
Hamiltonian graphs



Icosian game by sir William Rowan Hamilton, 1857



� Hamiltonian cycle in graph G is a cycle that passes
through each vertex exactly once.
� Hamiltonian walk in graph G is a walk that passes
through each vertex exactly once.
� If a graph has a Hamiltonian cycle, it is called a Hamil-
tonian graph .
� If a graph has a Hamiltonian walk, it is called a semi-
Hamiltonian graph .
§There are no known (non-trivial) conditions that would
be necessary and su�cient for the existence of a Hamil-
toinian cycle or a Hamiltoinian walk.
� In this lecture, only simple graphs are considered.







Theorem (Ore, 1960). LetG = (V;E) be a simple graph,
where jV j = n � 3. If for every two vertices u;w 2 V the
implication

(u;w) 62 E ==> deg(u) + deg(w) � n
holds, then the graph G is Hamiltonian.
Corollary (Dirac, 1952). If G = (V;E) is a simple graph
having n vertices and for each v 2 V we have deg(v) � n

2
then G is a Hamiltonian graph.
Proof of the Corollary. For every two verticesu u;w 2
V (whether they are neighbours or not) the inequality
deg(u) + deg(w) � n holds, thus Ore's theorem implies
that G is Hamiltonian.



Proof of the theorem. If n = 3 then the only graph satis-
fying the assumption is K3. It is Hamiltonian.

Let n � 4. Let the assumption of the theorem hold, but
let the conclusion be wrong.

If we add edges to the graph, the assumption will still hold.
Add edges to G until we reach the graph G0 such that it
is not Hamiltonian, but addition of any new vertex would
give a Hamiltonian graph.



Let e = (u;w) 2 V � V be an edge not present in G0. The
graph G0 [ feg has a Hamiltonian cycle

u = v0 � v1 � v2 � � � �� vn�1 = w e� u :

Grph G0 has a Hamiltonian walk

P : u = v0 � v1 � v2 � � � �� vn�1 = w :

This walk has n� 1 edges.



Let

� Eu be the set of edges (vi; vi+1) where (u; vi+1) 2 E.
� Ew be the set of edges (vi; vi+1) where (vi; w) 2 E.

Using the assumption of the theorem, we get jEuj+ jEwj �
n. Thus, there is an edge (vi; vi+1) in the intersection Eu\
Ew. Besides, i 6= 0 and i 6= n� 2, since (u;w) 62 E.
u

v1 v2 vi

vi+1 vn�2 w

We have found a Hamiltonian cycle in G0. �



Theorem (Bondy and Chvátal, 1976). Consider a sim-
ple graph G = (V;E) and let u; v 2 V be non-neighbouring
vertices such that deg(u)+deg(v) � jV j. Then G is Hamil-
tonian i� G [ f(u; v)g is Hamiltonian.

Proof. The direction �G Hamiltonian => G [ f(u; v)g
Hamiltonian� is obvious. Proof of the other direction was
given in the proof of Ore's theorem. �



Graph G = (V;E) is called Ore-closed if for any two dif-
ferent vertices u; v 2 V the implication

deg(u) + deg(v) � jV j ==> (u; v) 2 E
holds.

Graph G0 = (V;E 0) is called Ore closure of graph G =
(V;E) and denoted as O(G) if the following holds:

� G0 is Ore-closed;

� E � E 0;
� E 0 is the least possible set with the above properties.



Lemma. Let G1 = (V;E1) and G2 = (V;E2) be Ore-closed
graphs. Then G = (V;E1 \ E2) is Ore-closed.

Proof. Let u; v 2 V and degG(u) + degG(v) � jV j. Then
we have

degG1(u)+degG1(v) � jV j and degG2(u)+degG2(v) � jV j;
since degGi(u) � degG(u) and degGi(v) � degG(v).

As G1 and G2 are Ore-closed, we get (u; v) 2 E1 and
(u; v) 2 E2, implying (u; v) 2 E1 \ E2. �
The Lemmma implies that all graphs have Ore closures.



Algorithm (for �nding Ore closure). Consider a simple
graph G = (V;E).

1. Find u; v 2 V such that deg(u) + deg(v) � jV j and
(u; v) 62 V . If there are no such vertices, output G and
stop.

2. Add the edge (u; v) to E and return to step 1.

Proposition. The result of the algorithm does not depend
on the choice of vertices u; v on step 1.



Proof. Assume we can get two di�erent outcomes G1 =
(V;E _[E1) and G2 = (V;E _[E2) starting from graph G =
(V;E) (so that E1 6= E2). W.l.o.g. assume E1nE2 6= ;.
Elements of the set E1nE2 are added to the graph G1 in
some order as the algorithm proceeds. Let (u; v) be the
�rst one in this order. Let E 01 � E1 be thet set of all edges
added before the edge (u; v).

