Hamiltonian graphs

Icosian game by sir William Rowan Hamilton, 1857

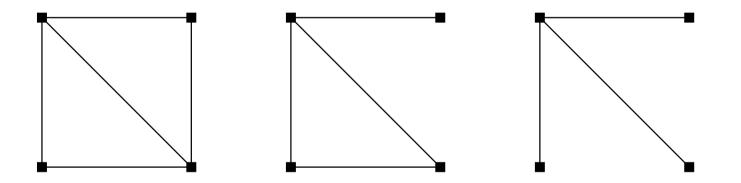
• *Hamiltonian cycle* in graph G is a cycle that passes through each vertex exactly once.

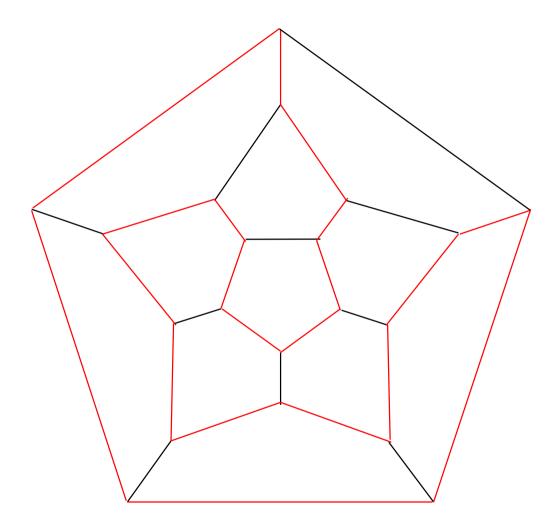
- *Hamiltonian walk* in graph G is a walk that passes through each vertex exactly once.
- If a graph has a Hamiltonian cycle, it is called a *Hamiltonian graph*.

• If a graph has a Hamiltonian walk, it is called a *semi-Hamiltonian graph*.

⊖There are no known (non-trivial) conditions that would be necessary and sufficient for the existence of a Hamiltoinian cycle or a Hamiltoinian walk.

• In this lecture, only simple graphs are considered.





Theorem (Ore, 1960). Let G = (V, E) be a simple graph, where $|V| = n \ge 3$. If for every two vertices $u, w \in V$ the implication

$$(u,w)
ot\in E \implies \deg(u) + \deg(w) \ge n$$

holds, then the graph G is Hamiltonian.

Corollary (Dirac, 1952). If G = (V, E) is a simple graph having *n* vertices and for each $v \in V$ we have $\deg(v) \geq \frac{n}{2}$ then *G* is a Hamiltonian graph.

Proof of the Corollary. For every two vertices $u, w \in V$ (whether they are neighbours or not) the inequality $\deg(u) + \deg(w) \ge n$ holds, thus Ore's theorem implies that G is Hamiltonian.

Proof of the theorem. If n = 3 then the only graph satisfying the assumption is K_3 . It is Hamiltonian.

Let $n \ge 4$. Let the assumption of the theorem hold, but let the conclusion be wrong.

If we add edges to the graph, the assumption will still hold. Add edges to G until we reach the graph G' such that it is not Hamiltonian, but addition of any new vertex would give a Hamiltonian graph. Let $e = (u, w) \in V \times V$ be an edge not present in G'. The graph $G' \cup \{e\}$ has a Hamiltonian cycle

$$u = v_0 - v_1 - v_2 - \cdots - v_{n-1} = w \stackrel{e}{-} u$$
.

Grph G' has a Hamiltonian walk

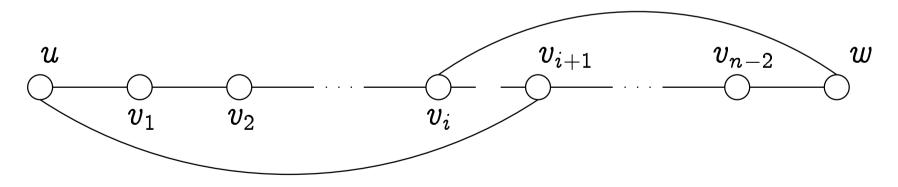
$$P: u = v_0 - v_1 - v_2 - \cdots - v_{n-1} = w$$
.

This walk has n-1 edges.

Let

- E_u be the set of edges (v_i, v_{i+1}) where $(u, v_{i+1}) \in E$.
- E_w be the set of edges (v_i, v_{i+1}) where $(v_i, w) \in E$.

Using the assumption of the theorem, we get $|E_u| + |E_w| \ge n$. Thus, there is an edge (v_i, v_{i+1}) in the intersection $E_u \cap E_w$. Besides, $i \ne 0$ and $i \ne n-2$, since $(u, w) \not\in E$.



We have found a Hamiltonian cycle in G'.

Theorem (Bondy and Chvátal, 1976). Consider a simple graph G = (V, E) and let $u, v \in V$ be non-neighbouring vertices such that $\deg(u) + \deg(v) \ge |V|$. Then G is Hamiltonian iff $G \cup \{(u, v)\}$ is Hamiltonian.

Proof. The direction "G Hamiltonian $\Rightarrow G \cup \{(u, v)\}$ Hamiltonian" is obvious. Proof of the other direction was given in the proof of Ore's theorem. Graph G = (V, E) is called *Ore-closed* if for any two different vertices $u, v \in V$ the implication

$$\deg(u) + \deg(v) \geq |V| \implies (u,v) \in E$$

holds.

Graph G' = (V, E') is called *Ore closure* of graph G = (V, E) and denoted as $\mathcal{O}(G)$ if the following holds:

- G' is Ore-closed;
- $E \subseteq E';$
- E' is the least possible set with the above properties.

Lemma. Let $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ be Ore-closed graphs. Then $G = (V, E_1 \cap E_2)$ is Ore-closed.

Proof. Let $u,v \in V$ and $\deg_G(u) + \deg_G(v) \geq |V|$. Then we have

 $\deg_{G_1}(u) + \deg_{G_1}(v) \ge |V| ext{ and } \deg_{G_2}(u) + \deg_{G_2}(v) \ge |V|,$ since $\deg_{G_i}(u) \ge \deg_G(u)$ and $\deg_{G_i}(v) \ge \deg_G(v).$ As G_1 and G_2 are Ore-closed, we get $(u,v) \in E_1$ and $(u,v) \in E_2$, implying $(u,v) \in E_1 \cap E_2$. \Box

The Lemmma implies that all graphs have Ore closures.

Algorithm (for finding Ore closure). Consider a simple graph G = (V, E).

- 1. Find $u, v \in V$ such that $\deg(u) + \deg(v) \ge |V|$ and $(u, v) \not\in V$. If there are no such vertices, output G and stop.
- 2. Add the edge (u, v) to E and return to step 1.

Proposition. The result of the algorithm does not depend on the choice of vertices u, v on step 1. Proof. Assume we can get two different outcomes $G_1 = (V, E \cup E_1)$ and $G_2 = (V, E \cup E_2)$ starting from graph G = (V, E) (so that $E_1 \neq E_2$). W.l.o.g. assume $E_1 \setminus E_2 \neq \emptyset$.

Elements of the set $E_1 \setminus E_2$ are added to the graph G_1 in some order as the algorithm proceeds. Let (u, v) be the first one in this order. Let $E'_1 \subseteq E_1$ be thet set of all edges added before the edge (u, v).

We have $E'_1 \subseteq E_2$. Thus, in the graph G_2 the condition $\deg(u) + \deg(v) \ge |V|$ holds. A contradiction with the assumption $(u, v) \not\in E_2$. Theorem. The algorithm finds Ore closure of graph G. Proof. The proof follows from these four claims:

- 1. Edge set of the output graph of the algorithm is a superset of the edge set of the input graph.
- 2. The algorithm is monotone, i.e. if $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$, where $E_1 \subseteq E_2$, the algorithm turns them into graphs $G'_1 = (V, E'_1)$ and $G'_2 = (V, E'_2)$, where $E'_1 \subseteq E'_2$. The proof is similar to the proof of the previous proposition.
- 3. The output graph of the algorithm is Ore-closed.
- 4. If the input of the algorith is an Ore-closed graph, the algorithm will output it.

Corollary. A graph is Hamiltonian iff its Ore closure is Hmiltonian.

Proof. This is a consequence of the closure finding algorithm and Bondy-Chvátal theorem. $\hfill \square$

Corollary. Let G = (V, E) be a simple graph with $|V| = n \ge 3$. If $\mathcal{O}(G) = K_n$ then G is Hamiltonian.

Proof. K_n is Hamiltonian.

Theorem. Let G = (V, E) be a non-Hamiltonian graph on *n* vertices. Then there exists $k < \frac{n}{2}$ such that *G* has *k* vertices with degree at most *k* and n - k vertices with degree at most n - k - 1.

