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Abstract. In this paper we solve thesymptotic counting problefor unlabeledk-trees. By applying a proper singu-
larity analysis of generating functions we show that the bersU,, of unlabeledk-trees of size: are asymptotically
given byU,, ~ ckn*E’/Q(plk)*", wherec;, > 0 andp,+ > 0 denotes the radius of convergence of the generating
functionU(z) = 3, Unz". Furthermore we prove that the numberedvesand more generally the number of
nodesof given degree satisfy a central limit theorem with meameaind variance that are asymptotically linear in
the number of hedra where a hedron ig&at 1)-clique in ak-tree.
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1 Introduction

A k-tree is — in some sense — a generalization of a tree and cagfibedirecursively: @-tree is either a
complete graph oh vertices or a graph obtained from a smaklldree by adjoining a new vertex together
with k£ edges connecting it to/aclique of the smallek-tree. In particular, a-tree is a usual tree.

The notion of ak-tree originates from the parameteee-widthtw(G) of a graphG, which is the
minimum width among all possible tree decomposition&/obr equivalently, tWG) is the minimumk
such that7 is a subgraph of &-tree. The concept of tree-width is of central importancthtoanalysis
of graphs with forbidden minors of Robertson and Seymouf§2@ received more algorithmic attention
due to the general complexity result of Courcelle about rdanaecond-order logic graph properties
decidability for graphs with bounded tree-width [3, 4]. ¢&esns that many NP-hard problems on graphs
of bounded tree-width can be solved in polynomial time [18]k-tree, as a bounded tree-width graph,
is exactly the maximal graph with a fixed tree-widttsuch that no more edges can be added without
increasing its tree width.

Labeledk-trees have been already counted by Beineke, Pippert, MubR@ata [2, 18, 9] four decades
ago that the numbeB,, of k-trees having: labeled vertices i$3,, = (})(k(n — k) +1)"~#~2. Instead
the counting problem of unlabelddtrees is much more difficult. Only the caseXfrees was already
solved by Harary and Palmer [15, 16] and Fovdéeal [10] by using dissimilarity characteristic theorem.
The general case was a long standing open problem and wasigo$t recently by Gainer-Dewar [11].
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Subsequently both Gessel and Gainer-Dewar [12] simplifiedgenerating function approach for unla-
beledk-trees by coloring the vertices ofatree in(k+ 1) colors such that adjacent vertices have different
colors. This breaks the symmetry loftrees and avoids the use of compatible cyclical orientaticeach
(k + 1)-clique in ak-tree.

The purpose of this paper is to provide a first asymptoticyeaimabf k-trees. First we will solve the
asymptotic counting problemnd show (see Theorem 1) the numb&rsof unlabeledk-trees of sizen
are asymptotically given by

Un ~ Ckn_f)/z(pl")_na

wherec, > 0 andp;» > 0 denotes the radius of convergence of the generating funélic) =
> nsoUnz™. This is in complete accordance with Otter’s result for $r¢&9], Labelleet al. result
for unlabeled-trees [17], and also with the corresponding results foelkedbk-trees.

Second we provide a first structural analysis of unlab&kaees. We prove that the numberleéves
and more generally the numbermbdesof given degree satisfy a central limit theorem with mearneal
and variance that are asymptotically linear in the numbdredfra (Theorems 2 and 3) where a hedron is
a(k + 1)-clique in ak-tree. This is also a natural generalization of correspumpdesults for (unlabeled)
trees, see [6].

Actually we expect that unlabelddtrees have many asymptotic properties in common with triéess
example, itis very likely thakt-trees scaled by/\/n converge weakly to the so-calledntinuum random
treeas it holds for unlabeled trees (see [1, 14]). In this caseiild/follow that the diameteb,, scaled
by 1/4/n has a limiting distribution etc.

However, there are other parameters of interest — like thérman degree — that cannot characterized
by a continuum tree property. Anyway, as in the case of tress [5]) we expect that the maximum degree
of k-trees should be concentratedtébg n (for a proper constant > 0). We plan to work on these (and
related) questions in a follow-up paper.

The plan of the paper is as follows. In Section 2 we recall tmalginatorial background from [12], in
particular a system of equations for generating functidiés system is then used to solve the asymptotic
counting problem in Section 3. Finally the number of leaves the number of nodes of given degree are
discussed in Sections 4 and 5.

2 Combinatorics of Unlabeled k-Trees

Here we shall use the terminology introduced in [11, 12] &besthe system of equations for the generating
functions. Letg € &,, be a permutation of1,2,---,m} that has¢; cycles of sizei, 1 < i < k,
in its cyclic decomposition. Then its cycle type= (1,2, ... k) is a partition ofm = ¢; +
205 + -+ + kfi. (In what follows we will denote by\ - m that A is a partition ofm.) Furthermore
zy = 104,120, . . . k': ¢! denotes the number of permutations of cycle type

A hedronis &k + 1)-clique in ak-tree and a front is &-clique in ak-tree. According to the inductive
construction of &-tree, the number of vertices inkatree having: hedraisk +1+ (n —1) =n+ k. A
colored hedron-labelddtree is ak-tree that has each vertex colored from the{gét2’,-- -, (k+1)'} so
that any two adjacent vertices are colored differently, @aach hedron is labeled with a distinct number
from {1,2,---,n}. The only automorphism that preserves hedra and colors ofoaet] hedron-labeled
k-tree is the identity automorphism, for which we can igndre ¢olors of verticesk-coding trees have
labeled black vertices and colored vertices. Each edgeemtsia labeled black vertex with a colored
vertex from colorg(1,2,-- -,k + 1}. To construct &-coding tree from a colored hedron-labeletree,
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we color each front of a hedron with a distinct color fr¢in 2, - - -, k + 1}. The corresponding-coding
tree has each black vertex labeled withepresenting each hedron of theree with labeli and each
j-colored vertex representing each front of #hree with colorj. We connect a black vertex with a
colored vertex if and only if the corresponding hedron comstahe corresponding front. As a result,
a colored hedron-labeléeitree is bijective to &-coding tree. Under the action &, and &1, the
orbits of colored hedron-labelédtree, which are unlabelddtrees are bijective to the orbits of unlabeled
k-coding trees under the actiagd,,. See Figure 1 for an example. In [12] the following system of

Fig. 1. The bijection between an unlabeled cologetiee (left) and an unlabelezdcoding tree (right).

equations was set up that determines the generating fariétio) for unlabeled:-trees by

U(z) = B(z) + C(z) — E(2),

where
B(z) = X;IBZEZ) (1) Bi(z) = Zl:[CM(Zi) (4)
Fht
e - YA R | S ©
#HCBI(LZ)C (2) Cu(z) = exp iw . (6)
E(z) = Z% (3) o = m
pkk s

Here B(z) is the generating function for color-orbits of black-rabtenlabeleds-coding trees('(z)
is the generating function for color-orbits of colored-rd unlabeled:-coding trees andt(z) is the
generating function for color-orbits of unlabelgetoding trees rooted at an edge. We call an unlabeled
k-coding tree anj-reduced black-rooted tree if it is a black-rooted tree aitthe neighbors of the root
are colored by{1,2,---,5 — 1,5+ 1---,k + 1}. B(z) is the generating function fgrreduced black-
rooted tree. For any € S41, Ba(z) is the generating function for black-rooted tree that aredix
by = wherer has cycle type\. For anys € &y, B,(z) (resp. C,(z)) is the generating function for
reduced black-rooted tree (resp. colored-rooted tre¢ etteafixed byo whereo has cycle type:.. Here
B,(2) = Bx(2), Cu(z) = Cx(2) if X is obtained fromu by adding a part. C\:(z) is the generating
function for color-rooted trees that are fixedbyand )\’ denotes the cycle type of permutatishwhere
m € 641 has cycle type\ andi is a part ofA. Finally, the above products overange over all partsof
A or u, respectively, that is, if is containedn times in\ then it appears: times in the product.
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3 Asymptotics of unlabeled k-trees

Let U, = [2"]U(z) denote the number of unlabelédtrees of sizen. Then we have the following
asymptotic property.
Theorem 1 The numbers of unlabelddtrees are asymptotically given by

_ 1Bk (k= D(kpye) /¥

m’(p1x) K 2-2/k,,—5/2 -n n1
O Y= 7 o R () "1+ 0. @

wherem(z) = zexp [k 320°_, Byx (2™)/m], By (2) = m(2)e*Pr+ (%) andp,« is the unique real positive
solution ofm(z) = (ek)~ 1.