We have E 01 � E2. Thus, in the graph G2 the condition
deg(u) + deg(v) � jV j holds. A contradiction with the
assumption (u; v) 62 E2. �



Theorem. The algorithm �nds Ore closure of graph G.
Proof. The proof follows from these four claims:
1. Edge set of the output graph of the algorithm is a

superset of the edge set of the input graph.
2. The algorithm is monotone, i.e. if G1 = (V;E1) and
G2 = (V;E2), where E1 � E2, the algorithm turns
them into graphs G01 = (V;E 01) and G02 = (V;E 02),
where E 01 � E 02. The proof is similar to the proof
of the previous proposition.

3. The output graph of the algorithm is Ore-closed.
4. If the input of the algorith is an Ore-closed graph, the

algorithm will output it.
�



Corollary. A graph is Hamiltonian i� its Ore closure is
Hmiltonian.

Proof. This is a consequence of the closure �nding algo-
rithm and Bondy-Chvátal theorem. �
Corollary. Let G = (V;E) be a simple graph with jV j =
n � 3. If O(G) = Kn then G is Hamiltonian.

Proof. Kn is Hamiltonian. �



Theorem. Let G = (V;E) be a non-Hamiltonian graph
on n vertices. Then there exists k < n

2 such that G has
k vertices with degree at most k and n � k vertices with
degree at most n� k � 1.
Proof. Let O(G) = (V;E 0). Since O(G) 6= Kn, there exist
vertices u and w such that (u;w) 62 E 0. Take u and w so
that the sum degE0(u) + degE0(w) is maximal.
We have degE0(u) + degE0(w) � n � 1, since otherwise
(u;w) 2 E 0 (according to the de�nition of Ore closure).
Let

U = fu0 j u0 6= u; (u; u0) 62 E 0g
W = fw0 j w0 6= w; (w;w0) 62 E 0g :

W.l.o.g. assume degE0(u) � degE0(w). Let k = degE0(u).



1. degE0(u) + degE0(w) � n� 1.
2. degE0(u) + degE0(w) is the maximal possible.
3. k = degE0(u) � degE0(w).
4. 1. and 3. give k � n�1

2 < n
2 .

5. 2. gives degE0(w0) � degE0(u) for any w0 2W . Besides,
degE0(u0) � degE0(w) for any u0 2 U .

6. jU j = n � 1 � degE0(u) and jW j = n � 1 � degE0(w).
This is proven by a simple counting argument.

7. 1. and 6. give jW j � k.
8. 5. gives degE(w0) � degE0(w0) � degE0(u) = k for any
w0 2W .

We have k vertices with degree � k.



1. degE0(u) + degE0(w) � n� 1.

4. k � n�1
2 < n

2 .

5. degE0(u0) � degE0(w) for any u0 2 U .
6. jU j = n� 1� degE0(u).

9. 6. gives jU j = n� k � 1. Thus jU [ fugj = n� k.
10. For each u0 2 U we get from 5. and 1. that

degE(u0) � degE0(u0) � degE0(w) � n� 1� k :

11. 4. gives degE(u) � degE0(u) = k � n�1
2 � n� 1� k.

We have n� k vertices with degree � n� k � 1.



Corollary. Consider a graph G = (V;E) on n vertices
such that for each k < n

2 the graph has less than k vertices
with degree at most k or less than n�k vertices with degree
at most n� k � 1. Then G is Hamiltonian.

Proof. From the previous theorem: (A => B) , (:B =>
:A). �
The same claim for degree sequences:

Corollary. Consider a graph G = (V;E) with degree se-
quence (a1; : : : ; an). If for each k < n

2 we have (ak � k) =
> (an�k � n� k) then G is Hamiltonian.



Call the degree sequence (a1; : : : ; an) Hamiltonian if each
graph G with degree sequence (b1; : : : ; bn) where bi � ai
(1 � i � n) is Hamiltonian.

Theorem. Degree sequence (a1; : : : ; an) is Hamiltonian i�
for each k < n

2 we have (ak � k) => (an�k � n� k).

Proof. ( is proven in the previous slide

=> Assume that (a1; : : : ; an) does not satisfy the required
condition. We will construct a graph with degree sequence
� (a1; : : : ; an) that is not Hamitlonian.

If the condition is not satis�ed, we must have a k such that
ak � k and an�k � n� k � 1.



For a given k the largest such degree sequence is

(k; : : : ; k| {z }
k

; n� k � 1; : : : ; n� k � 1| {z }
n�2k

; n� 1; : : : ; n� 1| {z }
k

) :

A non-Hamiltonian graph with such a degree sequence:

Kn�k

Kk;k

�


