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Abstract

We characterize the limiting behaviour of the number of nodes in level
k of binary search trees T;, in the central region 1.2logn < k < 2.8logn.
Especially we show that the width V, (the maximal number of internal
nodes at the same level) satisfies V,, ~ (n/\/4mlogn) as n — oo a.s.

1 Introduction

A binary search tree is a binary tree, in which each (internal) node is asso-
ciated to a key, where the keys are drawn from some totally ordered set, say
{1,2,...,n}. The first key is associated to the root. Now, the next key is put
to the left child of the root if it is smaller than the key of the root and it is put
to the right child of the root if it is larger than the key of the root. In this way
we proceed further by inserting key by key. So starting from a permutation of
{1,2,...,n} we get a binary tree with n (internal) nodes such that the keys of
the left subtree of any given node z are smaller than the key of z and the keys
of the right subtree are larger than the key of x.

Binary search trees are widely used to store (totally ordered) data, and many
parameters have been discussed in the literature. (The monograph of Mahmoud
[8] gives a very good overview of the state of the art.) Usually it is assumed that
every permutation of {1,2,...,n} is equally likely and hence any parameter of
binary search trees may be considered as a random variable.

An alternative way of looking at is a Markov chain of trees which describes
the evolution of a binary search tree. Instead of considering a permutation of
{1,2,...,n} we consider independent random variables X1, X, ..., which are
uniformly distributed on [0,1]. Here X; is associated to the root. If Xy < X3
then X5 is associated to the left child of the root, and if X5 > X; then X,
is associated to the right child of the root, and so on. If we consider just n
random variables X7, X»,... , X,, we get the same random model on binary trees
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with n internal nodes as the model induced by uniformly distributed random
permutations on {1,2,... ,n}.

So every parameter Y = Y on binary trees T (e.g. the height, the total
path length etc.) induces a sequence (Y (n))neny of random variables, where
Y (n) denotes Y conditioned on the number n of internal nodes.

In this paper we want to consider and denote the number of external nodes
Uy, at level k, the number of internal nodes Vj, at level k, and the total number
of nodes Zy, = Uy + V;, at this level.

Theorem 1 We have a.s.

Uk(n) _ (k=210gm)2 ( 1 )
- 7 = e Ilogn + O —— ,
n/v/A4nlogn Viogn

Vi(n) _(e=2togm)? ( 1 >
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as n — oo, where the error term O(1/+/logn) is uniform for all k > 0.
(From this theorem we directly obtain a result for the width.
Corollary 1 LetU(n) = max Uk(n), V(n) = Iilza‘:};( Vi(n), and Z(n) = rlglgac Z(n).

Then we have a.s.

%ﬁm - 1+0<ﬁ), and

Z(n) _ 1
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as n — oo.

It should be noted (see (3) and [3]) that in the range k € [(2 — V2 +
g)logn, (2 + 2 — ¢) logn] we have (uniformly)

nonk(1-log(an,x/2))-1 n (k—2log n)2 n
E Uk(n) ~ = e~ dlogn 4 ( ) (1)
V2rk vAarlogn logn
and
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where o, = k/logn. Similar estimates are true for E Vj(n) and E Z(n):

E E
E Vi(n) ~ #’“(_"i and E Zp(n) ~ O[T:kai[ik(ln)



asn — oo if k € [(1+¢)logn, (2 + V2 —¢)logn)]
In view of (1) we can reformulate Theorem 1 (for Ug(n)) in a way that
Uk(n)

———~1 a.s.

E Uk (n)
if k = 2logn+o(y/logn) asn — oco. This concentration property is supported by
the fact that in this range (E Uy (n))? ~ E Uy, (n)?. Since (E Uy (n))?/E Ui(n)? A
1if apy = k/logn — a # 2 we cannot expect a concentration property of
this kind for @ # 2. Nevertheless Theorem 1 and (2) suggest that the ratio
Ui (n)/E U (n) should behave nicely. In fact, we can prove the following theo-
rem.

Theorem 2 There erists a random analytic function M(z) for |z—1| < (v/2)~!
with M (1) = 1 such that for any given € > 0 we have a.s.

Uk(n) k
EUk(n)_M(Zlogn> = 9

Vi (n) k
- M
E Vi(n) (2logn> = 0, and
Zk(n) k
E Zi(n) M(Zlogn) - 0

as n — 0o, uniformly for all k with 1.2logn < k < 2.8logn.

It is very likely that the constants 1.2 and 2.8 can be replaced by 2 — /2 + ¢
(resp. 1) and 2 4+ v/2 — &, compare with Theorem 4. There are only technical
reasons that we cannot do more.
However, for k < (2 — /2 —¢)logn and for k > (2 + /2 + ¢) logn we have

(see [3])

EU, 2

( k(n) — (9(7176)

E Ui (n)?
(for some § > 0) which indicates that Theorem 2 need not hold in a range larger
than 2 — V2 < - <2+ V2.

logn

The paper is organized in the following way. In section 2 we collect some
basic facts. In section 3 convergence properties and estimates for a martingale
are provided, which will be the essential tools for the proofs of Theorems 1 and
2. In section 4 the proof of Theorem 1 is presented. In fact, a more precise
version (Theorem 5) is provided indicating that there is an asymptotic series
expansion for Ui (n). Finally, the proof of Theorem 2 is given in section 5.

2 Preliminaries

Let us start with relations between Uy, V},, and Zj.



Lemma 1 The following relations hold:
1. Zk+1 = 2Vk.
2. Zyy1 — Zy, = Vi — Ug.

3. Zp =) 29U,
izk

The Proof is obvious by induction.

The main tool for the proofs of Theorems 1 and 2 is the random power series
(polynomial)

Wo(z) = Z Ur(n)z*.

k>0
The first observation is the following one, see [5].

Lemma 2 The expected value of W,,(z) is given by
n—1 .
7+ 2z —2z
E = = (=" .
wite = [T 555 = ()

(From this representation we can read off an explicit representation for

2k

EUk(n) = Eé‘n,k,
where s, are the (absolute) Stirling number of the first kind, in other words
the number of permutations o of n elements such that the canonical cyclic
representation of o has exactly k cycles. (It seems that this explicit formulat was
first observed by Lynch [7], compare also with [8]). By well known asymptotics
for Stirling numbers (see [9]) we derive (for £k = O(logn))

2k(10g n)k nan,k(l_l()g(an,k/z))_l

E ~ ~
Ug(n) E'nT (an,k) 2k

; 3)

where ay, ; = %, as above. (In [3] an alternate approach is provided and it is

shown how one can derive asymptotic expansions for second moments E Uy (n)?2,
too.)

Lemma 3 For any compact set C in the complex plane C we have
n2z—1
I'(22)

EW,(z) = + O(n***72) 4)

uniformly for z € C' as n — oo.



Proof. By Lemma 2, EW,(2) is just a binomial coefficient (—1)"(_3z).
So it is clear that for any fixed z we have (4), compare with [4]. In order to
show uniformity we repeat (more or less) the proof of this asymptotic formula
presented in [4].

For convenience set a = 2z. Then E W, (z) is exactly the n-th coefficient of

the binomial series (1 — z)~ %, resp.

EW,(z) = L /(1 —2) % " da,

2mi J,

where c is a closed curve in the unit circle with winding number 1 around 0.
Note that = 1 is a singularity of the analytic function f(z) = (1 —z)~* and
that there is an analytic continuation of f(z) to C\ {z € R: z > 0}. So we can
replace the contour of integration ¢ by é = ¢; U ¢a U c3 U ¢4, where

' —t
o = {x:l—%:ogtg\/ﬁ},

1+t

co = {w=1+T:0§t§\/ﬁ},

t< X
_2’

{|x|=‘1+n‘é+i‘:|argm|2a.rg(1+n_;+i>}.
n n

1 _. ™
= =1-— —it | J——
C3 {x ne 5

IA

&

The easiest part is to estimate the integral over c4:

1
= 1— —oa,,—n—1 d
5 /64( ) %z x

On the remaining part ¢; U c2 U ¢3 we use the Substitution z = 1 + %, where
t varies on a corresponding curve ; U 2 U 3. Furthermore we approximate
z " 1 by e }(1+ O(/n)). Now the integral over ¢; U ca U c3 is given by

<1+ n_%)_" max (n%%a, 2+ n*%)_%o‘) e?rlel,

1 a—1
— (1—2z) %" ldr = n / (—t)~ e tdt
27”’ c1UcoUcs 27”' y1Uy2Uvs
a—2
+ n / (—t) %t O() dt
2T J 3y UnaUns

= na71[1 + na*212.

Now I; approximates 1/T'(«) (by Hankel’s integral representation) in the fol-
lowing way:

1 > 1
L = —+40 (/ el (1 4 ¢2) 3Rt dt)
' INGY) NG

1 27|l 2\—iRa —/n
—F(a)+0(e (1+n%) e )



Finally, I> can be estimated by
o0 1
L < / e2rlal(1 4 2)1=4Ra gy | (1),
0

Thus, for any compact set C' in C we have

EW,(z) = ’ffg;) +Ome2)

uniformly for z =a/2 € K asn — co. O

3 Study of a Martingale

3.1 Definition and Main Result

It was shown in [5] that the ratio

Wh(z
My (z) = )
is a martingale with respect to the natural filtration (F,) associated to the
seuence of trees (T},). Hence, for positive values of z, the martingale converges
to an almost sure limit M (z). It was proved to be bounded in L? for z €
(1 - \%, 1+ %) and the limit was shown to be positive in this case. But no
convergence result was established for complex values and no uniformity has
been proved for the convergence over z € (1 — \/Li’ 1+ %) Now our main

result concerning M, (z) reads as follows.

Proposition 1 For any compact set C C {z € C : |z — 1| < 1/v/2} the mar-
tingale M, (2) converges a.s. uniformly to its limit M(z) (which is again an
analytic function).

We note that M, (1) = 1. So there is no probability at z = 1.

In the next subsection (see Corollary 2) we will determine exactly the com-
plex set U = Be(1,1/v/2) = {z € C: |z — 1| < 1/v/2} of L?-convergence for this
martingale and prove the regularity of the covariance function of its limit.

That will permit us to prove uniforme convergence of M, (z) over the com-
pact subsets of U (in subsection 3.3). The proof will follow the same path as
Joffe-Lecam-Neveu in [6].

3.2 L%-study

We start by establishing an explicit formula for the covariance function of
(Win(2z1), Wy (22)) which is valid for all z1,20 € C and which will be useful
for section 4, too.



Lemma 4 For all z1, 25 € C:

E (Wat1(20)Wni1(22)) = Y | Bi(z1,2) [[ @rl1,20) | + [ @21, 20)
=0 k=j+1 =0
where
- 2(z1 +22—1
Gz, 2) = 1+ % 5)
and
~ E (Wg(212
Brlen, 2) = (221 — 12z, - ) 2 TEE22)) ©)
Proof. Denote by T',, the covariance function of W,:
f‘n(zl, 22) =E (Wn(zl)Wn(zg))
We establish a linear recursion for T, (21, 22). First, we recall
Wit (2) = Wa(2) + (22 — 1)2%.
Thus,
Posi(21,2) =B |E [ (Wala1) + 24" (221 = 1)) (7)
(Wa(22) + 247 (222 - 1)) m]] ,
so that
= = Uk (n) k
Fn+1(21,2!2) =E Z Wn(zl)Wn(zQ) + Wn(zl)z2 (222 — 1)
Pl +1
F W (22)2¥ (221 — 1) + (2122)% (221 — 1) (222 — 1))] . (8)
Hence
- 229 — 1)W,
Tngi1(z1,22) = B | Wiy (21)Wh(22) + Wn(h)%
(221 — 1)Wy(21) Wh(2122)
AL R L (2 — 1)(229 — 1) 2122/
W) T 0 -1z - )R (9
which yields
fn—i—l(zl;z?) = @n(z1,z2)fn(21,z2) + Bn(zlaz2) (10)



for & and 8 defined by (5) and (6). 5
Now, the explicit formula for I, follows from (10) (and To(z1,22) = 1). O

With help of Lemma 4 we can establish regularity of the covariance function of
M over U?.

Corollary 2 (M, (2))nen is bounded in L? if and only if |z — 1| < \/Li Hence,
there exists a random variable M (2) € L? such that M,(2) — M(z) almost
n—o0

surely and in L? for 2 € U = Be(1, %) Furthermore,

[(21,22) =B (M(21)M(22))
is holomorphic over U? C C2.
Proof. By (5) we have
n 2(z1422—1)

1

i - 5)" (0 ()
R J j
and consequently (by Lemma 3)
B n EW:(z 2 n—1 : n y
Fp(z1,22) = (221 —1)(222 — 1) Z M H ap(21,22) + H ap(21,22

=0

2%(21 +2z9 —1)
) + n2§R(Z1+Z2—1)

n
< ZjQ?R(zle)—2 (ﬁ
=0 J

n
<< n2§R(z1+22—1) Zj—ﬂ?(zl—l—,n—zlzg).

