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Abstract

We consider a sequence of stochastic processes Xn on C[0, 1] converging weakly to X and call it
polynomially convergent, if EF (Xn)→ EF (X) for continuous functionals F of polynomial growth. We
present a sufficient moment conditions on Xn for polynomial convergence and provide several examples,
e.g. discrete excursions and depth first path associated to Galton-Watson trees. This concept leads to a
new approach to moments of functionals of rooted trees such as height and path length.
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1 Introduction

Let Xn and X denote stochastic processes on C[0, 1]. Then weak convergence of Xn to X means that
for every continuous and bounded functional F : C[0, 1]→ R, we have

EF (Xn)→ EF (X) (n→∞).

The topology on C[0, 1] is induced by the norm ‖.‖∞. The purpose of this paper is to show that, under
natural moments assumptions, this property can be extended to a wider class of functionals which need not
to be bounded anymore.

For this purpose we introduce a notion of reinforced weak convergence.

Definition Let Xn and X denote continuous stochastic processes on C[0, 1]. We say that Xn converges
polynomially to X if

EF (Xn)→ EF (X) (n→∞) (1)

for all continuous functionals F : C[0, 1]→ R satisfying

|F (f)| ≤ C (1 + ‖f‖∞)k (2)

for some constants C, k > 0.

Remark 1 Examples for functionals F satisfying (2) are maximum and integrals. Hence, if Xn is polyno-
mially convergent to X we have, for any r > 0 and for any Borel set I ⊂ [0, 1]

E max
t∈I
|Xn(t)|r → E max

t∈I
|X(t)|r

and

E
∫
I

Xn(t)rdt→ E
∫
I

X(t)rdt.
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Remark 2 Note that polynomial convergence is equivalent to

sup
n

E
(
‖Xn‖k∞

)
<∞ (for all k > 0) (3)

if Xn converges weakly to X. This follows almost directly from Billingsley (1995, p. 338) (see also Lemma 1
and Lemma 2).

We first state a necessary condition for polynomial convergence.

Theorem 1 Suppose that Xn and X are stochastic processes on C[0, 1] such that Xn converges weakly to
X. Further assume that the following two conditions are satisfied

1. There exists t0 ∈ [0, 1] such that for all integers k ≥ 0

sup
n

E |Xn(t0)|k <∞. (4)

2. There exists a sequence (αd)d≥1 of positive real numbers with αd > 1 for infinitely many d such that
for all integers d > 0

E |Xn(t)−Xn(s)|d ≤ Cd|t− s|αd for all s, t ∈ [0, 1] (5)

for some constant Cd > 0.

Then Xn converges polynomially to X.

Remark 3 Note that (4) and (5) imply tightness of Xn by applying Kolmogorov’s criterion (see Revuz and
Yor, 1999, p. 516). Furthermore, we will show in Section 2 that (4) and (5) imply supn E |Xn(t0)|k < ∞
for all fixed t0 ∈ [0, 1] and integers k ≥ 0. Consequently it follows from Cauchy-Schwarz’s inequality and
Lemma 1 that

E
(
X(t1)k1X(t2)k2 · · ·X(tm)km

)
exists and

E
(
Xn(t1)k1Xn(t2)k2 · · ·Xn(tm)km

)
→ E

(
X(t1)k1X(t2)k2 · · ·X(tm)km

)
(n→∞)

for all m ≥ 1, 0 ≤ t1 < t2 < · · · < tm ≤ 1 and integers kj ≥ 0, j = 1, 2, . . . ,m. This property may be
interpreted as a moment version of finite dimensional convergence.

Thus, the conditions of Theorem 1 are (more or less) strengthened versions of tightness and finite dimen-
sional convergence – two properties which are equivalent to weak convergence.

The paper is organized as follows: The proof of Theorem 1 is presented in Section 2. In Section 3 we show
that polynomial convergence may be interpreted as a property lying between weak and strong convergence.
Finally Section 4 is devoted to applications of Theorem 1 concerning trees and excursions. For example it
is shown that discrete excursions (related to random walks) converge polynomially to Brownian excursion
(Theorem 4).

2 Proof of Theorem 1

In the Introduction we have already mentioned that it is sufficient to prove (3). In order to be more
precise we first state a result of Billingsley (1995, p. 338) which will be used then to prove this property.

Lemma 1 Suppose that the sequence of random variables Yn converges weakly to Y and that supn E |Yn|r+ε <
∞ for some positive integer r and some ε > 0. Then E |Y |r <∞ and EY rn → EY r (as n→∞).
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Lemma 2 Suppose that Xn converges weakly to X and (3) is satisfied. Then Xn converges polynomially to
X.

Proof. Without loss of generality we may assume that F (f) ≤ C(1 + ‖f‖∞)k for some positive integer
k. Then for ε = 1/k we have

|F (Xn)|1+ε ≤ C1+1/k (1 + ‖Xn‖)k+1
.

and consequently

sup
n

E
(
|F (Xn)|1+ε

)
<∞.

