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Abstract

We provide a complete description of the limiting behaviour of the number Xn of groups that are
formed by social animals when the number n of animals tends to infinity. The analysis is based on a
random model by Durand, Blum and François, where it is assumed that groups are formed more likely
by animals which are genetically related. The random variable Xn can be described by a stochastic
recurrence equation that is very similar to equations that occur in the stochastic analysis of divide-
and-conquer algorithms although it does not fall into already known cases. In particular, we obtain (in
the most interesting) “neutral model” a curious central limit theorem, where the normalizing factor is√
Var(Xn)/2. In the non-neutral (or extra clustering) cases the results are completely different. We

obtain either a mixture of a discrete and a continuous limit law or just a discrete limit law.

1 Introduction and Results
An important problem in biology is to understand animal group patterns of social animals like wolves,
lions, springboks, deers, gazelles, elephants, etc. For this purpose, many models have been proposed such
as fusion/fissions models, models based on kin-selection and game-theoretic models; see Durand, Blum
and François [7] for a thorough discussion and references.

∗Parts of this research was done while this author visited the Institut für Diskrete Mathematik und Geometrie, Technical
University of Vienna. He thanks the department for hospitality and the NSC for financial support (NSC-102-2918-I-009-012).
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In [7], the authors proposed a new model which is based on the reasonable assumption that groups are
formed more likely by animals which are genetically related. They used a phylogenetic tree as decision
criteria for genetic relatedness. The groups then are all the maximal clades of the tree, where the clade of
a given external node (which corresponds to an animal) in the phylogenetic tree is the set of all external
nodes (animals) belonging to the tree rooted at the parent of the given external node (what we call here
clade was called minimal clade in Blum and François [3] and Chang and Fuchs [5]).

We describe the model of [7] now in more details. Let n be the number of animals. We consider
a random phylogenetic tree of size n which is a rooted, ordered, binary tree with n external nodes (and
consequently, n−1 internal nodes). As random model, we consider the Yule-Harding model which can be
described as follows: start with the root of the tree which has two external nodes as children; choose one
external node uniformly at random and replace it by a cherry (an internal node with two external nodes);
recursively repeat this procedure until a tree with n external nodes is constructed. Note that alternatively,
this random model can be also described by a coalescence process starting from the n external nodes; see
[5] for more details. Finally, the binary search tree model from computer science is also equivalent to this
model; see Blum, François and Janson [4].

As mentioned above, the decision of genetic relatedness will be based on the random phylogenetic
tree of size n (this was called the neutral model in [7]). Let Xn denote the number of maximal clades of
the tree, or in other words, the number of groups formed by the n animals. Then, Xn can be computed
recursively as follows

Xn
d
=

{
1, if In = 1 or In = n− 1;

XIn +X∗n−In , otherwise,
(n ≥ 3), (1)

where the initial condition is given by X2 = 1, X∗n is an independent copy of Xn and In is the size of the
left subtree of the random phylogenetic tree which has a uniform distribution on {1, . . . , n− 1}.

Distributional recurrences of the above type have been investigated in many recent studies, since sim-
ilar recurrences hold for shape parameters in binary search trees and performance characteristics of the
quicksort algorithm; see Hwang and Neininger [14] for a very general framework. Note, however, that the
framework from [14] does not apply to the current situation as will become clear from the results below.

Mean and higher moments of Xn are easy to derive by either directly considering recurrences arising
from the recursive definition (1) and similar ideas as in [14] or by using generating functions and singularity
analysis; see Chapter VI in Flajolet and Sedgewick [13]. Durand and François in [8] used the latter tools
in order to obtain the following result for the mean: they proved that, as n→∞,

E(Xn) ∼ 1− e−2

4
n. (2)

Using an extension of their argument, one can also derive higher moments. For the variance, one obtains
that, as n→∞,

Var(Xn) ∼ (1− e−2)2

4
n log n (3)

and for all higher central moments that

E (Xn − E(Xn))k ∼ (−1)k
2k

k − 2

(
1− e−2

4

)k
nk−1, (k ≥ 3). (4)

Note that from this, the limiting distribution of Xn (centralized and normalized) cannot be identified with
the method of moments.