7=0
Thus,

Ln(z1,22) == E (Mpi1(21)Mny1(22))
E (Wat1(21)Was1(22))
EWn_H (21) -E Wn+1 (22)

n
<< Zj72%(21+2272122)-
7=0

Obviously, we have the same lower bound. Hence, (M, (2)),en is bounded in
L? if and only if 4Rz — 2|2|? > 1, respectively if and only if z € U.

Now, if 4R21 — 2|21|> > 1 and 4Rz2 — 2|22|2 > 1 then we also have 2R(2; +
2o — 2122) > 1. Thus, I';,(21, 22) — (21, 22) uniformly over the compact sets
of 2. Since, for any n, I',, is holomorphic over ((C\%Z_)z, we conclude that T’
is holomorphic over U/2. O



3.3 Proof of Proposition 1

The holomorphy of ' proved in the previous section will give us (with help of
the Kolmogoroff criterion) continuity of M (z) over any parametered arc v C U.
However, Kolmogoroff’s criterion is not sufficient to establish directly continuity
of M as a complex function.

Proposition 2 Set I' := (1 —+/2/2,14++/2/2). Then (M(t))icr has a contin-
uwous modification M such that, for any compact interval C C I'

E (sup|]\;.f(t)|2> < +o00.
teC

More generally, if v : R — U 1is continuously differentiable, then there is s a
modification M., of (My(y(t)))ter such that, for any compact set C of R

E (sup|M ) < +oo0.
teC

Proof. Observe that, as M,,(z) is a real rational fraction, i.e., M, (2) = M, ().
Thus for all z1,20 € U

E (|M(z1) — M(2)[]?) = (21, 21) + D22, 22) — 2R (I‘(zl, z;)) .

Let C be a compact set of U; since I' is holomorphic, a local expansion of I" up
to order 2 yields

D(e1,21) + Dz, ) — 2R (D21, 22) ) < K1 = 2f? (12)
for some constant K > 0 and for all 21, 22 € C. Hence, by (11) and (12)
E (|M(21) = M(22)") < K|z1 — 22 (13)

for all 21, 2o € C. Hence by Kolmogoroff’s criterion (cf. [11, p. 25]), a continuous

_ N2
| My — M|

sup ———

siec |t —s|®

for all a € (0, ) Consequently, for all compact set C C (1 — %, 1

modification M exists and

E < 40

Sl
N
S—

have

E (sup|M(t)|2) < +00.

teC

Now let v : R — U be continuously differentiable. We can do the same
as before with the martingales (M, ,(t))ier for My, ,(t) = My (y(t)). Equation
(13) becomes

E (1M, (t1) = M, (t2)[) < Kly(t1) = 1(t2) < K'lt2 — taf?



for some constant K’ > 0 depending on the compact interval C_C R under
consideration. Thus, (M, (t))icr has a continuous modification M., such that

E (supycc |]\77(t)|2) < 400 for all compact set C CR. O

Now uniform convergence of (M,,) follows from a theorem of vectorial mar-
tingales. (We proceed as in Joffe-Lecam-Neveu [6].)

Theorem 3 For any compact set C C (1 —1/+/2,1+1/v/2), we have a.s.
M, - M  uniformly over C
and

n—oo

E (sup|Mn(t) —M(t)|2) — 0.
teC

More generally, let v : R — U be continuously differentiable and set My, ,(t) :=
My (y(t)) and M, (t) = M(~y(t)). Then the same result holds for (M, ).

Proof. Let [a,b] C (1 —1/v/2,1+ 1/+/2). The modification M of the previous
proposition is a random variable taking its values in the separable Banach space
E =C([a,b],C). Let & be the borelian o-field of E and Foo = 0(Fp,n > 1), M
is £|Foo-mesurable and is in L% = L*(Q, E).

We will show that E (J\7|fn) can be identified as Mp[q,p] if Mpy[q,5 is un-
derstood as a random variable taking its values in E.
Observe that

¢t :C([a,0),C) — C
X = X

is a continuous linear form over C([a, b], C), hence E (¢¢(M)|F,)) = ¢(E (M|F,))
almost surely. Saying that M is a modification of M means that for all ¢ € [a, b],
¢.(M) = M(t) (as.). Hence it follows that M, (t) = E (]T/f|.7-"n)(t) a.s., so that
M, =E (M|F,) as.

We can now apply the theorem of vectorial martingales (cf. [10], Proposition
V-2-6, p104), which yields

My =E (M|F,) — B{M|F} as. andin L},

Since M is Foo-measurable we get

sup |M,(t) = M) — 0 a.s. (14)
t€[a,b] n—o0
and
E | sup [Mn(t)— M@®)>| — O. (15)
te(a,b] n—00

10



Hence, the first part of the theorem is proved since (14) implies that, almost
surely, M (t) exists for all ¢ € [a,b] and is equal to M (t).

By the previous proposition we can proceed for (M, ) along the same lines
as for (M,,). This completes the proof of Theorem 3. O

Now, since M,, is holomorphic, for all n and any p < 1/+/2, the uniform
convergence of M, over the arc v(t) = 1 + pe®, implies (via Cauchy’s formula)
uniform convergence of M, and all its derivatives over compact subsets of U =
Be(1,p). Thus, we can state the following strong corollary of the previous
theorem:

Corollary 3 M,(z) and all its derivatives converge uniformly over all the com-
pact sets of U.

3.4 An Almost Sure Central Limit Theorem

We now show that Proposition 1 already implies a global version of Theorem 2,
also indicating that the range 1.2logn < k < 2.8logn is surely not natural.

Theorem 4 For every a € (2 — \/5, 2+ \/5) we have a.s.

1 ayk M(§) [* e
L ) Ue(n) (£)" = 2212 / e 12 g,
EWn (5) k<alogn+zvalogn (2) \/ﬂ -

uniformly for x € R as n — oo.

Proof. Recall that W,,(2) = (EW,(z)) M, (z) and notice that we have uni-
formly for ¢ real, t = O((logn)~2),

EW, (geit) ~EW, (E) e 1o8n (it_g)
"\2 "\2
and, since M (a/2) is positive,

@) Z g (& e (2
Mn(2e )—Mn<2)+0((logn) 5 M(2) (16)
as n — oo. Thus we can apply Levi’s theorem and directly obtain the wanted

result. O

3.5 More Estimates for W,(z)

In order to prove Theorems 1 and 2, which are local versions of Theorem 4 it
is not sufficient to know the behaviour of M, (z) near the real axis, i.e. (16).
We need more precise information about the limiting behaviour of M, (z) for
1-1/v2 < |z| < 1+1/v/2, resp. of W,(z). The next proposition provides a.s.
estimates for |2| = 1 which will be needed for the proof of Theorem 1.

11



Proposition 3 For any K > 0 there exists § > 0 such that a.s.

n
swp W =0 (gl )
|2l=1,[2-1[>1/vE—3 (logn)*

as n — 00.

The proof of Theorem 2 requires more precise estimates.

Proposition 4 For any K > 0 there exists § > 0 such that a.s.

- 0 n2|z|—1
=0 (Gogaye)
uniformly for z € C with 0.6 < |2| <14, |z —1| > 1/v/2 -6 asn — oo.

Corollary 4 For any K > 0 and € > 0 we have a.s. that there exists ng such
that for all n > ng

E Wa(|2))
[Wa(2)] < Tlogn)k

for all z € C with 0.6 < |z| < 1.4 and (logn)~2* < |argz| < 7 as n — 0.

Proof. By Proposition 4 this estimate is true for z € C with 0.6 < |2| < 1.4
and |z — 1| > 1/v/2 — 8. Moreover, for z € C with |z — 1] < 1/v/2 —§ we
know that M, (z) is a.s. bounded. Furthermore, it follows from Lemma 3 that,
uniformly in n and ¢ for (logn)®/y/logn < |t| <7

|E W, (20€™)| < EW,(29)ect lo8n

for some constant ¢ > 0 (depending continuously on zg). A combination of these
two estimates proves the corollary. O

Of course, Proposition 3 is contained in Proposition 4. However, we decided
to state (and prove) them separately since the proof of Proposition 3 is much
easier to follow. The proof of Proposition 4 does not contain new ideas but it
is more involved.

We start with an estimate for E |[W,,(2)|2.

Lemma 5 For every § > 0 we uniformly have for z with |z — 1| < 1/v/2 -6
E|W.(2)] = O(n*%?)
and for z with 1/v/2 -6 < |z = 1| < 1/v/2
E|W,(2)]* = On***2logn)

as n — oo. Furthermore, let C' be a compact set in the complex plane such that
|z —=1| > 1/v/2 for all z € C. Then

E W, (2)[2 = O(n?*" L logn)

as n — 00, uniformly for z € C.

12



Proof. We recall that

n
E |Mn(z)|2 & n4€Rz—2 Zj—(4€Rz—2|z\2)‘

=1

Furthermore we have 4Rz — 2|z|> > 1 for |z — 1| < 1/v/2 and 4Rz — 2|z|*> < 1
for |z — 1| > 1/4/2. Thus, for |z — 1| < 1/4/2 — §, there exists 6’ > 0 such that

n
E |Wn(z)|2 < TL4€RZ*2 ijlf‘s, < n4€R272
j=1
and for 1/v/2 -0 < |z =1 <1/V2
E|W,(z)]> « n*¥~2 Zj—l <t 200,
j=1

which prove the first part of the lemma.
Finally, for z with |2 — 1| > 1//2 we obtain

amz—2 (M + 1)1 4420 g

E|Wn(z)|2 < 1_4§Rz+2|z|2
< n2|z|2,1 1-— e_(1—4§Rz+2\z\2) log(n+1)
1 — 4Rz + 22|

< n2A’-t logn.

This completes the proof of the lemma. O

We will also use an a.s. estimate for the derivative of W, (2).

Lemma 6 We have for all z # 0
[W.(2)] < Wi(|z]) < 2| 'n?* " logn  a.s.

Proof. Obviously, we have |W, (z)] < W/ (|z|). Furthermore, it is known
that H, ~ clogn a.s., where ¢ = 4.31107... > 2 is the solution of clog 276 =1.
Hence, Ug(n) =0 a.s. if k > (¢ + 1) logn. This directly implies that a.s.

Wile) = S KUl < (e+ Dlogn SO U (Bl = (o 1)logn 20,
£>0 £>0

which proves the lemma. [

We now directly enter the Proof of Proposition 8. Firstly, Lemma 5 provides
that for every ¢ > 0 there exists § > 0 such that for [z| = 1 and [z—1| > 1/v/2—§

E |W,(2)|? (logn
(nf(ogn)®)? < nie

)2K+1

P {|[Wa(2)| > n/(logn)*} <

13



Now set 2, ; := e’ where

3 3 J
L — °_ 2 — 2 °Sy95) — 4
tn,j (arccos 5) + ( i arccos — + 5) (logn)K+1

and j =1,2,...,[(log N)E*!]. Thus we obtain

(log n) 3K+2

P {|Wy(2n,5)| > n/(logn)¥ for some j} < -

Now observe that (for sufficiently small £ > 0) the series

Z (log(n2))3K+2
2(1—e¢
s n2(1—¢)

converges. Hence, the Borel-Cantelli-lemma implies that a.s.

n2

(log(n?))¥

for all but finitely many n > 0. Of course, by Lemma 6 we can interpolate
between 2,2 ;. Suppose that for some z with |z| = 1 we have t,2 ; < argz <
tn2 j+1. Then we (uniformly) have

SUP |Wn2 (znz,j)| <
J

Wn2(z) = Wpa(zn2;) + O(Wpha(1)(log(n?)) K1)
2
(l()g(nw + O(n’(log(n®))'~K~1)
n2
< Tog)x

So, in any case this implies that a.s.

,n2

sup W2 (2)| € ——vf
|2]=1,]2—1/>1/v/2—3 (log(n?))¥

for all but finitely many n > 0. Finally we can use the relation W,,;11(2) —
Wy(2) = (22 — 1)2%= to observe that

Wiein(z) = Wea(2) + O(k) for1<k<(2n+1).
Thus, we get

n2 n? +k
Woz1(2) < (ogimaye + O < qogim e

uniformly for 1 < k < (2n + 1), which shows that we also have a.s.

n

wp Wa(e)] € ot

=1, 1|>1/v3—3 (1

14



for all but finitely many n > 0. O

As mentioned above the Proof of Proposition 4 runs along the same lines as
that of Proposition 3. By Lemma 5 we have for 0.6 < |z| < 1.4 and |z — 1| >
1/v/2 — § (for some sufficiently small § > 0)

B[ (2) it

(n2l*1=1/(log n)¥)?

(logn)

P {an(z)| > n2lz|71/(10g")K} < K AR 27 10,001 "

Firstly, let us consider the range R; := {z € C: [z — 1| > 1/v2—6,1 < |2| <
1.4}. We now use O((log n)?%+2) points 2, ; covering R; with maximal distance
(logn)~K~1. Observe that for 2 € R; the series

(log[n2])2K+
Z [ng]4|z|—2|z\2—1—0.001

n>1

converges uniformly. Hence, by the Borel-Cantelli-lemma we have a.s.

[n%]2|z|—1
sup|W, s (2 5. )| < ————
j [n2]" [n2],j (log[ni])K
for all but finitely many n. By Lemma 6 we interpolate between %3] and

obtain the same bound uniformly for all z € R;. Finally, we have to observe
that a.s., uniformly for n? <k < (n+1)3

[n%]mz\*l
Wele) = W3, € o (1)
Since
n+k—1
Wt (2) = Wa(z) = (22— 1) Z P
I=n

we have to estimate 2¥'. We know that a.s. H,, < 4.3111logn (for sufficiently
large n), compare with Devroye [2] or Biggins [1]. Hence it follows that a.s.

max _ k; <4.312- log(n%).
n3 <i<(n+1)3

So we only have to check that
3
22— 1] ([(n + 18] - 8] Ja 21200805 <
Alternatively, it suffices to show that there exists n > 0 such that

1
o+ g -4.312-log 2| < g(2|z| “1) -1

[\]
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for 1 < |z| < 1.4. A short inspection shows that this is true, e.g. for n = 0.02.
Hence, (17) follows, which completes the proof for z € R;.

For z € Ry :={2€ C:|z2—1 >1/v/2-6,0.6 < |z| < 1} we have to do
almost the same. Again we use the subsequence [n%] to apply the Borel-Cantelli
lemma. In order to estimate z¥ we use the fact that a.s. k, > 0.373logn (see
[1]) and finally have to check that there exists # > 0 such that

1 3 3
— —-0. . < — — —
S+ 0.373-log|2 < 52z — 1) —n

for 0.6 < |z| < 1, which is again true. O

4 Proof of Theorem 1

The idea of the proof is to use a.s. expansions of W, (e®) in order to obtain a.s.
expansions for the Ug(n) via saddle point approximations.

In fact, we can be much more precise. We can prove an a.s. asymptotic series
expansion for Ug(n)/(n + 1) in terms of 1/y/2logn, in which the coefficients
depend on the derivatives M, (z) at z = 1. In order to demonstrate how full
asymptotic series expansions can be obtained we present a complete proof for
the following extended version of Theorem 1 (for Uy(n)). It will be then clear
how to proceed further.

Theorem 5 We have a.s.

Uk(n) ~Geoplegm? [ k—2logn (k—2logn)?
_ VRN~ . cgn —
n/v/4mlogn 4logn 24(logn)?

k—2logn 1
———M!(1
+ 2logn n( )> +0 <logn)

as n — 00, in which the error term O(1/logn) is uniform for all k > 0.

Proof. First of all we use Cauchy’s formula in order to extract Ug(n) from
Wh(2):
Ue(n) = = [ Wa(eit)e bt gt
2 ) . " '
Then we split the integral into two parts:

1 . )
I = — / W (et e kit dt,
2w

[t|<arccos 2 —§

L = L / Wi (et)e kit dt.

arccos %76§t§7r

16



With help of Proposition 3 we can easily estimate I from above. A.s. we have

1 .

L < — it
A e LT
arccos 3 —§<t<nm
< _n

(logn)K"

For |t| < arccos2 — &, My,(e®) is uniformly bounded a.s. Hence, we have by
Lemma 3

|Wn(ez’t)| < ne2(cost—1)logn < ne—c’t210gn

for some constant ¢’ > 0. Now fix some (sufficiently small) n > 0. Then we have

o0
1 i 7
2 / [Wo(e®)|dt < n / o—c'tlogn
(log n)~(1=m)/2< [¢|<arccos § —& (log n)(1=m)/2

< ne—c'(log n)""
So it remains so consider the integral
I = — W, (e®)e=kit dt.
|t|<(logn)=(1=m/2
For |t| < (logn) @ ~™/2 we have by Lemma 3 a.s. and uniformly in &k
1% (eit)e—kit = (n+ l)ez't(2logn—k)—t2 logn
o =
t3
X (1 +itM] (1) — lE logn + O +t* logn)) .
Since
Oo 2] 2 4 3
/ e~tloen (42 L #*logn) dt < (logn)~ 2
—o0
and
et logn(1 4t 4 ¢3logn) <« e~ (1o8™)”
|t]>(log n)=(1=m/2

it follows that

I{ _ i /oo eit(210gn—k)—t2logn 1+ itM! (1) —iﬁlogn dt + (’)((logn)_%)
n+1 27 J_o " 3 )

17



Set vnr = (k — 2logn)/+/2logn. Then

1 [ ) t3
it(2log n—k)—tlogn (1 +itM, (1) — iE logn) dt =

2 ) oo

_ A3
- 1 e Tmk [ 1— $1nk ~ Yok 4wk pp 1.
V2m2logn 6v2logn V2logn "

Thus, we finally obtain the proposed result.

We now indicate how such (a.s.) uniform estimates for Uy (n) imply corre-
sponding estimates for Zy(n) and Vi (n). Recall that by Lemma 1

Zi(n) =Y _ 2"7U;(n).

izk

Our aim is to show that (uniformly for all k& > 0)

. (ktj—2logn)? 1 (k+j—2logn)? 1
277 e dlesn 4+ O —— =2¢” 4legn + O —=].
,;0 ( ' (vlogn)) ’ (x/logn>
(18)

Obviously, (18) implies the proposed relation (in Theorem 1) for Zy(n). Since
Vi(n) = 3 Z41(n) we get the corresponding relation (in Theorem 1) for Vi (n).

So let us prove (18). First of all, note that we just have to consider j with
J < (loglogn)/log2 since

> 277 =0 (1();”).

j>(loglogn)/log2

Next, we can restrict ourselves to the range |k — 2logn| < v/2logn loglogn.
Namely, if |k — 2logn| > v/21logn loglogn then

ot o (L),
logn

So suppose that j < (loglogn)/log2 and |k—2logn| < v/2logn loglogn. Then
we have

_ (k+i—2logn)> _ (k—2logn)?
e 4logn —e 4logn

.2 .
< e_(k—42l(ljoggnn)2 ( j + J|k — 210gn|> .
logn logn

18



Thus,

, (k+j—2log n)2
E 2_-767 J4logvf§ —
Jj<(loglogn)/log2

k—=2logn)? .
D Y s

j<(loglogn)/log2

7(k—2105n)2 9 |k 2logn| N
4logn 2 J 2 J
te ) logn ZJ logn j;oj
— 26—4““121(1,0357"")2 +0 ( 1 ) .
logn

Note that this error term O(1/logn) is better than the error term O(1/+/logn)
which is really needed. However, this is again an indication that asymptotic
series expansions for Z(n) directly follow from corresponding expansions for

Ug(n).

5 Proof of Theorem 2

The proof of Theorem 2 runs along similar lines. The only difference is that we
now use a.s. expansions for W, (20e®) (where 29 = k/(2logn)). For small ¢ we
use

Mn(zoeit) — Mn(zg)eitM’"(ZO)/M"(ZO)+O(t2)

and W, (z0e®) = M, (20e®*)E W, (20€") and for large ¢ the estimate of Proposi-
tion 4 (resp. of its Corollary 4).
As above we have

—k o
Uk(n) = z20—7r/ Wi (z0€t)e ™%t dt.

Firstly, for any (sufficiently small) n > 0 we have by Corollary 4

E WH(ZO)

it
<
|[Wh(20€™)] Tog

for 0.6 < zp < 1.4 and (log n)_l_T" < |t| < 7. Hence

E Wn(zO)

—k
%o / Wi (zet)e Mt dt| « P .
2k logn

2
1—n
(logn)™ 72 <|t|[<m
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Converserly, for ¢ real with [¢t] < (logn)*l_T" we have uniformly (by using
Lemma 3 and k = 229 logn)

Wa(20e)e ™ = M, (206" )E Wy (20€™)e™*"
= My(20)E Wy (20)€? 987"~V kit (1 L O(|t]) + O(n 1))

= Ma(20)E Wy (z0)e™* %5 (1 + O((log m) 7).
This implies that a.s.
—k
: T L EWa(20)
Uk(n) = 20—71' / Wn(zoe t)e kit dt + O (zo km

1—7n
[t{<(logn)™ 2

= Ma(20)25 *V2rk EW,(20)(1 + O((logn) ™ 2 )).
By combining (1) and Lemma 3 we have
25 *V2rk EW,,(20) ~ E Ug(n)

uniformly for 0.6 < 29 < 1.4 as n — oo. Finally by Proposition 1 M, (29) ~
M (zp) again uniformly. Thus, Theorem 2 follows for U (n).

Finally, we can use this representation for Uy (n) and Lemma 1 to derive the
corresponding results for Z,(n) and Vi(n).
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