Proof. Let $\mathcal{O}(G) = (V, E')$. Since $\mathcal{O}(G) \neq K_n$, there exist vertices u and w such that $(u, w) \notin E'$. Take u and w so that the sum $\deg_{E'}(u) + \deg_{E'}(w)$ is maximal.

We have $\deg_{E'}(u) + \deg_{E'}(w) \leq n-1$, since otherwise $(u,w) \in E'$ (according to the definition of Ore closure). Let

$$egin{aligned} U &= \{u' \mid u'
eq u, (u, u')
ot\in E'\} \ W &= \{w' \mid w'
eq w, (w, w')
ot\in E'\} \end{aligned}$$

W.l.o.g. assume $\deg_{E'}(u) \leq \deg_{E'}(w)$. Let $k = \deg_{E'}(u)$.

- $1. \ \deg_{E'}(u) + \deg_{E'}(w) \leq n-1.$
- 2. $\deg_{E'}(u) + \deg_{E'}(w)$ is the maximal possible.

3.
$$k=\deg_{E'}(u)\leq \deg_{E'}(w).$$

- 4. 1. and 3. give $k \le \frac{n-1}{2} < \frac{n}{2}$.
- $\begin{array}{lll} \text{5. 2. gives } \deg_{E'}(w') \leq \deg_{E'}(u) \text{ for any } w' \in W. \text{ Besides,} \\ \deg_{E'}(u') \leq \deg_{E'}(w) \text{ for any } u' \in U. \end{array}$
- 6. $|U| = n 1 \deg_{E'}(u)$ and $|W| = n 1 \deg_{E'}(w)$. This is proven by a simple counting argument.
- 7. 1. and 6. give $|W| \ge k$.
- 8. 5. gives $\deg_E(w') \leq \deg_{E'}(w') \leq \deg_{E'}(u) = k$ for any $w' \in W.$

We have k vertices with degree $\leq k$.

1.
$$\deg_{E'}(u) + \deg_{E'}(w) \le n - 1$$
.
4. $k \le \frac{n-1}{2} < \frac{n}{2}$.
5. $\deg_{E'}(u') \le \deg_{E'}(w)$ for any $u' \in U$.
6. $|U| = n - 1 - \deg_{E'}(u)$.
9. 6. gives $|U| = n - k - 1$. Thus $|U \cup \{u\}| = n - k$.
10. For each $u' \in U$ we get from 5. and 1. that
 $\deg_{E}(u') \le \deg_{E'}(u') \le \deg_{E'}(w) \le n - 1 - k$.
11. 4. gives $\deg_{E}(u) \le \deg_{E'}(u) = k \le \frac{n-1}{2} \le n - 1 - k$.
We have $n - k$ vertices with degree $\le n - k - 1$.

Corollary. Consider a graph G = (V, E) on n vertices such that for each $k < \frac{n}{2}$ the graph has less than k vertices with degree at most k or less than n-k vertices with degree at most n-k-1. Then G is Hamiltonian.

Proof. From the previous theorem: $(\mathcal{A} \Rightarrow \mathcal{B}) \Leftrightarrow (\neg \mathcal{B} \Rightarrow \neg \mathcal{A})$. \Box

The same claim for degree sequences:

Corollary. Consider a graph G = (V, E) with degree sequence (a_1, \ldots, a_n) . If for each $k < \frac{n}{2}$ we have $(a_k \le k) = (a_{n-k} \ge n-k)$ then G is Hamiltonian.

Call the degree sequence (a_1, \ldots, a_n) Hamiltonian if each graph G with degree sequence (b_1, \ldots, b_n) where $b_i \geq a_i$ $(1 \leq i \leq n)$ is Hamiltonian.

Theorem. Degree sequence (a_1, \ldots, a_n) is Hamiltonian iff for each $k < \frac{n}{2}$ we have $(a_k \le k) \Longrightarrow (a_{n-k} \ge n-k)$. Proof. \Leftarrow is proven in the previous slide

 \Rightarrow Assume that (a_1, \ldots, a_n) does not satisfy the required condition. We will construct a graph with degree sequence $\geq (a_1, \ldots, a_n)$ that is not Hamitlonian.

If the condition is not satisfied, we must have a k such that $a_k \leq k$ and $a_{n-k} \leq n-k-1.$

For a given k the largest such degree sequence is

$$(\underbrace{k,\ldots,k}_k,\underbrace{n-k-1,\ldots,n-k-1}_{n-2k},\underbrace{n-1,\ldots,n-1}_k)$$
 .

A non-Hamiltonian graph with such a degree sequence:

