d)
µ (x,u)P

(d)
µ (x,u)

zµ
, B̄(d)

µ (x,u) =
∏

i

P
(d)

µi (xi,ui)

C(d)
µ (x,u) = x exp

[

∞
∑

m=1

B̄
(d)
µm (xm,um)

m

]

+

M
∑

j=1

x(uj − 1)Z(Sdj
, B̄(d)

µ (x,u)) (20)

P (d)
µ (x,u) = x exp

[

∞
∑

m=1

B̄
(d)
µm (xm,um)

m

]

+

M
∑

j=1

x(uj − 1)Z(Sdj−1, B̄
(d)
µ (x,u)). (21)

The dominant singularity for̄B1k(x,1) is ρ1k . As before, forµ 6= 1k, B̄µ(x,u) and for m ≥ 2,
B̄1k(xm,um) are analytic if(x,u) is close to(ρ1k ,1). Next we consider

S(x, y,u) =

(

xey exp

(

∞
∑

m=2

B̄
(d)

1k (xm,um)

m

)

+

M
∑

j=1

x(uj − 1)Z(Sdj−1, y, B̄
(d)

1k (x2,u2), · · · , B̄(d)

1k (xdj−1,udj−1))

)k

.

Since S(0, y,u) ≡ 0, S(x, 0,u) 6≡ 0 and all coefficients ofS(x, y,1) are real and positive, then

y(x,u) = B̄
(d)

1k (x,u) is the unique solution of the functional equationS(x, y,u) = y. Furthermore,
(x, y) = (ρ1k , 1/k) is the only solution ofS(x, y,1) = 0 andSy(x, y,1) = 1 with Sx(ρ1k , 1/k,1) 6= 0,

Syy(ρ1k , 1/k,1) 6= 0. Consequently,̄B(d)

1k (x,u) can be represented as

B̄
(d)

1k (x,u) = g(x,u) − h(x,u)

[

1 − x

ρ1k(u)

]1/2

(22)

which holds locally around(x,u) = (ρ1k ,1). In view of B̄(d)

1k (x,u) = P
(d)

1k (x,u)k, P
(d)

1k (x,u) also has
expansion of square root type, i.e.,

P
(d)

1k (x,u) = s(x,u) − t(x,u)

[

1 − x

ρ1k(u)

]1/2

(23)

wheret(ρ1k(u),u) 6= 0. From eq. (20) and eq. (21), we have

C(d)
µ (x,u) = P (d)

µ (x,u) +

M
∑

j=1

x(uj − 1)
[

Z(Sdj
, B̄(d)

µ (x,u)) − Z(Sdj−1, B̄
(d)
µ (x,u))

]
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based on which we shall next compute the dominant term in the singular expansion ofU(x,u). For
simplicity we will omit variables(x,u) and degreed.

U(x,u) =
P k+1

1k

(k + 1)!
+

C1k

k!
−

P k+1
1k

k!
+ M1 =

P k+1
1k

(k + 1)!
+

1

k!
(1 − P k

1k)P1k +
1

k!
(C1k − P1k) + M1

= − kP k+1
1k

(k + 1)!
+

P1k

k!
+

1

k!

M
∑

j=1

x(uj − 1)
[

Z(Sdj
, B̄1k) − Z(Sdj−1, B̄1k)

]

+ M1.

whereM1 is an analytic function around(x,u) = (ρ1k ,1). It is now convenient to writeU(x,u) =

f(x,u) + h(x,u)
[

1 − x
ρ
1k (u)

]1/2

. Then by substitutingP1k , B̄1k with its representation in eq. (23) and

eq. (22), we obtain

h(x,u) =
sk t

(k − 1)!
− t

k!
+

h

k!

M
∑

j=1

x(uj − 1)
[

Z ′(Sdj−1, g, X2, · · · , Xdj−1) − Z ′(Sdj
, g, X2, · · · , Xdj

)
]

whereXi are analytic functions around(x,u) = (ρ1k ,1) andZ ′ is the derivative w.r.t. the first variable of
Z(Sk, x1, · · · , xk), namelyZ ′(Sk, x1, · · · , xk) = Z(Sk−1, x1, · · · , xk−1). Furthermore, by replacing
s, t by g = sk andh = ksk−1t, we can further simplifyh(x,u), that is

h(x,u) =
h

k!

g − 1
k

g1− 1
k

+
h

k!

M
∑

j=1

x(uj − 1)
(

Z ′(Sdj−1, g, X2, · · · , Xdj−1) − Z ′(Sdj
, g, X2, · · · , Xdj

)
)

.

Now we use the fact thaty = g(ρ1k(u),u) and x = ρ1k(u) is the solution ofS(x, y,u) = y and
Sy(x, y,u) = 1, which yields

g(ρ1k(u),u) =
1

k
+ g(ρ1k(u),u)

k−1

k

×
M
∑

j=1

x(uj − 1)
[

Z(Sdj−1, g, X2, · · · , Xdj−1) − Z ′(Sdj−1, g, X2, · · · , Xdj−1)
]

and consequentlyh(ρ1k(u),u) ≡ 0 andU(x,u) has a local expansion around(x,u) = (ρ1k ,1) of the
form

U(x,u) = w(x,u) + r(x,u)

[

1 − x

ρ1k(u)

]3/2

. (24)

wherer(ρ1k (u),u) 6= 0 sincer(ρ1k ,1) = r 6= 0 andw, r are analytic function around(x,u) = (ρ1k ,1).
Thus a central limit theorem follows. More precisely by setting A(u) = log ρ1k(1) − log ρ1k(u), µ =
(Auj

(1))1≤j≤M andΣ = (Auiuj
(1)+δi,jAuj

(1))1≤j≤M thenE(Yn,d) = µ n+O(1) andCov(Yn,d) =
Σ n + O(1). 2
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