In order to find the limiting distribution of Xn, we will use bivariate generating functions and singular-
ity perturbation analysis. Our first main result is the following (surprising) central limit theorem.
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Theorem 1. For the number of groups Xn under the neutral model, we have

Xn − E(Xn)√
Var(Xn)/2

d−→ N(0, 1),

where N(0, 1) denotes the standard normal distribution and d−→ denotes convergence in distribution.

Remark 1. We point out the curious normalization (half the variance). The same phenomenon was ob-
served by Janson and Kersting [15] for the total length of external branches in the Kingman’s coalescent.
Remark 2. A similar situation as the one above was faced by Drmota, Iksanov, Möhle and Rösler in [9],
where they analyzed the number of cuts needed to isolate the root of a random recursive tree, a sequence
of random variables for which the limiting distribution also cannot be found from its asymptotic moments;
see Panholzer [16]. In fact, we will prove Theorem 1 with a similar approach as in [9].

The above neutral model was extended in [7] to the extra clustering model in order to test whether
genetic relatedness is really the main driving force behind the group formation process (as seems not to
be the case for social animals with many predators such as deers, gazelles and springboks; see Figure 3 in
[7]). We recall the definition from [7].

Let 0 ≤ p ≤ 1 be a fixed probability. Then, the number of groups (which with a slight abuse of
notation, we will again denote by Xn) is given as follows: X2 = 1 and

Xn
d
=

{
1, with probability p;
neutral model (1), with probability 1− p,

(n ≥ 3). (5)

Note that p = 0 is the above neutral model. For the other values of p, we will extend our above analysis.
(Note that the authors of [7] again did not provide any result beyond the mean.)

Theorem 2. (a) Let 0 < p < 1/2. Then, we have

Xn

n1−2p
d−→ X,

where the law of X is the sum of a discrete distribution of measure p/(1− p) that is concentrated at
zero and a continuous distribution on [0,∞) with density

f(x) =
4(1− 2p)3

1− p
1

2πi

∫
H
t−2pe−δ(p)t

1−2px−t dt =
4(1− 2p)3

1− p
∑
k≥0

(−δ(p))k

k!Γ(2(k + 1)p− k)
xk, (6)

where H is the Hankel contour (starting in the upper half plane and winding around 0 counter-
clockwise) and

δ(p) =
(1− 2p)2Wp,(1−2p)/2(−2(1− p))

4p−1(1− p)2pMp,(1−2p)/2(−2(1− p))
,

where Mκ,µ(z) and Wκ,µ(z) are the Whittaker M and Whittaker W function.

We also have convergence of all moments, where the moments ofX are given by E(Xk) = dk/Γ(k(1−
2p) + 1) and dk is given by

d1 =: c(p) =
1

e2(1−p)

∫ 1

0

(1− t)−2pe2(1−p)t(1− (1− p)t2)dt

and for k ≥ 2,

dk =
2(1− p)

(k − 1)(1− 2p)

k−2∑
j=0

(
k − 1

j

)
dk−1−jdj+1.
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(b) Let 1/2 ≤ p ≤ 1 Then, we have
Xn

d−→ X,

where X is a discrete random variable with probability generating function

E
(
uX
)

=
1−

√
1− 4p(1− p)u
2(1− p)

.

In particular, for 1/2 < p ≤ 1, we also have convergence of moments, where the moments are given
by E(Xk) = ek and ek is given by e1 = p/(2p− 1) and for k ≥ 2,

ek =
2(1− p)
2p− 1

k−2∑
j=0

(
k − 1

j

)
dk−1−jdj+1 +

p

2p− 1
.

In the case p = 1/2, we only have weak convergence. More precisely, the moments of X are infinite
and the moments of Xn are given by

E(Xk
n) ∼ k!J2k−1

(2k − 1)!22k−1 log2k−1 n,

where J2k−1 are the tangent numbers (or Euler numbers of odd index)

Remark 3. In the cases 0 < p < 1/2 and 1/2 < p ≤ 1, we have convergence of moments and the result
can be proved by the method of moments (see below).

For p = 1/2, we use a variant of the method of proof of Theorem 1. In fact, this method can also be
applied to the cases 0 < p < 1/2 and 1/2 < p ≤ 1 to give an alternative proof of our result in these cases.
For the first range such an approach gives in addition that the moment generating function of X has the
integral representation

E
(
eyX
)

=
1

2πi

∫
H

Φ(y, t)e−tdt,

whereH is the Hankel contour and

Φ(y, t) =
4(1− 2p)2 − ypm(p)4p(1− p)2p−1t2p−1

4(1− 2p)2t− ym(p)4p(1− p)2pt2p

with determination of the powers in t chosen such that the branch cut is at [0,∞) and the constant m(p) is
given by m(p) = Mp,(1−2p)/2(−2(1− p))/Wp,(1−2p)/2(−2(1− p)).

It is now an easy exercise to check that this is precisely the moment generating function of the prob-
ability measure that is the sum of a discrete distribution of measure p/(1 − p) concentrated at zero and a
continuous distribution on [0,∞) with density (6).

We conclude the introduction with a short sketch of the paper. In the next section, we consider the
neutral model and derive asymptotic expansions of moments of Xn. Moreover, a strong law of large
numbers is proved as well. In Section 3, we will sketch the proof of Theorem 1. In Section 4, we will
prove the moment convergency part of Theorem 2, part (a). More details and the proofs of the remaining
claims of Theorem 2 are postponed to the journal version of this paper.

2 Moments and Strong Law of Large Numbers - Neutral Model
In this section, we will re-prove (2) and prove (3). Moment pumping can then be used to obtain (4); for the
latter method which was frequently used in the analysis of algorithm see, e.g., Chern, Fuchs and Hwang
[6] and Fill and Kapur [11] and references therein.
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Now, in order to prove (2) and (3), first observe that (1) yields

E(eyXn) =
2

n− 1
ey +

1

n− 1

n−2∑
j=2

E(eyXj)E(eyXn−j), (n ≥ 3)

with initial condition E(eyX2) = ey. Next, set

X(y, z) =
∑
n≥2

E(eyXn)zn.

Then, by a straightforward computation

z
∂

∂z
X(y, z) = X(y, z) +X2(y, z) + eyz2 +

2eyz3

1− z
(7)

with initial condition X(y, 0) = 0.
From (7), we obtain differential equations for the generating functions of moments of Xn by differen-

tiation. For instance, if we set

E(z) =
∑
n≥2

E(Xn)zn and S(z) =
∑
n≥2

E(X2
n)zn,

we obtain that

E ′(z) =

(
1

z
+

2z

1− z

)
E(z) +

z(1 + z)

1− z
, (8)

S ′(z) =

(
1

z
+

2z

1− z

)
S(z) +

2

z
E(z)2 +

z(1 + z)

1− z
(9)

with E(0) = S(0) = 0. Note that both of these differential equations (as well as the corresponding
differential equations for higher moments) have all the same form.

In order to solve them, we need the following lemma.

Lemma 1. Consider

f ′(z) =

(
1

z
+

2z

1− z

)
f(z) + g(z),

where f(0) = 0. Then,

f(z) =
z

(1− z)2e2z

∫ z

0

(1− t)2e2t

t
g(t)dt.

Proof. Straightforward.
Now, for the mean, applying the above lemma to (8), we obtain that

E(z) =
(−1 + e2z + 2ze2z − 2z2e2z)z

(1− z)24e2z
.

From this, by a standard application of singularity analysis, we obtain that

E(Xn) =
1− e−2

4
n+O(1).
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Next, for the second moment, by another application of Lemma 1, we have

S(z) =
z

(1− z)2e2z

∫ z

0

(
2(1− t)2e2t

t2
E(t)2 + (1− t)2e2t

)
dt.

Plugging into this the above expression for E(t) and using Maple yields the following singularity expan-
sion for the integrand, as t→ 1,

2(1− t)2e2t

t2
E(t)2 + (1− t)2e2t ∼ (e2 − 1)2

8e2
1

(1− t)2
+

(e2 − 1)2

4e2
1

1− t
.

Then, by the closure properties of singularity analysis from Fill, Flajolet and Kapur [10], we obtain that,
as z → 1,

S(z) ∼ (1− e−2)2

8

1

(1− z)3
+

(1− e−2)2

4

1

(1− z)2
log

(
1

1− z

)
.

Hence, by singularity analysis

E(X2
n) ∼ (1− e−2)2

16
n2 +

(1− e−2)2

4
n log n.

This and the above expansion for the mean yields (3).
Using the above results, we can now prove that Xn satisfies a strong law of large numbers.

Theorem 3. We have, as n→∞,

P

(
lim
n→∞

∣∣∣∣ Xn

E(Xn)
− 1

∣∣∣∣ = 0

)
= 1.

Proof. First, consider n = k2. Then, by Chebyshev’s inequality,

P

(∣∣∣∣ Xk2

E(Xk2)
− 1

∣∣∣∣ ≥ ε

)
= P (|Xk2 − E(Xk2)| ≥ εE(Xk2)) = O

(
log k

k2

)
.

Thus, ∑
k≥1

P

(∣∣∣∣ Xk2

E(Xk2)
− 1

∣∣∣∣ ≥ ε

)
<∞.

Consequently, by the Lemma of Borel-Cantelli, we have, a.s.,
Xk2

E(Xk2)
→ 1. (10)

Now, for general n, find k such that

k2 ≤ n < (k + 1)2.

Then, by the fact that Xn is non-decreasing, we have
Xk2

E(Xn)
≤ Xn

E(Xn)
≤
X(k+1)2

E(Xn)
.

From this, (10), and the expansion of the mean, the claim follows.
Finally, for the central moments, we set

X̄(y, z) = X(y, ze−ya),

where a = (1− e−2)/4. Then, (7) becomes

z
∂

∂z
X̄(y, z) = X̄(y, z) + X̄2(y, z) + ey(1−2a)z2 +

2ey(1−3a)z3

1− ze−ya
.

From this, by using similar arguments as before and moment pumping, one obtains (4).
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3 Sketch of Proof of Theorem 1
In the previous section, we saw that the limiting distribution of Xn cannot be obtained from the method
of moments. To solve this problem, we will work directly with the bivariate generating function X(y, z)
which satisfies the Riccati differential equation (7). Note that Flajolet, Gourdon and Martinez in [12]
proposed a theory for deriving limit laws for bivariate generating functions satisfying Riccati differential
equations. However, their theory does not apply to the present situation due to singularities in differential
equations (see (12) below). Therefore, we have to devise another approach.

We start by solving (7). First set

X̃(y, z) =
X(y, z)

z
.

Then,
∂

∂z
X̃(y, z) = X̃2(y, z) + ey

1 + z

1− z
.

Next, set

X̃(y, z) = −V
′(y, z)

V (y, z)
. (11)

Then,

V ′′(y, z) + ey
1 + z

1− z
V (y, z) = 0. (12)

This differential equation is a variant of Whittaker’s differential equation and has the following solution

V (y, z) = M−ey/2,1/2
(
2ey/2(z − 1)

)
+ c(y)W−ey/2,1/2

(
2ey/2(z − 1)

)
,

where Mκ,µ(z) and Wκ,µ(z) are the Whittaker M and Whittaker W function and

c(y) = −
(
ey/2 − 1

)
M−ey/2+1,1/2

(
−2ey/2

)
W−ey/2+1,1/2 (−2ey/2)

.

Whittaker functions are well-studied objects and a lot of (asymptotic) properties are known; see Chap-
ter 6 in Beals and Wong [1]. Using these properties, we obtain the following lemma.

Lemma 2. Let |y| < η and

∆ = {z ∈ C : |z| < 1 + δ, arg(1− z) 6= π},

where η, δ > 0. Then, V (y, z) is analytic in ∆ and satisfies

V (y, z) = 2(z − 1) + 2ay + 4ay(z − 1) log(z − 1) +O(max{y(z − 1), (z − 1)2}), (13)
V ′(y, z) = 2 + 4ay log(z − 1) +O(max{y, z − 1}), (14)

where a = (1− e−2)/4.

Next, we need information about the zeros of V (y, z) for small y.

Lemma 3. For η, δ sufficiently small, V (y, z) has only one (simple) zero z0(y) in z which satisfies, as
y → 0,

z0(y) = 1− ay + 2a2y2 log y +O(y2).
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Sketch of Proof. The existence follows by a standard application of Roché’s theorem.
As for the proof of the asymptotic expansion, note that for y small, the zero satisfies z0(y) = 1 + o(1).

Using (13) and bootstrapping, we obtain that, as y → 0,

z0(y) = 1− ay + o(y).

Using another bootstrapping step, this can be refined to

z0(y) = 1− ay + 2a2y2 log y + o(y2 log y).

Yet another bootstrapping step gives the following refined error bound

z0(y) = 1− ay + 2a2y2 log y +O(y2).

This is the claimed result.
From the last two lemmas and (11), we see that X(y, z) has a logarithmic singularity at z = 1 and

a polar singularity at z = z0(y) for y small (note that both singularities coalesce as y → 0). The main
property for the proof of Theorem 1 is the following proposition.

Proposition 1. Let y = it/(2a
√
n log n). Then,

E(eyXn) = z0(y)−n +O
(

(log n)3

n

)
.

Before proving it, we show how to use it to complete the proof of Theorem 1. As in the proposition,
we set y = it/(2a

√
n log n). Then, as n→∞,

z0(y) = 1− it

2
√
n log n

+
t2

4n
+O

(
log log n

n log n

)
.

Plugging this into the proposition above, we obtain that

E(eyXn) = exp

(
it
√
n

2
√

log n
− t2

4

)(
1 +O

(
log log n

log n

))
which gives the claimed result.

Hence it remains to prove Proposition 1.
Proof. We again assume that y = it/(2a

√
n log n) for some real number t. Then, by Cauchy integration,

we have

E(eyXn) = [zn]X(y, z) = −[zn−1]
V ′(y, z)

V (y, z)

= − 1

2πi

∫
γ

V ′(y, z)

V (y, z)

dz

zn

= z0(y)−n − 1

2πi

∫
γ′

V ′(y, z)

V (y, z)

dz

zn
,

where γ is a small positively oriented cycle of radius < 1 and γ′ = γ′1 ∪ γ′2 with

γ′1 = {z = 1 + v/n : v ∈ Hn},
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whereHn denotes the major part of a Hankel contour

Hn = {v ∈ C : |v| = 1, <(v) ≤ 0} ∪ {v ∈ C : 0 ≤ <(v) ≤ (log n)2, =(v) = ±1}

and γ′2 completes the contour with an almost-cycle of radius R = |1 + ((log n)2 + i)/n|, so that we have
to add the residue

Res

(
V ′(y, z)

V (y, z)
z−n, z = z0(y)

)
= z0(y)−n.

By (13) and (14), it follows that, for z ∈ γ′1,

V ′(y, z)

V (y, z)
=

2
√
n log n

it
+O

(
(log n)3

)
.

Hence, we obtain that

− 1

2πi

∫
γ′1

V ′(y, z)

V (y, z)

dz

zn
= − 1

2πi

∫
Hn

(
2
√
n log n

it
+O

(
(log n)3

))
e−v
(

1 +O
(

(log n)4

n

))
dv

n

=
1

π

√
n log n

nt

∫
Hn

e−v dv +O
(

(log n)3

n

)
= O

(√
log n

n
e−(logn)

2

)
+O

(
(log n)3

n

)
= O

(
(log n)3

n

)
.

Finally, suppose that |z| = R = |1 + ((log n)2 + i)/n|. Here, we can use (13) and (14) and the property
z0(y) = 1 +O(1/

√
n log n) to deduce that

V ′(y, z)

V (y, z)
= O

(
n

(log n)2

)
.

Consequently,

− 1

2πi

∫
γ′2

V ′(y, z)

V (y, z)

dz

zn
= O

(
n

(log n)2
R−n

)
= O

(
1

n

)
.

This completes the proof of Proposition 1.

4 Extra Clustering Model
Here, we consider the extra clustering model and give a proof of the moment convergency part of Theorem
2, part (a). We will use the method of moments. First, observe that by (5) the bivariate generating function

X(y, z) =
∑
n≥2

E(eyXn)zn

satisfies the Riccati differential equation

z
∂

∂z
X(y, z) = X(y, z) + (1− p)X(y, z)2 + ey

z2(1− (1− p)z2)
(1− z)2

(15)
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with X(y, 0) = 0.
Set

E[k](z) =
∂k

∂zk
X(y, z)

∣∣∣
y=0

.

Then, by differentiation, we obtain that

d

dz
E[k](z) =

(
1

z
+

2(1− p)z
1− z

)
E[k](z) +

2(1− p)
z

k−2∑
j=0

(
k − 1

j

)
E[k−1−j](z)E[j+1](z)

+
z(1− (1− p)z2)

(1− z)2

with E[k](0) = 0. Again, all these differential equations have the same shape and we have the following
extension of Lemma 1.

Lemma 4. Consider

f ′(z) =

(
1

z
+

2(1− p)z
1− z

)
f(z) + g(z),

where f(0) = 0. Then,

f(z) =
z

(1− z)2(1−p)e2(1−p)z

∫ z

0

(1− t)2(1−p)e2(1−p)t

t
g(t)dt.

Proof. Straightforward.
Using this and moment pumping, we obtain the following result.

Proposition 2. Let p < 1/2. Then, as n→∞,

E(Xk
n) ∼ dk

Γ(k(1− 2p) + 1)
nk(1−2p),

where dk is the sequence from Theorem 2, part (a).

Proof. We use induction to show that, as z → 1,

E[k](z) ∼ dk
(1− z)k(1−2p)+1

.

The claimed result follows then by singularity analysis.
First, start with k = 1 and set E(z) = E[1](z). Then, from Lemma 4,

E(z) =
z

(1− z)2(1−p)e2(1−p)z

∫ z

0

(1− t)−2pe2(1−p)t
(
1− (1− p)t2

)
dt.

Observe that the integrand satisfies, as t→ 1,

(1− t)−2pe2(1−p)t(1− (1− p)t2) ∼ pe2(1−p)(1− t)−2p.

Thus, from the closure properties of singularity analysis, as z →∞,

E(z) ∼ c(p)

(1− z)2(1−p)
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which is the claimed result for k = 1.
Now, for the general case, assume that claim holds for all k′ with k′ < k. In order to prove it for k, we

again use Lemma 4 which now gives an integral representation for E[k](z) with integrand

2(1− p)(1− t)2(1−p)e2(1−p)t

t2

k−2∑
j=0

(
k − 1

j

)
E[k−1−j](z)E[j+1](z) + (1− t)−2pe2(1−p)t(1− (1− p)t2)

∼ (k − 1)(1− 2p)dke
2(1−p) · 1

(1− t)(k−1)(1−2p)+1
,

as t → 1, where the last asymptotics follows from the induction hypothesis. Now, another application of
the closure properties of singularity analysis yields the claimed result.

Proof of moment convergence in Theorem 2, part (a). By Theorem 30.1 in Billingsley [2], it suffices to
show that ∑

k≥1

dkz
k

Γ(k(1− 2p) + 1)k!

has a positive radius of convergence. This clearly follows from the estimate

dk ≤ Akk!kk(1−2p)

for a suitable large A which will be proved by induction. First, by suitable choosing A, it is clear that we
can assume that the estimate holds for all small k. Assume now that the claim holds for k′ < k. In order
to prove it for k, we plug the induction hypothesis into the recurrence of dk. This gives

dk ≤ Akk!
2(1− p)

k(k − 1)(1− 2p)

k−2∑
j=0

(j + 1)(k − 1− j)(k−1−j)(1−2p)(j + 1)(j+1)(1−2p)

≤ Akk!
2(1− p)
k(1− 2p)

k−1∑
j=1

(
(k − j)k−jjj

)1−2p
Now, note that (k − j)k−jjj is decreasing for 0 < j ≤ k/2. Choose j0 such that j0 > 1/(1− 2p). Then,

dk ≤ Akk!
2(1− p)
k(1− 2p)

(
2j0k

(k−1)(1−2p) + k1+(k−j0)(1−2p)j
j0(1−2p)
0

)
≤ Akk!kk(1−2p),

where the last inequality holds for k large enough. This concludes the induction step.
Similarly, one can prove the moment convergency part of Theorem 2, part (b) for 1/2 < p ≤ 1. As for

p = 1/2, by using moment pumping, one obtains the following result.

Proposition 3. Let p = 1/2. Then, as n→∞,

E(Xk
n) ∼ k!J2k−1

(2k − 1)!22k−1 log2k−1 n,

where J2k−1 are the tangent numbers (or Euler numbers of odd index).

Thus, as for p = 0, the limit law again cannot be characterized via the moments. However, working
directly with the Riccati differential equation (15) whose solution can again be expressed in terms of the
Whittaker functions one obtains a proof for the case p = 1/2 (all other parts of Theorem 2 can also be
proved via such a bivariate approach). Details are postponed to the journal version of this paper.
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