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Abstract. In this paper we study a class of generalized Kakutani's sequences of partitions of [0, 1],

constructed by using the technique of successive ρ−re�nements. Our main focus is to derive bounds

for the discrepancy of these sequences. The approach that we use is based on a tree representation

of the sequence of partitions which is precisely the parsing tree generated by Khodak's coding

algorithm. With the help of this technique we derive (partly up to a logarithmic factors) optimal

upper bound in the so-called rational case. The upper bounds in the irrational case that we

obtain are weaker, since they depend heavily on Diophantine approximation properties of a certain

irrational number. Finally, we present an application of these results to a class of fractals.

1. Introduction

In this paper we will study uniformly distributed sequences of partitions of [0, 1], a concept which
has been introduced in 1976 by Kakutani, [13].

De�nition 1.1. Let {πn} be a sequence of interval partitions of [0, 1] represented by πn = {[t(n)
i−1, t

(n)
i ] :

1 ≤ i ≤ k(n)}, where 0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
k(n) = 1. The sequence {πn} is said to be uniformly

distributed (u.d.) if for any continuous function f on [0, 1] we have

lim
n→∞

1
k(n)

k(n)∑
i=1

f(t(n)
i ) =

∫ 1

0
f(t) dt.

Equivalently, {πn} is u.d. if the sequence of discrepancies

(1) Dn = sup
0≤a<b≤1

∣∣∣∣ 1
k(n)

k(n)∑
i=1

χ[a,b[(t
(n)
i )− (b− a)

∣∣∣∣
tends to 0 as n → ∞ (for more details on the theory of uniform distribution see [17] or [9]; χM

denotes the characteristic function of the set M).

Kakutani's sequence of partitions is de�ned in the following way. Let α ∈ ]0, 1[ be given and

start with the unit interval I = [0, 1]. In the �rst step this interval is divided into the two intervals

[0, α], [α, 1] of lengths α and 1 − α. In the second step the larger interval is partitioned into two

subintervals of lengths proportional to α and 1 − α respectively. For example, if α = 1
3 then the

interval
[

1
3 , 1
]
is split into

[
1
3 ,

5
9

]
,
[

5
9 , 1
]
. In this way one proceeds further. Note that one always

considers all intervals of maximal length at once.
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De�nition 1.2. If α ∈]0, 1[ and π = {[ti−1, ti] : 1 ≤ i ≤ k} is any interval partition of [0, 1], then
Kakutani's α-re�nement of π (which will be denoted by απ) is obtained by splitting all the intervals

of π having maximal length in two parts, proportional to α and 1− α respectively.

Kakutani's sequence of partitions κn can be then written as κn = αnω, where ω = {[0, 1]}. His
observation was that for every α ∈]0, 1[, the sequence of partitions {κn} of [0, 1] is u.d. (cf. [13]).

In a recent paper [19], Kakutani's splitting procedure has been generalized by splitting the longest

intervals of a partition π into a �nite number of parts homothetically to a given �nite interval

partition ρ of [0, 1]. The resulting interval partition ρπ is called ρ-re�nement of π. As for the

α-re�nement (that corresponds to ρ = {[0, α], [α, 1]}) the following result holds (cf. [19]):

Theorem 1.3. The sequence {ρnω} of successive ρ-re�nements of the trivial partition ω = {[0, 1]}
is u.d.

A natural problem which is interesting for possible applications, posed in [19], is to estimate

the behaviour of the discrepancy as n tends to in�nity. The only known discrepancy bounds for

sequences of this kind have been obtained by Carbone [4] by a direct and elementary approach,

who considered so-called LS-sequences that evolve from partitions ρ with L subintervals of [0, 1] of
length α and S subintervals of length α2 (where α is given by the equation Lα+ Sα2 = 1).

In this paper, we analyze this problem with a new approach based on a parsing tree (related to the

Khodak coding algorithm [15]) which represents the successive ρ-re�nements. In particular, we will

use re�nements of the results obtained in [8] about Khodak's algorithm to give an estimate of the

discrepancy for a class of sequences of partitions constructed by successive ρ−re�nements. Suppose

that ρ is a partition of [0, 1] consisting of m subintervals of lengths p1, . . . , pm. In the so-called

rational case (which means that all fractions (log pi)/(log pj) are rational, see De�nition 2.1) we will

provide very precise bounds for the discrepancy. Note that LS-sequences are rational, therefore we

generalize the results of [4]. However, we are also able to cover several irrational cases (which means

that at least one of the fractions (log pi)/(log pj) is irrational).
Let us give a brief outline of the structure of the paper. In Section 2 we introduce Khodak's

algorithm and analyze the correspondence between subintervals of [0, 1] and nodes of the parsing

tree. Moreover, we extend an asymptotic result from [8]. In Section 3 we present our main results

in the rational case. In particular, we obtain an upper bound of the form

(2) Dn = O
(

(log k(n))dk(n)−η
)

where η is a real positive constant and d ≥ 0 an integer (both values are explicit). Furthermore, this

upper bound is best possible (despite a logarithmic factor in a special case). In Section 4 we discuss

some instances in the irrational case for m = 2. They are much more involved than in the rational

case. Finally, in Section 5 we give some examples and applications including LS-sequences and u.d.

sequences of partitions on a class of fractals. Some auxiliary results that are used in Section 2 are

collected in Section 6.
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2. ρ-refinements and Khodak algorithm

From now on, consider a partition ρ of [0, 1] consisting of m intervals of lengths p1, . . . , pm and

the sequence of ρ-re�nements of the trivial partition ω = {[0, 1]}.
Our goal is to construct recursively an m-ary tree T . An m-ary tree is an ordered rooted tree,

where each node has either m (ordered) successors (we call such a node internal node) or it is a

leaf with no successors (which we call also external node). The numbers p1, . . . , pm induce a natural

labelling on the nodes. Suppose that the unique path from the root to a node x at level l is encoded

by the sequence (j1, j2, . . . , jl), 1 ≤ ji ≤ m, then we set P (x) = pj1pj2 · · · pjl . This can be also

considered as the probability of reaching the node x with a random walk that starts at the root

and moves away from it according to the probabilities p1, . . . , pm. For completeness the root a is

labelled with P (a) = 1. If T is a �nite m-ary tree then the labels of the external nodes sum up to

1 (which follows easily by induction). Hence, the shape of an m-ary tree (together with p1, . . . , pm)

gives rise of a probability distribution.

The start of our iteration is a tree that only consists of the root which is then an external node

(with probability 1). In the �rst step the root is replaced by an internal node together with m

(ordered) successing leaves that are given the probability distribution p1, . . . , pm. At each further

iteration we select all leaves y with largest label P (y) and grow m children out of each of them.

This procedure describes the construction of the parsing trees of the Tunstall code [8] (the words

(j1, j2, . . . , jl) that encode the paths from the root to the leaves are the phrases of the dictionary).

Actually this construction corresponds precisely to the ρ-re�nement procedure of the sequence ρnω.

The leaves of the tree correspond to the intervals and the labels of the leaves to the lengths of the

intervals.

There is a second way to describe this tree evolution process, namely by Khodak's algorithm [15].

Fix a real number r ∈]0, pmin[, where pmin = min{p1, . . . , pm}, and consider all nodes x among in

an in�nte m-ary tree with P (x) ≥ r. Let us denote these nodes by I(r). Of course, if P (x) ≥ r

then all nodes x′ on the path from the root to x satisfy P (x′) ≥ r, too. Hence, these nodes of

I(r) constitute a �nite subtree. These nodes will be the internal nodes of Khodak's construction.

Finally, we append to these internal nodes all successor nodes y. By construction all these nodes

satisfy pminr ≤ P (y) < r and we denote them by E(r). These nodes are the external nodes of

Khodak's construction. We denote by Mr = |E(r)| the number of external nodes. Obviously we

have got a �nite m-ary tree T (r) = I(r) ∪ E(r) and it is clear that these trees grow when r

decreases. For certain values r, precisely the external nodes y of largest value P (y) = r turn into

internal nodes and all their successors become new external nodes. Actually, the tree T (r) grows

in correspondence to a decreasing sequence of values {rj}. When r ∈]rj , rj−1] the tree remains the

same, i.e T (rj−1) = T (r).
In our correspondence between Khodak's algorithm and the procedure of successive ρ−re�nements

the values rj correspond to the partition ρjω. Consequently, the number of external nodes in E(rj)
equals the number of points de�ning the partition ρjω, i.e. Mrj = k(j). Moreover, if r ∈]rj , rj−1]
then Mr = Mrj−1 = k(j). From here on we denote by Er the family of all intervals of the partition

ρjω corresponding to the leaves belonging to E(r) and the order of the intervals in Er corresponds
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to the left-to-right order of the external nodes in E(r). We will call elementary intervals all the

intervals belonging to each Er for some r ∈]0, pmin[.
In the following we denote by H the entropy of the probability distribution p1, . . . , pm , which is

de�ned as

H = p1 log
(

1
p1

)
+ · · ·+ pm log

(
1
pm

)
.

De�nition 2.1. We say that log
(

1
p1

)
, . . . , log

(
1
pm

)
are rationally related if there exists a positive

real number Λ such that log
(

1
p1

)
, . . . , log

(
1
pm

)
are integer multiples of Λ, that is

log
(

1
pj

)
= njΛ, with nj ∈ Z for j = 1, . . . ,m.

Without loss of generality we can assume that Λ is as large as possible which is equivalent to assume

that gcd(n1, . . . , nm) = 1. Equivalently, all fractions (log pi)/(log pj) are rational.

Similarly we say that log
(

1
p1

)
, . . . , log

(
1
pm

)
are irrationally related if they are not rationally

related.

One of main result from [8] provides asymptotic information on the numbersMr of external nodes

in Khodak's construction. Actually these relations can be used to prove Theorem 1.3. However, in

order to obtain bounds for the discrepancy we need more precise information on the error terms.

Therefore we have extended the analysis of [8].

Theorem 2.2. Let Mr be the number of the external nodes generated at the step corresponding to

the parameter r in Khodak's construction, that is, the number of nodes in E(r).

(1) If log
(

1
p1

)
, . . . , log

(
1
pm

)
are rationally related, let Λ > 0 be the largest real number for

which log
(

1
pj

)
is an integer multiple of Λ (for j = 1, . . . ,m). Then there exists a real

number η > 0 and an integer d ≥ 0 such that

(3) Mr =
(m− 1)
rH

Q1

(
log
(

1
r

))
+O

(
(log r)dr−(1−η)

)
,

where

Q1(x) =
Λ

1− e−Λ
e−Λ{ xΛ}

and {y} is the fractional part of the real number y. Furthermore, the error term is optimal.

(2) If log
(

1
p1

)
, . . . , log

(
1
pm

)
are irrationally related, then

(4) Mr =
(m− 1)
rH

+ o

(
1
r

)
.

In particular, if m = 2 and γ = (log p1)/(log p2) is badly approximable then

(5) Mr =
(m− 1)
rH

(
1 +O

(
(log log(1/r))1/4

(log(1/r))1/4

))
.

and if p1 and p2 are algebraic then there exists an e�ectively computable constant κ > 0 with

(6) Mr =
(m− 1)
rH

(
1 +O

(
(log log(1/r))κ

(log(1/r))κ

))
.
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Proof. Set v = 1
r and denote by A(v) the number of internal nodes (root node included) in Khodak's

construction with parameter r = 1/v, that is,

A(v) =
∑

x:P (x)≥ 1
v

1.

Hence, the number of external nodes generated at the step corresponding to the parameter r is

(7) Mr = (m− 1)A(v) + 1.

The key relation is that that A(v) satis�es the following recurrence, (see Lemma 2, [8]):

(8) A(v) =


0 v < 1

1 +
m∑
j=1

A(pjv) v ≥ 1

For the asymptotic analysis of A(v) (and consequently that of Mr) we distinguish between the

rational and the irrational case. If the log(1/pj) are rationally related then A(v) is constant for

v ∈ [eΛn, eΛ(n+1)[ (for every integer n). Hence, it su�ces to study the behaviour of the sequence

G(n) = A(eΛn) which satis�es the recurrence

G(n) = 1 +
m∑
j=1

G(n− nj)

with initial conditions G(n) = 0 for n < 0. The generating function g(z) =
∑
n≥0

G(n)zn is then given

by

g(z) =
1

(1− z)f(z)
,

where f(z) = 1−zn1 +· · ·−znm . By De�nition 2.1, it follows that e−Λ is a positive real root of f and

it is proved in [5] that if we denote by ω1, . . . , ωh all the other (di�erent) roots (with multiplicities

µi) of f then |ωi| > e−Λ for i = 1, . . . , h. (Here we use the assumption that n1, . . . , nm are coprime).

Hence, it follows that

G(n) =
ΛeΛn

H(1− e−Λ)
+

h∑
i=1

Pi(n)ω−ni − 1
m− 1

,

where Pi are polynomials of degree smaller than µi. Obviously this implies the representation (3)

of Theorem 2.2 for some η > 0. Note that in view of (7) the constant term −1/(m− 1) disappears
when we translate the asymptotics of G(n) to Mr.

Next we study the error term (without the constant term −1/(m − 1)) in more detail. W.l.o.g.

we can assume that ω1, . . . , ωk (with k ≤ h) are those roots of f(z) with smallest modulus |ωi| =
e−Λ(1−η) (with some η > 0) such that Pi 6= 0, 1 ≤ i ≤ k, and where the degrees of Pi are maximal

and all equal to d ≥ 0. This means that the di�erence between G(n) and the asymptotic leading

term is bounded by

δ(n) =
∣∣∣∣G(n)− ΛeΛn

H(1− e−Λ)
+

1
m− 1

∣∣∣∣ ≤ CndeΛ(1−η)n

5



for some constant C > 0. More precisely δ(n) can be written as

δ(n) =

∣∣∣∣∣nd
k∑
i=1

c̃i ω
−n
i

∣∣∣∣∣+O
(
nd−1eΛ(1−η)n

)
.

with complex numbers c̃i 6= 0, 1 ≤ i ≤ k. Since all roots of f(z) are either real or appear in

conjugate pairs of complex numbers we can rewrite the sum
k∑
i=1

c̃i ω
−n
i to

ndeΛ(1−η)n
k′∑
i=1

c′i cos(2πθin+ αi)

with real numbers c′i 6= 0. By Lemma 6.1 it follows that there exists δ > 0 and in�nitely many n

such that |
k′∑
i=1

c′i cos(2πθin+ αi)| ≥ δ. This shows that

δ(n) ≥ C ′ndeΛ(1−η)n

for in�nitely many n with some constant C ′ > 0. This means that the error term in (3) is optimal.

The analysis in the irrational case is much more involved. Instead of using power series we use

the Mellin transform

A∗(s) =
∫ ∞

0
A(v)vs−1 dv.

By using the fact that the Mellin transform of A(av) is a−sA∗(s), a simple analysis of recurrence

(8) reveals that the Mellin transform A∗(s) of A(v) is given by

A∗(s) =
−1

s
(
1− p−s1 − · · · − p

−s
m

) , <(s) < −1.

In order to �nd asymptotics of A(v) as v → ∞ one can directly use the Tauberian theorem (for

the Mellin transform) by Wiener-Ikehara [16, Theorem 4.1]. For this purpose we have to check

that s0 = −1 is the only (polar) singularity on the line <(s) = −1 and that (s + 1)A∗(s) can be

analytically extended to a region that contains the line <(s) = −1. However, in the irrational case

this follows by a lemma of Schachinger [18]. In particular, one �nds A(v) ∼ v/H but this (simple)

procedure does not provide any information about the error term.

In order to make our presentation as simple as possible we will restrict ourselves to the case

m = 2 and we will also assume certain conditions on the Diophantine properties of the irrational

number

γ =
log p1

log p2
.

We use the simpli�ed notation p = p1 and q = p2.

The principle idea to obtain error terms for A(v) is to use the formula for the inverse Mellin

transfrom

(9) A(v) =
1

2πi
lim
T→∞

∫ σ+iT

σ−iT
A∗(s)v−sds, σ < −1,

and to shift the line of integration to the right. Of course, all polar singularities of A∗(s) (which

are given by the solutions of the equation p−s + q−s = 1 and s = 0) give rise to a polar singularity.

Unfortunately, the order of magnitude of A∗(s) is just of order O(1/s). Hence the integral in (9)
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is not absolutely convergent. It is therefore convenient to smooth the problem and to study the

function A1(v) =
∫ v

0 A(w) dw which is given by

A1(v) =
1

2πi

∫ σ+i∞

σ−i∞
A∗(s)

v−s+1

1− s
ds =

1
2πi

∫ σ+i∞

σ−i∞

1
s(s− 1)(1− p−s − q−s)

v−s+1 ds, σ < −1.

By [18] we know that all zeros of the equation p−s + q−s = 1 that are di�erent from −1 satisfy

−1 < <(s) ≤ σ0 for some σ0. Furthermore there is τ > 0 such that in each box of the form

Bk = {s ∈ C : −1 < <(s) ≤ σ0, (2k − 1)τ ≤ =(s) < (2k + 1)τ}, k ∈ Z \ {0},

there is precisely one zero of p−s + q−s = 1 that we denote by sk Hence, by shifting the line of

integration to the right and by collecting all residues we obtain (for some σ1 > max{σ0 + 1, 1})

A1(v) =
v2

2H
−

∑
k∈Z\{0}

v1−sk

sk(sk − 1)H(sk)
− v − 1

1− p−1 − q−1

+
1

2πi

∫ σ1+i∞

σ1−i∞

1
s(s− 1)(1− p−s − q−s)

v−s+1 ds,

where H(s) = p−s log(1/p) + q−s log(1/q). Clearly the integral can be estimated by

1
2πi

∫ σ1+i∞

σ1−i∞

1
s(s− 1)(1− p−s − q−s)

v−s+1 ds = O
(
v−σ1+1

)
.

Hence we just have to deal with the sum of residues
∑
v1−sk/(sk(sk − 1)H(sk)). First it is an easy

exercise to show that there exists δ > 0 such that |H(sk)| ≥ δ for all k ∈ Z \ {0}. Thus, we do not

have to care about this factor.

Next assume that γ is a badly approximable irrational number which means that γ has a bounded

continued fraction representation. Here Lemma 6.2 shows that all zeros sk 6= −1 of the equation

p−s + q−s = 1 satisfy <(sk) > −1 + c/=(sk)2 for some constant c > 0. Hence it follows that

<(sk) > −1 + c1/k
2 for some constant c1 > 0 and we can estimate the sum of residues by∣∣∣∣∣∣

∑
k∈Z\{0}

v1−sk

sk(sk − 1)H(sk)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

0<|k|≤K

v1−sk

sk(sk − 1)H(sk)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
|k|>K

v1−sk

sk(sk − 1)H(sk)

∣∣∣∣∣∣
≤ C1v

2−c1/K2
∑

0<|k|≤K

1
k2

+ C2v
2
∑
|k|>K

1
k2

≤ C3v
2

(
v−c1/K

2
+

1
K

)
.

By choosing K =
√
c1(log v)/(log log v) we, thus, obtain the upper bound∑

k∈Z\{0}

v1−sk

sk(sk − 1)H(sk)
= O

(
v2

√
log log v√

log v

)
and consequently

A1(v) =
v2

2H

(
1 +O

(√
log log v√

log v

))
.
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Finally by an application of Lemma 6.5 this implies

A(v) =
v

H

(
1 +O

(
(log log v)1/4

(log v)1/4

))
.

Similarly we can deal with the case if we know that all solutions of the equation p−s + q−s = 1
(that are di�erent from −1) satisfy <(sk) > −1 +D/=(sk)2C for some positive constants C,D (this

is satis�ed if p and q are algebraic, see with Lemma 6.3). Then we obtain (as above)∣∣∣∣∣∣
∑

k∈Z\{0}

v1−sk

sk(sk − 1)H(sk)

∣∣∣∣∣∣ ≤ C4v
2

(
v−c2K

−2C
+

1
K

)
.

Hence, if we choose K = (c2(log v)/(log log v))1/(2C) we obtain (after a second application of

Lemma 6.5

A(v) =
v

H

(
1 +

(log log v)κ

(log v)κ

)
.

where κ = 1
4C . This completes the proof of Theorem 2.2. �

3. Discrepancy bounds in the rational case

In this section, we are going to consider a partition ρ of [0, 1] consisting of m intervals of lengths

p1, . . . , pm such that log
(

1
p1

)
, . . . , log

(
1
pm

)
are rationally related.

By Theorem 2.2 we know that Mr is asymptotically given by

(10) Mrn =
c′

rn
+O

(
(log rn)dr−(1−η)

n

)
, r = rn = e−Λn,

for some η > 0 and some integer d ≥ 0, where c′ = (m− 1)Λ/(H(1 − e−Λ)) and the error term is

optimal. Recall also that k(n) = Mrn which gives an asmyptotic expansion for k(n) of the form

k(n) ∼ (m− 1)Λ
H(1− e−Λ)

eΛn.

Theorem 3.1. Suppose that the lengths of the intervals of a partition ρ are p1, . . . , pm and suppose

that log
(

1
p1

)
, . . . , log

(
1
pm

)
are rationally related. Furthermore let η > 0 and d ≥ 0 be given as in

Theorem 2.2.

Then the discrepancy of the sequence of partitions {ρnω} is bounded by

(11) Dn =


O
(
(log k(n))dk(n)−η

)
if 0 < η < 1,

O
(
(log k(n))dk(n)−1

)
if η = 1,

O
(
k(n)−1

)
if η > 1.

Furthermore there exists δ > 0 and in�nitely many n such that

(12) Dn ≥


δ (log k(n))dk(n)−η if 0 < η < 1,
δ (log k(n))dk(n)−1 if η = 1,
δ k(n)−1 if η > 1.
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Proof. For notational convenience we set

∆n = sup
0≤y≤1

∣∣∣∣∣∣
k(n)∑
i=1

χ[0,y[

(
t
(n)
i

)
− k(n)y

∣∣∣∣∣∣
Then we have Dn ≤ 2∆n/k(n).

Fix a step in the algorithm corresponding to a certain parameter r of the form r = e−nΛ for

some integer n ≥ 0, and consider an interval A = [0, y[⊂ [0, 1]. We want to estimate the number of

elementary intervals belonging to Er which are contained in A.

For this purpose, let us �x another parameter r, of the form r = e−nΛ with an integer 0 ≤ n ≤ n,
corresponding to a previous step in Khodak's construction. At this previous step, we have Mr

intervals Ij generated by the construction. If we denote by l(Ij) the lengths of the intervals Ij , then
we have that

(13) pminr ≤ l(Ij) < r, for j = 1, . . . ,Mr,

(since the lengths of I ∈ Er correspond to the values P (y) of the external nodes y in E(r)).
Suppose that precisely the �rst h of these intervals Ij are contained in A, so U = I1∪ . . .∪Ih ⊂ A.

Now, we want to estimate the number of elementary intervals in Er contained in Ij . Khodak's

construction shows that this equals precisely the number of external nodes in the subtree of the

node x that is related to the interval Ij . An important feature of Khodak's construction is that

subtrees of T (r) rooted at an internal node x ∈ I(r) are parts of a self-similar in�nite tree and

therefore they are constructed in the same way as the whole tree. So, one just has to replace r by
r

P (x) . Hence, by using this remark in (10), the number NIj of subintervals of Ij (corresponding to

the value r) equals

NIj = M r
l(Ij)

=
c′

r
l(Ij) +O

(
| log r|d l(Ij)

1−η

r1−η

)
.

Therefore, we have that the number NU of elementary intervals in Er contained in U is

NU = NI1 + . . .+NIh =
c′

r
(l(I1) + . . .+ l(Ih)) +O

 | log r|d

r1−η

h∑
j=1

l(Ij)
1−η

 .

By using (13) and the fact that h ≤Mr = O(1/r) we obtain

NU =
c′

r
(l(I1) + . . .+ l(Ih)) +O

(
| log r|d r

(−η)

r(1−η)

)
Since the total number of intervals equals Mr = c′/r +O(| log r|dr−1+η) it follows that

NU −Mrl(U) = O

(
| log r|d r

(−η)

r(1−η)

)
+O(| log r)|dr−1+η) = O

(
| log r|d r

(−η)

r(1−η)

)
.

Since NA −Mrl(A) = (NU −Mrl(U)) + (NA\U −Mrl(A \ U)) it remains to study the di�erence

NA\U −Mrl(A \ U) = NA\U −Mr/l(Ih+1)
l(A \ U)
l(Ih+1)

+Mr/l(Ih+1)
l(A \ U)
l(Ih+1)

−Mrl(A \ U).

9



The second term can be directly estimated by∣∣∣∣Mr/l(Ih+1)
l(A \ U)
l(Ih+1)

−Mrl(A \ U)
∣∣∣∣ = O

(
| log r|d r

(1−η)

r(1−η)

)
,

whereas the �rst term is bounded by∣∣∣∣NA\U −Mr/l(Ih+1)
l(A \ U)
l(Ih+1)

∣∣∣∣ ≤ ∆n−n

Summing up and taking the supremum over all sets A = [0, y[ we obtain the recurrence relation

(14) ∆n ≤ ∆n−n +O

(
| log r|d r

(−η)

r(1−η)

)
.

We now set n = 1 and recall that r = e−Λn (and also r = e−Λn = e−Λ). Thus, we get

(15) ∆n ≤ ∆n−1 +O
(
ndeΛn(1−η)

)
.

We distinguish between three cases.

(1) 0 < η < 1. In this case we get

∆n = O

∑
k≤n

kdeΛk(1−η)

 = O
(
ndeΛn(1−η)

)

which implies Dn = O
(
(log k(n))dk(n)−η

)
.

(2) η = 1. In this case we get ∆n = O(nd+1) and consequently Dn = O
(
(log k(n))d+1k(n)−1

)
.

(3) η > 1. Here we have

∆n = O

∑
k≤n

kde−Λk(η−1)

 = O (1)

which rewrites to Dn = O
(
k(n)−1

)
.

In order to give a lower bound of the discrepancy it is su�cient to handle the case 0 < η ≤ 1.
If η > 1 we just use the trivial lower bound Dn ≥ 1/k(n) which meets the upper bound. For the

remaining case 0 < η ≤ 1 we consider the interval A = [0, p1[. We also recall that we can write Mr

(for r = rn = e−Λn) as

Mr = c′ eΛn + δn,

where δn has an representation of the form

δn = ndeΛn(1−η)
k∑
i=1

ci cos(2πθin+ αi) +O
(
nd−1eΛn(1−η)

)
.

10



Similarly to the above we obtain

NA −Mrl(A) = Mr/p1
−Mrp1

= δn−n1 − p1δn

= ndeΛn(1−η)

(
k∑
i=1

ci cos(2πθin+ αi − 2πθin1)− p1

k∑
i=1

ci cos(2πθin+ αi)

)
+O

(
nd−1eΛn(1−η)

)
.

By applying Lemma 6.1 it follows that there exists δ > 0 and in�nitely many n with

|NA −Mrl(A)| ≥ δndeΛn(1−η).

Consequently

Dn ≥
1
Mr
|NA −Mrl(A)| ≥ δ′nde−Λnη

for some δ′ > 0. This completes the proof of the lower bound (12).

�

4. Discrepancy bounds in the irrational case

As mentioned above, the case where log
(

1
p1

)
, . . . , log

(
1
pm

)
are rationally related is much more

di�cult to handle, since the error term in the asymptotic expansion forMr is not explicit in general,

see Theorem 2.2. Nevertheless, we can provide upper bounds in some cases of interest.

Suppose that m = 2, set p = p1 and q = p2 and γ = (log p)/(log q). It is an easy exercise to show

that the number of intervals k(n) is given asymptotically by

k(n) ∼ m− 1
H

exp
(√

2n log
1
p

log
1
q

)
.

This follows from the fact that the equation k log p+ ` log q = x has at most one solution in integer

pairs (k, `). Hence, if we �x r in Khodak's construction then the corresponding number n of steps

equals the number of non-negative integral lattice points (k, `) with k log p+ ` log q ≥ log r which is

given by

n =

(
log 1

r

)2
2 log 1

p log 1
q

+O
(

log
1
r

)
.

We have considered the case when γ is badly approximable, that is, the continued fractional

expansion of γ is bounded, and the case where p and q are algebraic.

Theorem 4.1. If γ /∈ Q and it is badly approximable, then the discrepancy is estimated by

Dn = O

((
log log (k(n))

log (k(n))

) 1
8

)
as n→∞.

Furthermore, if p and q are algebraic and γ /∈ Q then

Dn = O

((
log log (k(n))

log (k(n))

)κ
2

)
as n→∞,

where κ > 0 is an e�ectively computable constant (see Theorem 2.2).
11



Note that the upper bounds for the discrepancy we obtained are worse than k(n)−β for any β > 0.
Actually it seems that we cannot do really better in the irrational case. This is due to the fact that

lim inf
k 6=0

<(sk) = −1 where sk, k 6= 0, runs through all the zeros of the equation p−s+q−s = 1 di�erent

from s0 = −1 . Actually it seems that the continued fraction expansion of γ = (log p)/(log q) could
be used to obtain more explicit upper bounds. However, since they are all rather poor it is probably

not worth working them out in detail. The case m > 2 is even more involved, compare with the

discussion of [10].

Proof. We use a procedure similar to that of the proof of Theorem 3.1. However, we have to use

the asymptotic expansion

Mr =
c′′

r
+O

1
r

(
log log 1

r

log 1
r

)ξ
with c′′ = (m−1)/H and with ξ = 1

4 when γ is badly approximable or ξ = κ when p, q are algebraic.

First it follows that

NU −Mrl(U) =
c′′

r
(l(I1) + . . .+ l(Ih)) +O

 1
r r

(
log log r

r

log r
r

)ξ
− c′′

r
(l(I1) + . . .+ l(Ih)) +O

1
r

(
log log 1

r

log 1
r

)ξ
= O

 1
r r

(
log log r

r

log r
r

)ξ .

For the remaining interval A \ U we use the (trivial) bounds NA\U ≤ Mr/l(Ih+1) = O(r/r) and

l(Ih+1) = O(r) to end up with the upper bound

Dn = O

1
r

(
log log r

r

log r
r

)ξ+O (r) .

Hence, by choosing

r =

(
log log 1

r

log 1
r

)ξ/2
we �nally obtain

Dn = O

( log log 1
r

log 1
r

)ξ/2 .

This completes the proof of Theorem 4.1. �

5. Applications

5.1. LS-sequences. We recall that LS-sequences of partitions are iterative ρ-re�nements of ω =
[0, 1], where ρ consists of L subintervals of [0, 1] of length α and S subintervals of length α2 and α

is given by the equation Lα+ Sα2 = 1.
12



For instance, if L = S = 1 then α =
√

5−1
2 and we obtain the so-called Kakutani-Fibonacci

sequence. Here we have p1 = α and p2 = 1− α = α2 and consequently

log
(

1
α

)
= n1Λ and log

(
1
α2

)
= n2Λ

with Λ = − logα, n1 = 1 and n2 = 2. Since the roots of the equation 1 − z − z2 = 0 are given by

z1 =
√

5−1
2 = α = e−Λ and z2 = −

√
5−1
2 it follows that d = 0 and

η = 1 +
log |z2|

Λ
= 1 +

log
∣∣∣−√5−1

2

∣∣∣
− log

(√
5−1
2

) = 2

This shows that the discrepancy is of the order of 1/k(n) (and therefore it is optimal).

In the general case set m = L+ S. Of course we are in the rational case since pj = α or pi = α2.

More precisely we have Λ = log(1/α) and ni ∈ {1, 2} corresponding to pi = αni . The zeros of the

equation

1− Lz − Sz2 = 0

are given by z1 = −L+
√
L2+4S

2S = α and z2 = −L−
√
L2+4S

2S . Hence,

(16) η = 1 +
log
∣∣∣−L−√L2+4S

2S

∣∣∣
L

= 1 +
log
(
L+
√
L2+4S
2S

)
L

.

Consequently we have η < 1 if and only if L+
√
L2+4S
2S < 1 or if S > L+ 1. Similarly we have η = 1

if and only if S = L+ 1 and η > 1 if and only if S < L+ 1. This is in perfect accordance with the

results of Carbone [4]. The discrepancy bounds are (of course) also of the same kind.

5.2. Sequences Related to Pisot Numbers. A Pisot number β is an algebraic integer (larger

than 1) with the property that all its conjugates have modulus smaller than 1. A prominent example

of Pisot numbers are the real roots of a polynomial of the form

(17) zk − a1z
k−1 − a2z

k−2 − · · · − ak = 0,

where aj are positive integers with a1 ≥ a2 ≥ · · · ≥ ak, see [3]. In this case the polynomial in (17)

is also irreducible over the rationals.

Suppose now that ρ is a partition of m = a1 + a2 + · · · + ak intervals, where aj intervals have

length αj , 1 ≤ j ≤ k, α = 1/β, and β is the Pisot number related to the polynomial (17). Note

that we have

a1α+ a2α
2 + · · ·+ akα

k = 1.

Since all conjugates of α have now modulus larger than 1 it follows that η > 1. This means that

the order of magnitude of the discrepancy is optimal, namely 1/k(n). LS-sequences are a special

instance for k = 2, a1 = L and a2 = S with L ≥ S.
13



5.3. Multiple Zeros. In the Pisot case all complex zeros of the polynomial are simple, since the

polynomial is irreducible over the rationals. However, this is not necessarily true in less restrictive

cases. For example, let α = 1/5 and consider one interval of length α = 1/5, 16 intervals of

lengths α2 = 1/25 and 20 intervals of lengths α3 = 1/125. Since α + 16α2 + 20α3 = 1 we have a

proper partition ρ. Here the roots of the polynomial z + 16z2 + 20z3 = 1 are z1 = α = 1/5 and

z2 = z3 = −1/2 (which is a double root). Hence, we obtain η = 1− (log 2)/(log 5) = 0.56932 . . . < 1
and d = 1. Consequently the discrepancy is bouded by

Dn = O((log k(n)) k(n)−η),

and this upper bound is optimal.

5.4. The rational case on fractals. The same procedure of ρ-re�nements could be used also to

construct u.d. sequences of partitions on fractals generated by an iterated function system (IFS)

satisfying the Open Set Condition (OSC). This class of fractals has been already considered in [12],

where the authors introduced a general algorithm to produce u.d. sequences of partitions and of

points on fractals generated by an IFS consisting of similarities which have the same ratio and which

satisfy the OSC.

Now we can extend these results eliminating the restriction that the similarities have the same

ratio. In fact, we can get the same results as obtained on [0, 1] in Section 3 by introducing a new

correspondence between nodes and subsets of the fractal.

Let ϕ = {ϕ1, . . . , ϕm} be a system of m similarities on Rd having ratios c1, . . . , cm ∈ ]0, 1[
respectively and satisfying the Open Set Condition (OSC). Let F be the attractor of ϕ and let S

be its Hausdor� dimension. Moreover, we will consider the normalized S-dimensional Hausdor�

measure P on the fractal F , that is,

P (A) =
HS(A)
HS(F )

for any Borel set A ⊂ F ;

recall that P is a regular probability measure.

Start with a tree having a root node of probability 1, which corresponds to the fractal F , and

m leaves corresponding to the m imagines of F through the m similarities, i.e. ϕ1(F ), . . . , ϕm(F ).
The probability of each node is given by the probability P of the corresponding subset, that is,

pi = P (ϕi(F )) = cSi . At each iteration we select the leaves having the highest probability and

grow m children out of each of them. On the fractal, this corresponds to apply successively the m

similarities only to those subsets having the highest probability at this certain step. By iterating

this procedure, we obtain a parsing tree associated to the sequence of partitions on the fractal F .

Let us denote by {πn} the sequence of partitions of F generated in this way, such that

πn =
{
ψjk(n)

ψj(k(n)−1)
· · · ψj1(F ) : j1, . . . , jk(n) ∈ {1, . . . ,m}

}
.

where k(n) is the number of sets constructed at the step n.

Let us denote by En the collection of the k(n) sets Eni belonging to the partition πn and by E

the union of the families En, by varying n. The sets of the class E are called elementary sets.

In [12], it is proved that the class E is determining and consists of P -continuity sets. Now, if

we choose a point t
(n)
i in each Eni ∈ En, we can consider the elementary discrepancy of this set of

14



points on the fractal, i.e.

DE
n = sup

E∈E

∣∣∣∣∣ 1
k(n)

k(n)∑
i=1

χE

(
t
(n)
i

)
− P (E)

∣∣∣∣∣.
By using a procedure similar to the one used in the proof of the Theorem 3.1 we get the following

estimates for the elementary discrepancy if log
(

1
p1

)
, . . . , log

(
1
pm

)
are rationally related:

(18) DE
n =

{
O
(
(log k(n))dk(n)−η

)
if 0 < η ≤ 1,

O
(
k(n)−1

)
if η > 1.

Furthermore, both upper bounds are best possible.

First we observe that the numberN
(n)
E of elementary sets if En that are contained in an elementary

set E is given by Mr/P (E) which implies

(19) N
(n)
E =

c′

r
P (E) +O

(
| log r|d r−1+ηP (E)1−η

)
.

This proves (18) directly for η ≤ 1 and also shows that this bound is optimal. If η > 1 then we

argue recursively. The elementary interval E is either contained in E1 = {ϕ1(F ), . . . , ϕm(F )}, which
means that we can use (19) for P (E) ∈ {p1, . . . , pm}, or it is part of Ej = ϕj(F ) for some j. In the

latter case we rewrite N
(n)
E − k(n)P (E) to

N
(n)
E − k(n)P (E) =

(
N

(n)
E − k(n− 1)

P (E)
P (Ej)

)
+
(
k(n− 1)

P (E)
P (Ej)

− k(n)P (E)
)

which leads to a recurrence of the form

∆E
n = sup

E∈E

∣∣∣N (n)
E − k(n)P (E)

∣∣∣ ≤ ∆E
n−1 +O

(
ndeΛn(1−η)

)
.

Hence ∆E
n = O(1) and consequently DE

n = O(1/k(n)) (which is also optimal).

In particular it follows that the sequence of partitions {πn} is u.d. with respect to P . Actually,

this remains true in the irrationally related case, too. However, we can only derive e�ective upper

bounds for the discrepancy in very speci�c cases.

There are few papers devoted to uniformly distributed sequences on fractals and to estimates of

the discrepancy, see [7, 6, 11]. The various types of discrepancy considered depend very much on

the geometric features of the fractal. Moreover, the only kind of discrepancy which makes sense for

all the fractals generated by IFS and satisfying the OSC is the so-called elementary discrepancy. A

unifying approach has been proposed by Albrecher, Matou²ek and Tichy in [1], but it concerns the

average discrepancy.

6. Auxiliary Results

In this section we collect some auxiliary results that are used in the proof of Theorem 2.2 (see

Section 2).
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6.1. Trigonometric Sums.

Lemma 6.1. Let f(n) =
k∑
i=1

ci cos(2πθin+ αi), ci, αi, θi ∈ R be de�ned for non-negative integers n

and suppose that f is not identically zero. Then there exists δ > 0 such that |f(n)| ≥ δ for in�nitely

many non-negative integers n.

Proof. We have to distinguish two cases:

Case 1: θ1, . . . , θk are rationally related.

There exist Λ ∈ R \ {0} and ki ∈ Z such that θi = Λki. In this case, we can rewrite the

function as follows

f(n) =
k∑
i=1

ci cos(2πΛnki + αi) =
k∑
i=1

ci cos(2π{Λn}ki + αi),

where {x} denotes is the fractional part of x.

Hence, f(n) = g({Λn}) where g(x) =
k∑
i=1

ci cos(2πkix+αi) is a periodic non-zero function

of period 1.

Case 1.1: If Λ ∈ Q, then Λ = p
q for some coprime integers p, q ∈ Z and the sequence

f(n) attains periodically the set of values

g

({
pn

q

})
, n = 0, . . . , q − 1.

Since they are not all equal to zero there exists δ > 0 such that |f(n)| = |g({Λn})| ≥ δ
for in�nitely many n. In particular we can use a linear subsequence qn + r for which

|f(qn+ r)| ≥ δ.
Case 1.2: If Λ /∈ Q, then the sequence {Λn} is u.d. modulo 1 and consequently dense in

[0, 1]. Hence, there (again) exists δ > 0 such that |f(n)| = |g({Λn})| ≥ δ for in�nitely

many n.

Case 2: θ1, . . . , θk are irrationally related.

Here we divide the θi in groups which are rationally related. Assume that we have s groups

{θi : i ∈ Ij}, j = 1, . . . , s, and in each group we write

θi = Λjki, i ∈ Ij

with ki ∈ Z and some Λj ∈ R \ {0}.
In this case, we distinguish between three di�erent sub-cases:

Case 2.1: 1,Λ1, . . . ,Λs are linearly independent over Q (and consequently Λ1, . . . ,Λs /∈
Q).

We set fj(x) =
∑
i∈Ij

ci cos(2πxki + αi) (where we assume w.l.o.g. that fj is non-zero)

and g(x1, . . . , xn) =
s∑
j=1

fj(xj). Then

f(n) =
s∑
j=1

fj({nΛj}) = g ({nΛ1}, . . . , {nΛs}) .
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By Kronecker's Theorem, the sequence ({nΛ1}, . . . , {nΛs}) is dense in the cube [0, 1]s.
Thus, it follows (as above) that there exists δ > 0 such that |f(n)| ≥ δ for in�nitely

many n.

Note that by same reasoning it follows that for every ε > 0 we have |f(n)| ≤ ε for

in�nitely many n. (Here we also use that fact that f has zero mean.) This observation

will be used in Case 2.3.

Case 2.2: 1,Λ1, . . . ,Λs are linearly dependent over Q and Λ1, . . . ,Λs /∈ Q.

In this case there exist q, p1, . . . , ps ∈ Z such that q = p1Λ1 + . . . + psΛs. Suppose

(w.l.o.g.) that p1 > 0 and consider the subsequence of integers (p1n):

f(p1n) =
s∑
j=1

fj(nΛjp1)

= f1(n(q − Λ2p2 − · · · − Λsps)) +
s∑
j=2

fj(nΛjp1).

By using the addition theorem for cos and rewriting the sum accordingly we obtain a

representation of the form

f(p1n) =
s∑
j=2

f̃j(nΛjpj),

where f̃j are certain trigonometric polynomials. This means that we have eliminated

Λ1.

In this way we can proceed further. If 1, p2Λ2, . . . , psΛs are linearly independent over Q
then we argue as in Case 2.1. However, if 1, p2Λ2, . . . , psΛs are linearly dependent over

Q then we repeat the elimination procedure etc. Note that this elimination procedure

terminates, since we assume that Λ1, . . . ,Λs /∈ Q. Hence, we always end up in Case 2.1.

Case 2.3: Λ1, . . . ,Λs are not all irrationals.
Here we represent f(n) = h1(n) + h2(n), where

h1(n) =
∑

j∈{j:Λj∈Q}

fj(n) and h2(n) =
∑

j∈{j:Λj 6∈Q}

fj(n).

If h1 is non-zero then we can argue as in Case 1.1. All appearing θi are rational and

consequently there exits a linear subsequence qn + r such that |h1(qn + r)| ≥ 3δ
2 for

some δ > 0. Next we reduce the sum h2(qn+ r) to a sum of the form that is discussed

in Case 2.1 (possibly we have to eliminate several terms as discussed in Case 2.2.).

Consequently it follows that there exists in�nitely many n such that |h2(qn+r)| ≤ δ/2.
Hence we have |f(n)| ≥ δ for in�nitely many n.

If h1 is zero for all non-negative integers we just have to consider h2. But this case is

precisely that of Case 2.2.

�
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6.2. Zerofree Regions. The purpose of the next two lemmas is to discuss zero-free regions of the

equation 1 − p−s − q−s = 0 (where p, q are positive numbers with p + q = 1). It is clear that

s = −1 is a solution and that all solutions have to satisfy <(s) ≥ −1. (Otherwise, we would have

|p−s|+ |q−s| < 1.) Furthermore, it is easy to verify that there are no solutions (other than s = −1)
on the line <(s) = −1 if and only if the ratio γ = (log p)/(log q) is irrational, compare also with

[18]. Furthermore it is known that there exist σ0 and τ > 0 such that in each box of the form

Bk = {s ∈ C : −1 ≤ <(s) ≤ σ0, (2k − 1)τ ≤ =(s) < (2k + 1)τ}, k ∈ Z \ {0},

there is precisely one zero of p−s + q−s = 1, and there are no other zeros.

