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Abstract

Some classes of controlled branching processes (with nonhomogeneous migration or with nonho-
mogeneous state-dependent immigration) lead in the critical case to a recurrence for the extinction
probabilities. Under some additional conditions it was shown that this recurrence depends from
some parameter 8 and converges for 0 < 8 < 1. Now we show that the recurrence does converge
for all positive values of the parameter 8 which leads to an extension of some limit theorems for
the corresponding branching processes. We give also a generalization of the recurrence and an
asymptotic analysis of its behaviour.

1 Introduction

Branching processes can be interpreted as mathematical models of population dynamics where the
reproduction of the individuals follows some stochastic laws.

It is well known that the history of branching processes begins with the pioneer papers of Bienaymé
[3] and Galton and Watson [7] analysing some demographic problems. However the terminology
“branching processes” was introduced by A.N.Kolmogorov and among the first asymptotic results of
the modern mathematical basis were obtained by him and his students, see Kolmogorov [13], [14],
Kolmogorov and Dmitriev [15], Kolmogorov and Sevastyanov [16], Yaglom [22], Sevastyanov [19],
Zolotorev [28]. More details of the further development can be obtained from the books of Harris [11],
Sevastyanov [20], Athreya and Ney [2], Jagers [12], Asmussen and Hering [1] and Guttorp [10].

Remember that the classical Bienaymé-Galton-Watson branching process can be defined by the
following recurrence:

Zn,
Zn-l—l:ZXn(j)a n:071a27"'7 (1)
7j=1

where {X,,(j)} are (in both n and j) i.i.d. non-negative integer-valued random variables.

The BGW process can be used to describe the growth of an isolated population with an independent
reproduction of the individuals. However, in real situations there is always an interaction with the
environment and/or between the individuals, which means that, in general, the evolutions of the
individuals are not independent.

Controlled branching processes represent one direction in describing this more complicated situa-
tion.
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Devastyanov and 4Aubkov [21] 1ntroduced tne iollowing generalization or {1):

o(Zn)
n+1_ ZX a’n’:OalaZa"'a (2)

where ¢(k) is a deterministic and non-negative integer-valued control function. They obtained condi-
tions for extinction or non-extinction in the case ¢(n) ~ an,n — oo, a > 0.
Yanev [25] considered a generalization of (2) in the case of random control functions (RCF):

Wn(Zn)
Zn+1: Z Xﬂ(])’ n:0’172""7 (3)
j=1
where ¢, = {pn(k),k = 0,1,2,...},n > 0, are independent non-negative integer-valued random

processes with identical one-dimensional distributions. Conditions of extinction or non-extinction
where obtained by Yanev [25] [26] and Bruss [5] assuming a.s. linear growth of the RCF. Yanev [26]
assumed also a random environment. Gonzales, Molina and Del Puerto [8] [9] investigated the model
(3) when the means of the RCF have a linear growth.

The controlled branching processes with multi-type RCF can be defined as follows:

W’L’H,Zn
Zni1=)_, Y. Xia(j),n=01,2,..., (4)
i€l j=1

where I is an index set (finite or infinite) and the set X = {Xj ,(j)} consists of i.i.d. for each fixed i
random variables with p.g.f. F;(s) = E(in’"(j)),i € I. On the other hand, the set X is independent of
the set of the RCF ¢ = {¢; »(k)}, where ¢, = {@;in(k),i € I,k =0,1,2,...} are independent random
fields with identical one-dimensional distributions.

Zubkov [29] investigated the case of deterministic control functions, i.e. ¢;,(k) = ¢;(k) a.s. For
more general controls, sufficient extinction criteria were obtained by Bruss [4]. G.Yanev and N.Yanev
[23] [24] obtained conditions for extinction or non-extinction in the general model (4). In the last
paper it is assumed also a random environment.

Note that the general model (4) describes a very large class of stochastic processes, in particular
all Markov chains and the most popular considered models of branching processes in discrete time:
BGW process, processes with immigration, branching processes with random migration components,
population-size-dependent branching processes, branching processes in random environment and so
on. However, in all these models it is always fulfilled the condition ), ; ¢in(k) = 00,a.5.,n — 00,
which can be considered as a general branching property.

Of course, in the general situation (4) it is not possible to obtain detailed asymptotic results.
That is why it is very interesting to consider every particular case where such asymptotic analysis is
possible. On the other hand, it is also very important for applications.

Yanev and Mitov [27] considered the following model allowing nonhomogeneous migration: in the
general definition (4) it is assumed that I = {1,2} and

©1,n(k) = max{min(k, k + Y,), 0}, p2,»n (k) = max{Y,,0}, (5)
where the independent r.v. Y,, have the following distributions
PY,=-1)=p,PYp,=0)=qn, P(Y,=1)=rp, pn+gn+rn=1,n=0,1,2,... (6)

Then by (4)-(6) it follows that {Z,,} is a nonhomogeneous Markov chain which can be represented
as follows:

Zni1 = ZXM ) + My, n=0,1,2,. (7)



where

M, = —-X1,(1)I{Z, =0} with probability p,,
0 with probability g,
= Xy,(1) with probability 7.

One can assume without loss of generality that Zy = 0 a.s.

The process (7) allows for the following interpretation. In the (n+1)th generation (n =0,1,2,...)
the next three situations are possible: (i) with probability p,, one family is eliminated and does not
take part in a further evolution (emigration); (4) with probability g,, there is no migration (like in
a BGW process); (i74) with probability r,, there is an immigration of new individuals according to a
p.gf. G(s) = E(sX2n(1),

Let F(s) = E(sX1»()) be the offspring p.g.f. and H,(s) = E(s%") be the p.g.f. of the process
(7). Then by (7) one can obtain the equation (see Yanev and Mitov [27]):

n
Hn-l—l(s) = Un(na 3) + ankanfk(O)[l - l/Fk—H(S)]kal(’n’a 8), (8)
k=0
where Uy_1(n,s) = Hi‘c:o An_i(Fi(s)), An(s) = pn/F(s) + gn + rnG(s) and Fj(s) is the ith iterate of
F(s), i.e. Fy(s) = s, Fiz1(s) = F(Fi(s)),1=0,1,2, ....
Further on the critical case F'(1) = 1,0 < F"(1) = 2a < oc, with a balanced migration component
rnG'(1) = p,, ~ K logn is considered. In this case it follows by (8):

n

Hp1(0) =1 =) (1 = Fi(0)pa—rHn1(0) + O(1/ logn), 9)
k=0

where 1 — F,(0) ~ 1/(an), n — oo. This corresponds to the famous asymptotic result of Kolmogorov
[13] for the probability of non-extinction in a BGW process.

When f = K/a < 1 then it was shown in Yanev and Mitov [27] that lim H,(0) = 1/(1 + j),
respectively lim R,, = /(1 + ), where R, =1 — H,(0) is the probability of non-extinction.

The case § > 1 remained open for a very long period.

In this paper, we will first consider recurrences of the above type:
Main recurrence equation

Ap+1 = T, — Z akPan—ka (n > O)a (10)
k=0

where P,, @, and T,, are given sequences. We establish general properties of the solutions a,, in Section
2. It will turn out that, under quite natural monotonicity conditions, all solutions of (10) are bounded
and that there are solutions with 0 < a,, < 1.

Finally, in Section 3 we discuss the case P, ~ §/logn, @, ~ 1/n and T,, — 1 (that is, the original
problem from Yanev and Mitov [27]) in more details and we show that a,, is convergent for any choice
of 8> 0 . This result allows us to generalize Theorem 1 of Yanev and Mitov [27]. Let § = K/a.

Theorem 1.1 Let F'(1) = 1,0 < F"(1) = 2a < 00 and r,G'(1) = p, ~ K/logn, n — oo, K > 0.
Then for all B we have:

lim R, = /(1 + B), B(Z,) ~ Ban/logn, B(Z;) ~ Ba’n’/logn

and
limP (log Z,/logn < z|Z, >0)=z,0<z < 1.



branching processes with decreasing state-dependent 1mmigratlon represent another example where
the same analytical problem appears.

Let us assume in (4) that I = {1,2}, p1,(k) = k and @o (k) = 0k,0, where as usual d;o = 0 for
k > 1 and 60’0 = 1. Then

Zn
Zni1 =Y Xin(j) + Xon(DI{Zy, =0}, n=0,1,2,..., (11)
j=1

where F(s) = E(s*X»()) and G,(s) = E(s*>»(1)) are the offspring p.g.f. and the p.g.f. of the
immigrants in state zero, respectively.

The critical case F'(1) = 1,0 < F"(1) = 2a < oo with m,, = G},(1) ~ K/logn is considered in
Mitov and Yanev [18] and an equation similar to (9) is obtained. It is also proved that lim R, =
B/(1+B) for B = K/a < 1 and it is pointed out that the case 8 > 1 is an open problem (see Remark,
p.30).

Therefore this problem is now solved and we are able to prove a similar limit theorem as Theorem
1.1, which generalizes the corresponding Theorem 1 from Mitov and Yanev [18].

Finally, the continuous time analogy of the process (1) is considered by Mitov, Vatutin and Yanev
[17], where it is also pointed out that the case 8 > 1 is "still an open problem” (Remark, p.707).

Section 4 concludes the paper.

2 Boundedness and Convergence

2.1 Convergence by “Contraction”

If one want to obtain convergent solutions a, of (10). then one way to attack this problem is to first
assume that the sequences 7;, and

Cn = Z PyQn (12)
k=0

are convergent, say 1" = lim,,_,o, T}, and C = lim,,_,o, C},. Then the ezxpected limit o of the sequence
ap is
T
Our first result considers the case C' < 1 that is also related to the case covered in [27]. The
constant C' < 1 serves (more or less) as a contraction factor that forces the sequence being convergent.

Theorem 2.1 Suppose that P,,Qn,T, are non-negative sequences such that T, is convergent with
limit T, @, converges to 0, and C,, convergent to C < 1. Then every sequence a,, that satisfies (10)
is convergent with limit

lim ap =
nooe ™ T O 1

Proof. First of all, it is easy to show that the sequence a, is bounded. Set T = sup,,>o In and
C= supp,>q Cp. First, suppose that C < 1. Then it follows by induction that

lan| < C'ag| + (C" "+ +C+ )T

and, thus, a, is bounded. (If C > 1 we just have to shift the argument to n > ng, where ng is chosen
in a way that sup,,~,, Cn < 1.)

Furthermore, since C,, is bounded and C,, > P,_; Qs ( where Qg # 0) it follows that P, is
bounded, too.

Next set b, = a,, — ~.—. Then b, satisfies the recurrence
C+1
n—~k
bor1=— > bk PrQuk + Tn,
k=0



where

~ T

We again suppose that C = sup,,>o Cn < 1 (otherwise we have to shift the argument as above). We
further set B = sup,,> |by| and P = sup,> |P,|. Since Qn — 0 there exists an increasing integer
sequence ny, (with ng = 0) and a sequence 7 > 0 that is monotonely decreasing to 0 such that

Qn+Qn—1+"'+Qn—nkSnk

for all n > ng4q. Set

By := max |by|
N <n<ng4q

and ~
Tk = BPnp+ sup [T,

n>Ng41

By construction we have 7, — 0. Finally choose By > Byina way that CBy + 19 < By and set
Bk+1 = 63]‘; + Tk

for k£ > 0. Then it follows by induction that Bk-{—l < By, and that

k—
Bk:6k30 Z Tg—>0
=0

as k — oo, that is, By converges monotonely to 0.

In a final step we show by induction that By < By, for all k > 0. Of course this shows that b, — 0
and consequently a, — T/(C + 1).

By definition we have By < By. Now suppose that By < By, for some k > 0. Then, for n = ng41
we have

Npg1—1
by, | < Z\bk|Pank+1 kD Bk PeQnk + [Tna]
k=0 k=ng+1
< BPun+ OBy + [Ty
< CBy+m
< Bpn

Note that we also have |by,, | < By,. In the same way we get (inductively) for ng11 < n < ngyq
|bn| < CBg + 7 = Brpa

and, thus,

Bk+1 = max |bn| S Bk+1.
N1 <N<Ngy2

This completes the proof of Theorem 2.1. [ |

Remark 2.2 Note that with help of the same proof-techniques it follows that a, is bounded if

limsupT, < oo and limsupC, <1
n—oQ n—oQ
and that a, — 0 if
lim 7, =0 and limsupC, <1

n—00 n—00



Z.24 Dounaedness vondailvions

We are now interested in conditions on the sequences P, Q),,, and T}, that imply that all solutions a,
of (1) are bounded even if C' > 1 so that we cannot use a contraction argument, compare with the
preceding Remark.

Theorem 2.3 Suppose that Q,, and C,, are monotone convergent sequences, that QoP, <1 forn > ng
(for some ng) and that

Z |Tn+1 — TTL| < 00.
n>0

Then every sequence a, that satisfies (10) is bounded.

Proof. Since C,, is bounded it follows as in the proof of Theorem 2.1 that P, and @, have to
bounded, too.
First, consider the case that @, is increasing (to a finite limit Q). Since C,, is convergent, it follows

that
ZP" < 00.
n>0

Now, by subtracting (10) for a,4+2 and a,4; it directly follows that a,, satisfies the recurrence
n
tny2 = ani1(1 = Pu1Qo) + Y arPe(Qn-r — Qu-kt1) + Tny1 — Tn,
k=0

too. Set A, = maxo<i<n |ax|. Then we have

n
lant2| < Apsi (1 — Pu1Qo — Y arPr(Qnk — Qn—k+1)) + |Tnt1 — Tl
k=0
= An+1 (1 + (Cn-l-l - Cn) - 2Pn-l—lQO) + |Tn-l-1 - Tn|
If Q),, is increasing we surely have
n
Cnt1—Cn =Y akPr(Qnii—k — Qn-r) + Prs1Qo >0,
k=0

(that is, it is not necessary to assume that C), is monotone in that case). Thus, the series

Z (Cn+1 - Cn — 2Pn+1Q0)

n>0
is absolutely convergent and from
An—|—2 S An+1 (1 + (Cn—|—1 - Cn) + 2Pn—|—1QO) + |Tn—|—1 - Tn‘

it follows that A, is a bounded sequence. Thus, a, is bounded, too.
If Q,, is decreasing we get (as above)

n

lante] < Apt1 (1 — Por1Qo+ Y arPe(Qn ik — an+1)> + | Tnt1 — Tl

k=0
= An+1(1 = (Cny1 — Cp)) + [Tng1 — Thnl-

Hence, if C), is increasing then we have

An+2 < An+1 + |Tn+1 - Tn|



1.6+

1.5+

1.4+

Figure 1: C,/p.

and if C,, is decreasing
An+2 S An—|—1 (1 + (Cn - Cn—|—1)) + |Tn—|—1 - Tn'-

In both cases, it follows that A, is bounded. [ |

Let us consider the example P, = 8/log(n) (for n > 2, Py = P, =0) and Q,, = 1/(n + 1). Then

" 1
Cn = ﬂ/;(n—k—i—l)logk
_ v 1
- ﬁ<”@+0(<logn)2>>
— B,

where 7y denotes Euler’s constant. Furthermore, after some algebra one obtains

c, = ﬂ{@[ln(nHﬂ +${j<n)} +O (@)

_ _ Y S
On =GOt = Bn(logn)”o(n(logn)3>>°

(for sufficiently large n, compare also with Figure 1). Thus, we can apply Theorem 2.3 and obtain
that every solution a,, is bounded.

Next we present a second condition for boundedness that does not rely on monotonicity or con-
vergence properties of C),. It also shows that there exist solutions with 0 < a,, < 1, that is, a,, may
be interpreted as probabilities.

Theorem 2.4 Suppose that P, and Q,, are non-negative and strictly monotonely decreasing sequences,
that T,, = 1, and that PsQo < 1. Then there exists a solution a, of (10) with 0 < a, <1 for all n > 0.
Furthermore, all solutions of (10) are bounded.



Frooi. Ihe 1dea oI the prooi 18 tO0 show that there exist two diierent solutions ap’, ap’ With
0< a%l), ag) < 1. Then any solution is given by

(1)
an = al) + S0 (o) o1y
@ _ 0
0 0

and is, thus, bounded, too.
We consider several cases. First, suppose that PiQg < 1 and consider the system of equations

agPoQo +a1 = 1,
agPoQ1 +a1PiQo+ay = 1.

Since PyQo < Po@1 and 1 > PiQo it follows that for every as with 0 < a2 < 1 — @Q1/Qo there is a
unique solution for ag and a; with 0 < ag,a; < 1. Next set recursively

n
ant1 =1— ZakPanfk (n>2).
k=0

We induction we show that we always have 0 < a,4; < 1. Note that PiQy < 1 also implies P,y <1

for all n > 1. Assume that 0 < ag,a1,...,a, <1 for some n > 2. Then
n n—1
0< ZakPan—k < ZakPan—l—k +ap, = 1.
k=0 k=0

and consequently 0 < ap41 < 1. Thus, we have 0 < a, <1 foralln > 0.

Now we use this construction for agl) =0 and for ag) =1-Q1/Qo > 0. Consequently we obtain

two different solutions a%l), ag) with 0 < ag),ag) < 1 and the result follows.

Second, suppose that P,Qy > 1 and P,Qy < 1. Here we consider the system of equations

agPoQo +a1 = 1,
agPy@Q1 +a1PiQo+az = 1, (13)
agPoQ2 + a1PiQ1 + a2 PoQo+a3 = 1.

After eliminating ag we get

P1Qo — % 1
1-& Q1
Qo Qo
PQ -2 PQ 1
Qo 20 _
g e gt =1 (15)
Qo Qo Qo

al ::1, (14)

ai

Note that the coefficients of a; satisfy

PQ -G PO -G

> 0.
_ @ _ Q2
1= 13
I 1 0
»Qo
1_@2 — (16)
Qo Qo

then for arbitrary ai,as > 0 that satisfy (14) we obtain

PQ -2 P, PQy— & 1
<ap €0 4 4y 2Co <ap LRI =1
1_ @ 1_ Q2 1_ & 1_ &
Qo Qo Qo Qo



and consequently (irom (1o))

Q2
0<a3<1—- ==,
== Qo
Note that aj,as > 0 that satisfy (14) are bounded by
1_ @
algi@bgl and ap<1-2L<i
P1Q0 — Q—l QO
0
Next set
1-— a
ay= ————.
1-PRyQo

Thus, we have found solutions 0 < ag,a1,as < 1 of the system (13). Since P,,Qo < 1 for all n > 2
we can proceed as above and obtain 0 < a, < 1 for all n > 0. Since a1,as > 0 can be chosen in an
aribtrary way we again get two different solutions.

Next, consider the case, where (16) is not satisfied, that is,

1 PQo
—@ S

Qo Qo

Then for every a3z with
P1Q1—Q2/Qo

1—
0<as< [1- o d (1 - @>
1-Q1/Qo
there (uniquely) exist a1,a9 > 0 that satisfy (14) and (15). Setting ap = (1 —a1)/(1 — PyQo) we get
a solution of (13) with 0 < ag,a1,a2 < 1 and proceed as in the previous case.
Finally, let us consider the case P,Qo > 1 and P3Qo < 1. Here we consider again the system (14),
(15) and oberve that

PiQo — % PiQ - %

R > — >0
Qo Qo
and
1 S P>Qo
@1 7@
1 Qo Qo
Thus, we can proceed as the case where PiQy > 1, P,Qo < 1, and (16) are satisfied. This completes
the proof of Theorem 2.4. |

It is not clear whether the above arguments (recursive elimination etc.) can be extended to all
cases where P, and @), are monotonely decreasing. The condition P3Qy < 1 seems to be artificial.
We leave this as an open problem.

2.3 Convergence Conditions

If C =1limC,, > 1 then one would not expect convergence. However, there is a simple trick to reduce
the original problem to the contraction case that has been considered in Theorem 2.1.

Theorem 2.5 Suppose that P, Q,, T, are non-negative sequences such that P, and @, converges to
0, T, is convergent (with limit T ), and C,, convergent to C > 1. Let Qg}c be recursively defined by

Q\) = Qu and

QY =" PriQe QU (r>1).
=k

9



QUppose that there exisSisS 7 2~ 4 ana positive real NUmMOeErs C1,C2y-..,Cp WILN C1 T C2 + - 1T Cp = 1 SUCN
that

n—r+1 r ' )
lim sup Z Py Z(—l)JCjQS}: <1

then every sequence a,, that satisfies (10) is convergent with limit

li S
00 = T T

Proof. Set b, = a, —T/(C + 1). Then it follows by induction that for every r > 0 the sequence by,
satisfies the recurrence

n—r+1

bpi1 = Z b, P Q" k+b0POZ 1)7QY) + T

for some sequence ﬂg ") that tends to 0. Furthermore Q — 0 as n — oo. Thus, it follows that b,

satisfies the recurrence
n—r+1

n+1 Z kak Z l)JC]QSZ}g + 0(1)1

too. Hence, we are in a similar situation as in Theorem 2.1, and it follows by completely the same
arguments that b, — 0. |

In Section 3 we will use this method for proving convergence for the case P, ~ (/logn and
n~ 1/n for any g > 1.

3 The Original Case

3.1 Convergence

In this section we will discuss the solution a,, of (10), where P, ~ 3/logn and @, ~ 1/n in more
detail.

Theorem 3.1 Let 5 > 0 be given and suppose that the sequences P,,Qn,T, are non-negative with
P, ~ B/logn, Qn ~ 1/n, and T, ~ 1 as n — oo. Then every solution ay of (10) converges to the
limit

A = T
If P, =p3/logn (forn >2), @, =1/(n+ 1), and T,, = 1 we can be even more precise.

Theorem 3.2 Let 8 > 0. Then every solution of the recurrence

n
ag
=1- >2 18
fnt1 ﬂkz_;(n—k—kl)logk (n>2) (18)
is convergent with limit
) 1
Furthermore there exists an asymptotic series expansion of the form
=J
an 1+ﬂ—|—ch log n) (20)

10



jO'I" certain reat numoers Cj (’LU”L’LC’L are ’maependent O] tne mitiat value (]/2}. im pamcular
1 By _1B[=68y* + 7 +pr?] | ( 1 )
1+8 (1+pB)%log(n) 6 (1+p)3log*(n) log®(n)

We start with some easy properties.

Ganp,

Lemma 3.3 Suppose that P, ~ 3/logn and Q, ~ 1/n asn — oo. Then for every r > 1 the sequence

Qgi satisfies
") . (og(n—k)"
@nj~7h (n—Fk+1)(logn)r—1
uniformly for n/2 <k <mn —r. Furthermore we have
° (i)
logn

> P
S RQY, =80 +o(L).

0<k<n/2
n—nP<k<n—r+1

and uniformly fore < p<1l-—¢

as n — 0o, where € > 0.

Proof. The proof is easy. We leave the detail to the reader. |

Lemma 3.4 Suppose that
T(iL') = dl.’L' - dQ.’EQ + d3,’L‘3 Fo-- + (_l)Tfldr:L_r

is a polynomial with (absolute) coefficients d;j > 0 and set
d;

cj = i = 4
j prm— _ | .
B+ B+ + & 53,T(_%)
Then we have
R G i 0| o T (@) da
Jim Y P Y (D eQuy = ﬁ
k=0 7j=1 B
Proof. The proof follows immediately from Lemma 3.3. |

The final step of the proof of Theorem 3.1 is to find proper polynomials T'(z) with small integral
LT (%) dz and large |T(—1/8)|. One possibility is to use Legendre polynomials
0
]_ dm 2 m
= 2! dgm (=" - 1)".
that have all zeros in the interval [—1,1]. They satisfy

1 2
/ Pa@= 5t (21)

P, (z)

and their generating function is given by

E Py (x)t™ = !
.
/ 2
r 1-2zt41¢

With help of these properties we can easily prove the following estimates.

(22)

11



Lemma 9.0 Let L\T) ve aefinea oy L\U) = U ana L°\T) = I, 4T — 1), Where ypy\r) 15 e m-in
Legendre polynomial. Then we have

1
1
T (z)|dr < ——x 23
| @i < o—— (23)
and for every (fized) n > 0
1+m)t* 1
T(—n)| ~ \F(Q(mg/zn) (1= 2/n(l47) +2n) ™ (24)
as m — oo.
Proof. The first relation (23) follows from (21) and Cauchy’s inequality.
For the proof of the second relation (24) we use the formula
* (1—2?) Py ()
Po(t)dt = —-———2-m =)
/_1 m(?) m(m + 1)
and obtain )
T(z) = 221 —z)P, (22 — 1)
m(m + 1)
From (22) it follows that the generating function of P! (—2n — 1) is given by
t
P (—2np—1)t
Z K T 1+ 2020+ Dt + )32
If » > 0 then the dominating singularity is given by
to=1-2y/n(1+n)+2n<1
and the dominant behaviour around the singularity is of the form
1 ¢ 3/2
v 1- = .
8ty (n(1 +n))3/4 to
Hence we obtain
vmm _
Ph(=20—1) ~ — ;"
4ty (n(1 + )3/
and consequently (24). [ |

The proof of Theorem 3.1 is now immediate. By Lemma 3.5 for every 8 > 1 there exists m such
that with T'(z) = P,,(2z — 1) we have

1
fo T (z)| dx
1

7(-3)]
(Note that 1 —24/n(1 4+ n)+2n < 1 for all n > 0.) Hence, by combining Lemma 3.4 and Theorem 2.5
it follows that a,, is convergent.

The proof of Theorem 3.2 runs along the same lines. The only difference is that we can be a little

bit more precise concering the error terms that are all of order O(1/logn). Thus it also follows that
b, = O(1/logn) and consequently a, = T/(1 + C) + O(1/logn). Finally, we can use this estimate

and a simple bootstrapping procedure (via the basic recurrence (18)) to derive the asymptotic series
expansion (20).

12



J.«4 11N€ rnomogeneous sSoiution
In the proof of Theorem 2.4 we have used the property that every solution a, is given by

(1)

a2 — Gy 2 1
W( a?) —al)) (n>2),
2

ap = asll) +

(1) (2

where ay,’, ar,’ are two different solutions. We can also say that

a9 — agp) (h)

o

an = al?) +

(») (h)

where ay, the homogeneous solution of (10), that is, the solution for

T, = 0:

is a particular solution and ay,

o
a” =1, o, :_52 7t Diogk (n > 2). (25)

(»)

By Theorem 2.4 we can expect that there always exists a particular solution a,’ with 0 < a(p ) <1
Thus, the shape of the homogeneous solution asl ) describes the structure of all other solutions.

Since we know from Theorem 3.1 that every solution converges to the same limit it follows that
the homogeneous solution satisfies

lim a(h) =0.

n—00

Nevertheless it is of some interest to analyze this sequence for small n. It turns out that it is oscillating
and quite large for n < 2% (even for moderate 8 > 1) and gets small for n > 27,

In fact, after a few experiments, we find that we must analyse 3 regions: R1:n = O(1),
R2:n=0(2%), R3:n > O(2P).

3.2.1 Region 1: n = 0O(1)

As B > 1, (25) leads to an increasing, alternating sequence, shown in Figure 2. We have choosen
B =5. |a$bh)\ increases first exponentially. In fact, we have for every fixed n and 8 — oo

ﬂnf2 agh)

(h) (-1 ——=2
a,, Py -.
Hj:Zl log j

3.2.2 Region 2: n = 0(2%)

We observe the alternating behaviour shown in Figure 3 (again 8 = 5, as in all next figures).

So we set dg; = ag’;), G9iy1 = agl)ﬂ This leads to
. 2041
. —_— _— 2
@2 521 1—2£—|—1log2€) ﬁz (20 —1— (20 +1) +1)log(2£ + 1)’ (26)
; Gog i—1 G
~ 2 2041
R - 2
42i+1 ﬁ; (2i — 20 + 1) log(2¢) ﬂ; (20 — (2£41) +1)log(2¢ + 1)’ 1)

and az = 1. The behaviour, shown in Figure 4, is now very regular.
In what follows we will present some heuristics to analyze (26) and (27). We use the fact that

n—1)/2 1 1 ~ 1
= =1 — + —log(2 1
S greT = gE g+ glos 00/,

13
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1000+

- 1000+

-2000+

Figure 2: atl (B =5).

400000 +

200000

-200000 +

-400000 +

(h)

Figure 3: ay, .
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400000 +

300000 +

200000 +

100000 1

Figure 4: a,, .

nf 2 L) = Log@) + 2 + 0(1/n)
T 29 2 2 2 ’

1 1 o log(1 —i/n) | N _ i*[log(n) + 2] 0( i3 )
log(n) log(n — 1) log(n)[log(n) +log(1 —i/n)]  nlog?(n) n2log?(n) n3log?(n)
So we try to approximate (26) or (27) by the following first order ordinary differential equation (ODE)

Bgis) = [101; ol 1] (s), (28)
with Dy = 8 In(2) and a(3) = as. The solution of (28) is given by
a(s) = agexp[—(s — 3) + D1[E;(log(s)) — Ei(log(3))]], (29)

and displayed in Figure 5.

The behaviour is surprisingly similar to Figure 4, taking all our approximations into account and
the sensitivity to @3. The maximum of (29) occurs at s = 2% (same value as for a.). A comparison is
given in Figure 6.

We have observed that the two functions are more and more similar as 3 increases.

A better approximation can be derived as follows, using (27) and Euler-McLaurin’s formula.

Set f(i) := [lfg(ﬁ:)z) - 1gg(8)]' We obtain, for even s,

5—2 5—3 &(8) §—2 1 5—3 1
a(s+1) ~ B Y. fO) - >, f)|+8 > i X

log(s
i=2, by 2 i=1, by 2 8(s) i=0, by 2 i=1, by 2

2
~ {5l - s+ 56— D - fs-9 - 5 [ o

2
1 (572 N, B ! ! ! !
by [ s 2= - -9 - 1)+ 1)
b Dm0 - -9 - )+ )
+ ﬂlgg(z) [log(2)+2.1—8+$
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Figure 5: a(s).
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100000 +

20
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60

80

00

Figure 6: a(s) (first order ODE) and ajy)-
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400000 +

300000 +

200000 +

100000 +

80

Figure 7: a(s) (2"¢ order ODE) and ajs)-

We now replace, in the LHS, a(s + 1) by a(s) + a'(s) + @"(s)/2 and, in the RHS, a(s — %) by
a(s) — ia'(s) +i%2/2a"(s) in the neighbourhood of s. This leads to a 2"¢ order ODE, which is easily
(numerically) solved by MAPLE. Figure 7 displays a(s) and a. The fit is now quite good.

3.2.3 Region 3: n > 27
(h)

Here we observe that a; ’ gets small and tends to 0 (as predicted). This is shown in Figure 8.

3.2.4 Remark

Unfortunately these approximations for the homogeneous solution are not rigorous. However, they
indicate that these kind of recurrences are quite interesting if one is interested for approximations that
hold for all n. We have to split the the positive integers into several parts and approximate a%h) by
different methods. Of course this kind of approach is not new, for example compare with [6].

4 Conclusion

The investigation of some probabilistic structures (concerning branching stochastic processes) leads
to a new analytical recurrence. This phenomenon was considered in a more general situation. Using
tools from analysis, we have proved the convergence of the recurrence for all positive values of the
parameter S and the asymptotic analysis of its behaviour have been done. This results have allowed
us to generalize some theorems for branching processes. Finally, some heuristic approximations, based
on differential equations, have also been provided.
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