Proof: Foru = 1%, from eq. (5) and (6), we have

Bii(2) = zexp |f€ Z W] = exp(kByx(2)) - 2 - exp [k Z Lliﬂfﬂfm)] .

m=1 m=2

Setting )
m(z) = zexp [k Z M] )
m
m=2

and B;x(z) = T(m(z)) for some power serie®(z) we thus obtairl’(z) = zexp(kT(z)). Hence, if
W (z) denotes the classical tree function that is giveriByz) = z exp(W (z)) it follows thatT'(z) =
W (kz). Itis very well known thatiV(z) has radius of convergenge= 1/e, that it has a singular
expansion of the form

W(Z):1—\/5(1—62)1/24—;(1_@2)4_...

aroundz = 1/e and thatiW(z) can be analytically continued to a region of the fofme C : |z| <
1/e+n} \ [1/e, o0) for somen > 0. In particular it follows thafl’(z) has corresponding properties, of
course its radius of convergence equigléke). Actually, in what follows we will only need thaf'(z) is
analytic in a so-called\-domain

Ao (M, ) ={z]| |z| < M,z # a,| arg(z — a)| > ¢}

where0 < ¢ < 5. (Analyticity in A-domains is used twansferthe singular expansion of the generating
function into an asymptotic expansion for the coefficiests [8].) In our case we know thaYz) is
analytic inAy /ey (1/(ke) +n, ¢). B

Let p;» be the unique dominant singularity &f;x (z), then we shall show4k)=! < px < (ek)™ L.
SinceB;x (z), T(z) andm(z) have positive coefficients angy« (z) = T'(m(z)), we have[z"|B;x(z) >
[2"]T(z) which indicates the radius of convergence Ry () is at most that fofl’(z) which is (ek)~!.
On the other hand, the radius of convergencefor(z) is at least that fon/ (z) whereM (z) = z(1 —
kM (z))~! and accordinglyx > (4k)~!.

The next step we shall prove that the dominant singularity p,» of By« (z) is of square root type,
too. Sincem(z) has radius of convergenggp;» > py« it follows that it is analytic at: = p;x. More
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precisely the singular expansionBf: (z) close toz = p,» comes from composing the singular expansion
of T'(z) at 1/(ek) with the analytic expansion of.(z) at p; ;. In this context we also observe that
m(pix) = (ek)~t andm’(p;») > 1. According to this we get the local expansion

Bae) = - [1 - mﬂzf()l)>]/ = {1 - mﬁf)] F [1 - mﬂZEJl))]/

1
z

v [w - z)m/(pw}”? 2 [w - z>m’<w>] T Olpye — 22,

m(pr) T3 mlon)

HenceforthC,x (z) = 2~ /% By (2)/* hasz = p;» as dominant singularity of square root type, too, and
a local expansion of the form

Cir(2) = (kpre) % + alpyr — 2)'2 + b(p1x — 2) + c(p1re — 2)*% + O(p1x — 2)? (8)

wherea, b are given by

_V20kp)E O T (1) 18—k (epa) RO [ ()
k2pyr m(pyx) ’ 3k? Pk m(pye) |

Actually the functionsBx (2), Cix(2) = Cyx+1(z), and Byx+1(z) have the same radius of convergence
p1+ (Which is a square-root singularity).

Furthermore we observe that for ahy> 2 andyu # 1%, B,(2) andC,,(z) are analytic at = py«.
Let p,, be the unique dominant singularity &,(z). Since the number of black-rooted trees that are
fixed by permutation of type # 1* is less than or equal to those fixed by identity permutatian, i
[2"]B,(2) < [2"]Byx(2) it follows thatp,, > p,x. Therefore it remains to prove, # p;x. In the case:
has exactlyj parts of sizel where0 < j < k, then we have

B, (z) = 2C,(z HCW ) and C,,(z) = exp(B,(z)) exp Z B“mT(Zm)] 9)
i#£1 m=2
which lead to
Bu(2) = 2][Cpu(z")exp(jBu(2))exp [ Z Bur ] (10)
i#1

By settingB,,(z) = v, it follows that(p,,, B,.(p,.)) is the unique solution of
>~ Bym
M(zy) = z]]Cu(z")exp(jy)exp Z
i#1

My(zy) = jz]]Cu(z") exp( J?J)expl Z#] =1,

i#1
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and consequentl, (p,) = 1/;j. Recall thatB,x(p,») = 1/k, thus, we havé B, (p1x) = jBu(pu) =
1. If p, = pyx, thenkBix(p1x) > jBu(p1x) = 1, which contradicts the relatiohB,x(p;x) = 1.
Therefore we can conclude that. < p,, and from eq. (9), eq. (10§, (z) also has dominant singularity
pu- In the case: has no part of size, thenB,,(z) is a product o’ (2%) wherei > 2 andy® has part of
sizel. Consequently we hayg, > min{p,: : i € u} > p;». Now we can conclude for any > 2 and
w# 1%, pie < p,, namelyB,,(z) andC,,(z) are analytic at = p;«.

Summing up, sincé;x+1(z) = zCyx(2)**! has a square-root singularity at= p,» and B, for any
A # 15+ is analytic atp;», the dominant term in the singular expansioriigt) comes from

Byi+1(2) n Cie(2)  Cix (2)Bie(z)  —kzCp(2)Ft! Clk(z).

Z1k+1 Z1k Z1k (k—‘r 1)' k!

All the other terms are all analytic at= p,». Together with the singular expansion®@f:x (z) shown in
eqg. (8), we can calculate the constant for the tésm — 2)'/? in the singular expansion &f(z), which

is (7:511; ) ot =0 Similarly the constant for the terp,x — 2)3/2 in the singular expansion
of U(z) is
—1/k 3/2
kot gy B Ly VRB ko (k= D) [ o) ]
(k—1) 3! k! 3k3pyk m(pir)

which is positive sincg; . < (ek)™' < k~'(1 — z2;)~*. Now we have derived the singular expansion
of U(z) atz = pyx:

V2 [8— k4 (k= 1)(kpue) /] [ (o1 = 20" (01) 1™ oo
UG = Ulpw) + L - (e ) e
+ clpe —2) + calprr — 2)* + O(pyr — 2)°/2.
By applying transfer theorem [5, Corollary 2.15], we get@q.and the proof is complete. O

4 Leaves of unlabeled k-trees

As we have explained in Section 2 unlabeletiees are bijective to the orbits of unlabeledoding tree
under the actio® 1. We call a black node keafif only one of its colored neighbor connects with other
black nodes. It is obvious that this notion correspondséatily meaningful notion of &eaf of a k-tree.

In the sequel we shall weight each black node:land each leaf bw. LetU(z, w) be the generating
function for unlabeled color-orbits of unlabeléecoding trees, then we have:

Theorem 2 Let X,, be the random variable associated with the number of leaf/éscoding trees, that
is

[z2"w" U (z,w)
[2"]U(z,1)
Then there exists positive constaptands? such that(X,,) = pn+0(1) andVar(X,,) = 02 n+0(1).
FurthermoreX,, satisfies a central limit theorem of type
X, —E(X,)
Var(X,,)

P(X,=r)=

—N(0,1).
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Proof: Let B(z,w) be the generating function for color-orbits of black-rabteees, let’'(z, w) be the
generating function for color-orbits of color-rooted tseend letE(z, w) be the generating function for
color-orbits of coding trees rooted at an edge, then acagrdi the dissymmetry theorem and Cauchy-
Frobenius theorem, we have

U(z,w) = B(z,w) + C(z,w) — E(z,w) (12)
where
B(z,w) = Z M, C(z,w) = Z M, By (z,w) = ZHCM (2", w') + z(w — 1)
Akl A ke i
Ble,w) — Z (Bu(z,w) — 2w + zzcu(z,w) +z(w—1)
bk w
B, (z,w) = ZHC’Mi(zi,wi)—i—z(w—l) (13)
Culz,w) = exp | w1 : (14)
m=1