However, the positions of the zeros in Bk is by no means clear. Nevertheless, with the help of

the continued fraction expansion of γ it is possible to construct (in�nitely many) zeros s of the

above equation with <(s) < −1 + ε (for every ε > 0). Therefore it is natural to ask for zero-free

regions of this equation. Actually one has to assume some Diophantine condition on γ to get precise

information.

Lemma 6.2. If γ is badly approximable then for every solution s 6= −1 of the equation

1− p−s − q−s = 0

we have that

(20) <(s) >
c

(=(s))2
− 1

for some positive constant c.

Proof. We recall that an irrational number γ is badly approximable if its continued fractional expan-

sion γ = [a0; a1; . . .] is bounded, that is, there exist a positive constant D such that max
j≥1

(aj) ≤ D.

Equivalently we have the property that there exists a constant d > 0 such that

(21)

∣∣∣∣γ − k

l

∣∣∣∣ ≥ d

l2

for all non-zero integers k, l, see [14].

In order to make the presentation of the proof more transparent we make a shift by 1 and consider

the equation

(22) p1−s + q1−s = 1

and show that all non-zero solutions satisfy <(s) > c/=(s)2 for some positive constant c that

depends on γ.

Suppose that s = σ+ iτ is a zero of (22) with σ > 0. Furthermore, we assume that σ ≤ ε, where
ε is a su�ciently small constant (in a moment it will be clear how small it has to be chosen). Since

p + q = 1 and |p1−s| = p1−σ = p(1 + O(ε)) > p and |q1−s| = q1−σ = q(1 + O(ε)) > q we can only

have a solution if the arguments of p1−s and q1−s are small. (Actually they have to be of order

O(
√
ε) if ε is chosen su�ciently small). W.l.o.g. we write

arg(p1−s) = τ log(1/p) = 2πk + η1 and arg(q1−s) = τ log(1/q) = 2πl − η2

18



for some integers k, l and certain positive numbers η1, η2 (which are of order O(
√
ε)). More precisely,

by doing a local expansion in (22) we obtain

η2 =
p

q
η1 +O(η2

1) and σ =
p

2qH
η2

1 +O(η4
1).

Furthermore we have

γ =
τ log 1

p

τ log 1
q

=
2πk + η1

2πl − η2

=
k

l
+

1
2π

(
1
l

+
kp

l2q

)
η1(1 +O(η1/l)).

This means that k/l is close to γ and by applying (21) it follows that

η1 ≥
d′

|l|

for some constant d′ > 0. Consequently we obtain σ ≥ d′′/l2 (for some constant d′′ > 0) which
translates directly to σ > c/τ2 for some positive constant c. �

Next we consider the case of algebraic number p and q with the property that log(p)/ log(q) is

irrational.

Lemma 6.3. If p, q ∈]0, 1[ are positive algebraic numbers with p + q = 1 and the property that

log(p)/ log(q) is irrational. Then for every solution s 6= −1 of the equation

1− p−s − q−s = 0

we have

(23) <(s) >
D

(=(s))2C
− 1

with e�ectively computable positive constants C,D.

The classical theorem of Gelfond-Schneider says that γ = log(p)/ log(q) is irrational for algebraic
numbers p and q then γ is transcendental. Baker's Theorem ([2]) gives also e�ective bounds for

Diophantine approximation of γ that will be used in the subsequent proof of Lemma 6.3. (Recall

that the height of an algebraic number is the maximum of the absolute values of the relatively

prime integer coe�cients in its minimal de�ning polynomial, while its degree is the degree of this

polynomial.)

Theorem 6.4 (Baker's Theorem [2]). Let γ1, . . . , γn be non-zero algebraic numbers with degrees at

most d and heights at most A. Further, β0, β1, . . . , βn are algebraic numbers with degree at most d

and heights at most B (≥ 2). Then for

Λ = β0 + β1 log γ1 + . . .+ βn log γn

we have either Λ = 0 or |Λ| ≥ B−C , where C is an e�ectively computable number depending only

on n, d, and A.
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Proof. (Lemma 6.3) We apply Theorem 6.4 for the algebraic number γ1 = p and γ2 = q and the

integers β0 = 0, β1 = l, and β2 = −k. Then B = max{|k|, |l|}. W.l.o.g. we may assume that p > q

which assures that we only have to consider cases with |k| ≤ |l|. Thus

|l log p− k log q| > B−C

and consequently

(24)

∣∣∣∣ log p
log q

− k

l

∣∣∣∣ > ( 1
log q

)
B−C

l
>

(
1

log q

)
1

l1+C
,

where C is e�ectively computable.

By using (24) instead of (21) in the proof of Lemma 6.2 we complete the proof of Lemma 6.3

easily.

�

6.3. Di�erentiating Asymptotic Expansions.

Lemma 6.5. Suppose that f(v) is a non-negative increasing function for v ≥ 0. Assume that

F (v) =
∫ v

0
f(w)dw

has the asymptotic expansion

F (v) =
vλ+1

λ+ 1
(1 +O (g(v))) as v →∞,

where λ > −1 and g(v) is a decreasing function that tends to zero as v →∞. Then

f(v) = vλ
(

1 +O
(
g(v)

1
2

))
as v →∞.

Proof.

By the assumption we have that there exist v0, c > 0 such that for all v ≥ v0 we have

∣∣∣∣F (v)− vλ+1

(λ+ 1)

∣∣∣∣ ≤ c|g(v)| v
λ+1

(λ+ 1)
.

Now, set h = |g(v)|
1
2 v. By monotonicity, for v ≥ v0 we get

F (v + h)− F (v)
h

=
1
h

∫ v+h

v
f(w)dw ≥ 1

h

∫ v+h

v
f(v)dw = f(v)

20



and consequently

f(v) ≤ F (v + h)− F (v)
h

≤ 1
h

(
(v + h)λ+1

λ+ 1
− vλ+1

λ+ 1

)
+

1
h

(
c|g(v + h)|(v + h)λ+1

(λ+ 1)
+ c|g(v)| v

λ+1

(λ+ 1)

)
≤ 1

h(λ+ 1)

(
vλ+1 + (λ+ 1)vλh+O(vλ−1h2)− vλ+1

)
+O

(
|g(v)|v

λ+1

h

)
= vλ +O

(
vλ−1h

)
+O

(
|g(v)|v

λ+1

h

)
= vλ +O

(
vλ−1|g(v)|

1
2 v
)

+O

(
|g(v)| vλ+1

|g(v)|
1
2 v

)
= vλ +O

(
vλ|g(v)|

1
2

)
.

Similarly we obtain a corresponding lower bound. �
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