Foru = 1%, from eq. (13) and (14), we obtain

Blk mow™)
B = k = —1). 15
e (2,w) = zexp m} T Rt (15)
We first show foru # 1% andm > 2, B,(z,w) and By« (2™, w™) are analytic if(z,w) is close to

Plk

«, 1). For sufficiently smalk > 0, we con5|de w| < - and|z| < pyx + ¢, then form > 2,
P1 y P1

| Bu(z,w)|
|Blk(2ma wm)|

B#(|ZU)|, 1) < Bl‘(plkv 1) < Kplkv

<
< Bie(lzw|™,1) < Bye((p1x)™, 1) < M(pys)™

The last inequality holds becausk, (z, 1) and By« (z, 1) are convex for € [0, pyx] andz € [0, (p1x)?],
respectively. Now we set

e B mo,.m

F(y, z,w) = zexp + z(w—1)

m=2

that F'(y, z, w) is analytic for(y, z, w) around(0, 0,0) andF'(y, 0,w) = 0, F'(0, z,w) # 0. Furthermore,
the coefficients of (y, z, w) are all non-negative, theB, » (z, w) is the unique solution of (y, z, w) =y
that can be expressed as

)

Plkz(w)} N

wherea(z, w), 3(z, w), py» (w) are analytic fotw — 1| < ¢, |z — pyx(w)| < €, arg(z — pyx(w))| > ¢ (for
someg¢ € (0,7/2)) ande is sufficiently small. Furthermore(p,x (w),w) # 0 and By« (p1x (w), w) =

Bix(z,w) = a(z,w) — B(z,w) [1 -
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a(pir(w),w) = k=1 + (w — 1)pyr (w). SinceByx(z,w) = 2C1x (2, w)* + z(w — 1), Cyx(z,w) has a
corresponding representation

: }1/2 (16)

Cir(z,w0) = a(z,w) +b(z, w) [1 e (w)

wherea(z, w), b(z, w) are analytic functions arourtd, w) = (pyx, 1), b(p1r(w), w) # 0, Cix(pr(w),w) =
a(pyr(w),w) = (kpyx(w))~*/*. Analogous toB;«(z,w), for m > 2 andu # 1%, C,(z,w) and
C1x (2™, w™) are analytic if(z, w) is close to(px, 1). Consequently for € U, , (w) and|w — 1| < ¢,
U(z,w) has the expansion

kz 1
U(z,w) = —mClk(z, w) 4 HClk(z, w) + Hy(z,w)

whereH, (z,w) is analytic function aroundz, w) = (py»,1). By substitutingC;x (z, w) by its singular
expansion in eq. (16}J/(z, w) can be expanded locally around= p,» andw =1, i.e.,

zak(z,w) 1 . 1/2
R + Pl + O(pyx(w) — z)} b(z,w) {1 - —w)] ’

U(z,w) = g(z,w) + p1x(

a*(py i (w),w)

Since—py (w) —t=pr— + & = 0, together with the fact(z, w) = a(pyx (w), w) + O(pyr(w) — 2)
andb(p,x (w), w) # 0, we can conclude

3/2
z
U(z,w) =g(z,w) + f(z,w {1——] 17
(2 0) = gleyw) + f(zw) 1= s (17)
where f(p;x,1) # 0 from Section 3 and thereforgp,»(w), w) # 0. By applying [5, Theorem 2.25]
to eq. (17), there is a central limit theorem foX,, — E(X,,))/v/n. More precisely there exigt and
o? with E(X,,) = pn + O(1) andVar(X,) = o?n + O(1) wherep = —p,(1)/p1x(1) ando? =
—p/(1)/p1x(1) + p + 1. By applying Lemma 4 of [7] it actually follows that® > 0 and X, satisfies
a central limit theorem as stated. O

5 The degree distribution of unlabeled k-trees

We again refer to the unlabelédcoding trees and consider here the degree distributioeanyl every
black node in thé&-coding tree has degréet+ 1. So we concentrate on the degree distribution of colored
nodes. First of all we change the statistics slightly by médag the size according to the number of
colored nodes. Formally the variahl€instead ofz) takes care of the number of colored nodes. Now let
U(z) be the generating function for unlabeled color-orbits dfbeledk-coding trees, leB(z) be the
generating function for color-orbits of black-rooted se&etC'(x) be the generating function for color-
orbits of color-rooted trees and |&Yz) be the generating function for color-orbits of unlabetedoding
trees rooted at an edge, then we have similarly to the above:

U(z) = B(z) + C(z) — E(z) (18)
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where
Bz) = % Bf) By@) = []on()
AFk+1 - v ‘
T B,(z) = Cui z'
Cle) = Za;( () H (z)
e ) - By (2™)
Blr) - ZBN(QCM(:C) Cu(z) = zexp mz_lT]
pk s

In completely the same way as in Section 3, we can find the Eingupansion ot/ (x) given by
Ulz) = Ulye) + e1(rae — 2) + r(yae — 2)%2 + ca(yie — 2)* + O((y1e — 2)°/?)

for some positive constamtand some constants, co. FurthermoreB;«(y1x) = 1/k, it follows that
P1k = Y1k-

Now we give each colored node of degrkeavith weightu;. Letu = (uq, -+, upn), m = (mq, -+, mpr)
wherem; > 0andd = (d1, - - -, dy ) Whered; > 0, then the coefficient af”u™ in the generating func-
tion U(d) (z,u) is the number of of unlabelddtrees that there are; colored nodes out of total colored
nodes having degrek. Then we have

Theorem 3 LetY,, q = (Yn(,lczl, YD ) be the random vector of the number of colored nodes in an

»In,d
unlabeledk-tree that have degreédd; , - -A-[, dar), that is,
[z"u™)U ) (2, u)
[z7]U @) (z,1)
Then there exists af/-dimensional vectops and anM x M positive semidefinite matriX such that

E(Yn.a) = pn+0O(1) andCov(Y, 4) = ¥n+ O(1). FurthermoreY,, 4 satisfies a central limit theorem
of the form

P(Yn_’d = I‘l’l) =

Yn,d - E(Yn,d)

7 —N(0,%).
Proof: Let C9)(z,u) be the generating function for color-orbits of coloredtambtrees that has each
colored node of degreg weighted byu;. Let P(9)(z, u) be the generating function for the trees whose
root is only connected with the root of a color-orbit of c@drnode-rooted tree, so thatd (z,1) =
P@(z,1). Let B@(z,u) be the generating function for color-orbits of black-rabteees that has
each node of degre weighted byu;. E(9)(z,u) be the generating function for color-orbits of unla-
beledk-coding trees rooted at an edge that has each node of dégvesighted byu;. Here we intro-
duceP(d>(a:, u) to distinguish the case that the colored root has degrder somel < i < M. Let

Z(6,, Bﬁd) (xz,u)) represent the generating function & -orbits of objects counted b?ftd)(:c, u):

Z(6,, B (w,)) = Z(6,, BY(z,u), B (2% v?), -, Bl (a, uP))

1 _ _ _
_ Z ZB;(td)(x’ u)>‘1 B;(S) (xQ, u2)>\2 o Bi‘i) (2P, up)Ap
Ap
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where\ = (1*1 ... p*»). Then the generating functidn(z, u) for unlabeleds-trees with colored nodes
of degredd is given by
UD(z,u) = BY(z,u) + OV (z,u) — B (z,u) (19)
where
(d) (d)
B (x u) C (x u) d d
B@ - A\ (d) - (L Nl (d) - (d)
(ZC,U) Z 2 ’ C (ZC,U) Z 2, ’ B)\ (Iau) HP i (I u
AFE+1 pkk 7
5(d) (d)
B, (x,0)P; ' (x,u) = i
By = 3B EWIE g, ) TR0 w)
pkk H A
oo pd) m m M
B m (2™, u
C'lgd)(:c,u) = xexp Z K (m ) + ZI( i —1)Z(6y,,B D (2, 1)) (20)
m=1 7j=1
oo pd) m m M
B,m (2™, u _
Plsd)(x,u) = zexp Z # + Zx(uj — 1)Z(6dj_1,BlSd)(x,u)). (22)
m=1 j=1

The dominant singularity fo3,x (x,1) is p;x. As before, fory # 1%, B,(x,u) and form > 2,
Bk (™, u™) are analytic if(z, u) is close to(p;, 1). Next we consider

C 7(d) m m
B
S(z,y,u) = (Ieyexp<g M)
m

m=2

M k
+ > a(uy —1>Z<6dj1,y,B§§3><x2,u2>,---,3553)(:1:%'%udjl))) :

j=1
Since S(0,y,u) = 0, S(z,0,u) # 0 and all coefficients ofS(z,y,1) are real and positive, then

y(z,u) = Bif) (x,u) is the unique solution of the functional equatiii,y,u) = y. Furthermore,
(x,y) = (p1x, 1/k) is the only solution of5(x,y,1) = 0 andS, (z,y,1) = 1 with S;(p1x,1/k, 1) #0
Syy(p1r,1/k, 1) # 0. ConsequentlyBif) (z,u) can be represented as

" 1/2
B (z,u) = g(x,u) — h(z,u) [1 - plk—(u)} (22)

which holds locally arouné, u) = (p1x, 1). In view ofBﬁf)(:c, u) = Pl(,‘})(:c, u)¥, Pl(,‘j)(:c, u) also has
expansion of square root type, i.e.,

L 1Y2
Pl(,fl)(gc, u) = s(x,u) — t(x,u) [1 - plk—(u)} (23)

wheret(p;x(u),u) # 0. From eq. (20) and eq. (21), we have

CD (2 ) = PD(zu +Z 1) [2(84,, BO(w,w) - 2(84, 1, B (w,w))

o
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based on which we shall next compute the dominant term in itigukar expansion ot/ (z,u). For
simplicity we will omit variablegx, u) and degreel.

Pk-l—l C Pk-‘rl Pk+1 1
S L0 SR L _ L 1. )
kpk-l—l Plk 1 )
- (kT K klz 6d ’Blk)_Z(Gdj—l,Blk)] + Mj.

where M, is an analytic function arounfc,u) = (p;x,1). It is now convenient to writéd/(z,u) =

1/2 _
f(z,u) + h(z,u) [1 — #(u)} . Then by substitutind®;», B;» with its representation in eq. (23) and
eg. (22), we obtain

skt t

Mo ==~ n

B M
k_z uj —1) [Z'(&a,-1,9, X2, -+, Xa,-1) — Z'(S4;, 9, X2, -+, Xa)]

whereX; are analytic functions arourid, u) = (p;+,1) andZ’ is the derivative w.r.t. the first variable of
Z(Gy,x1,- -, x), namelyZ’ (&g, z1, - -, a) = Z(Sk—1,21, -+, xk—1). Furthermore, by replacing
s,t by g = s* andh = ks*~1¢, we can further simplify:(z, u), that is

M
h
h(:v,u)z kl o 1— +I€_Z _1)( (6d'—lagaX21' Xd —1) /(Gdjag7X27"'7de))-
Now we use the fact thaj = g(px(u),u) andz = p;»(u) is the solution ofS(z,y,u) = y and
Sy(x,y,u) = 1, which yields

k—1

+ g(p1r(u),u) =

> =

g(pix(u),u) =

z(uj — 1) [Z2(64,-1,9, X2y, Xa,—1) — Z'(Ga;-1,9, X2, -, Xa;—1)]

M-

1

J

and consequentli(p;x(u),u) = 0 andU (z,u) has a local expansion arouid, u) = (p;x, 1) of the
form

3/2
x
U(z,u) =w(z,u)+r(r,u [1— } (24)
() = w(r,w) + rlaw) |1
wherer(pyx (u), u) # 0 sincer(pyx, 1) = r # 0 andw, r are analytic function aroung, u) = (p;»

k1)
Thus a central limit theorem follows. More precisely by sejftA(u) = log px(1) — log p1x(u), pu =
(Au]. (1))1Sj§k{ andX = (Aulu] (1)+5i,jAuj (1))1Sj§k{ thenE(Yn_,d) = ,LLTL+O(1) and(Cov(Yn )
YXn+0(1).

|
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