Thus, we can apply Lemma 1 with Yn = F (Xn) and (1) follows. �
In order to verify (3) we will mainly make use of the following property.

Lemma 3 Suppose that X and Xn are stochastic processes satisfying the assumptions of Theorem 1. Then
for every integer d ≥ 0 for which αd > 1 there exists a constant K > 0 such that for ε > 0, 0 < δ < 1, and
n ≥ 0

Pr

{
sup
|s−t|≤δ

|Xn(s)−Xn(t)| ≥ ε

}
≤ Kδαd−1

εd
(6)

and consequently for every fixed k ≤ d− 1 there is a constant K ′ such that for 0 < δ < 1 and n ≥ 0

E

(
sup
|s−t|≤δ

|Xn(s)−Xn(t)|k
)
≤ K ′δk

αd−1
d . (7)

Proof. First (6) follows from (5) by using the methods of Billingsley (1968, pp. 95).
Next set

Zn := sup
|s−t|≤δ

|Xn(s)−Xn(t)|

and Fn(y) = Pr{Zn ≥ y}. Hence, with A = δ
αd−1
d we obtain

EZkn = −
∫ ∞

0

ykdFn(y)

= k

∫ ∞
0

yk−1Fn(y) dy

= k

A∫
0

yk−1Fn(y) dy + k

∫ ∞
A

yk−1Fn(y) dy

≤ k

∫ A

0

yk−1 dy +Kkδαd−1

∫ ∞
A

yk−1−d dy

≤ Ak +K
k

d− k
Ak−dδαd−1

≤ K ′δk
αd−1
d .

�

It is now easy to prove (3). First of all it follows from

E |Xn(t)|k ≤ 2kE |Xn(t)−Xn(t0)|k + 2kE |Xn(t0)|k
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that

sup
n

E |Xn(t)|k <∞

for all fixed t ∈ [0, 1] and integers k > 0. (We will use this property for t = 1
2 .)

Next we apply (7) for δ = 1/2 and get

E
(

sup
0≤t≤1

|Xn(t)|k
)
≤ 2kE |Xn(1/2)|k

+ 2kE

(
sup

|s−t|≤1/2

|Xn(s)−Xn(t)|k
)

= O(1).

Thus, (3) is satisfied and Theorem 1 follows.

3 Weak convergence and “strong approximation”

It is always a natural question to prove a better convergence than only weak convergence when one
studies the convergence of stochastic processes to their limit. In this section we want to present a result on
“strong approximation” and show that polynomial convergence is implied by it.

Consider a sequence
(
Yn
)
n≥1

of i.i.d. random variables such that E (Y1) = 0 and 0 < Var(Y1) = σ2 < +∞.
We denote by Sn the partial sum Sn = Y1 + · · ·+ Yn and define the sequence of processes Xn by:

Xn(t) =
1

σ
√
n
Sbntc + (nt− bntc) 1

σ
√
n
Ybntc+1, for 0 ≤ t ≤ 1.

A very classical weak convergence theorem due to Donsker (1951) (see Billingsley, 1968, p. 68) says that
Xn converges weakly to Brownian motion of duration 1; this is shown by proving convergence of finite
dimensional distribution and providing a tightness property.

A stronger result is obtained by Komlós, Major and Tusnády (see Csörgő and Horváth, 1993, for a
collection of such results).

Theorem 2 (KMT) Suppose that E (euY1) < +∞ for u in a neighborhood of zero. Then we can define a
sequence of Brownian motions {Wn(t), 0 ≤ t ≤ 1} such that

Pr
(∥∥Xn −Wn

∥∥
∞ ≥

x+ c1 log n√
n

)
≤ c2e−c3x, for any x ≥ 0

where c1, c2, c3 are positive constants just depending of the distribution of Y1.

The proof uses coupling arguments, especially the variables Yn are built as functionals of the Brownian path
and are, thus, defined on the same probability space.

There exists a similar theorem for the “strong approximation” of the discrete Poisson bridge (random
walk with Poisson increments conditioned by the event {Sn = 0}) to the Brownian bridge (see Csörgő and
Horváth, 1993, for applications in the study of random Cayley trees and parking functions).

We now indicate that Theorem 2 implies polynomial convergence. Indeed, according to Lemma 2 it is
sufficient to prove

sup
n

E (‖Xn‖k∞) < +∞.

for all k > 0. For this purpose we use the relation

E
(
‖Xn‖k∞

)
≤ 2kE

(
‖Xn −Wn‖k∞

)
+ 2kE (‖Wn‖k∞).
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Since the maximum of the Brownian motion has for law the absolute value of a centered Gaussian r.v. with
variance 1, we just have to deal with the first term on the right hand side:

E (‖Xn −Wn‖k∞) =
∫
R+

Pr(‖Xn −Wn‖k∞ ≥ x) dx

≤ 1 +
∫ +∞

1

Pr(‖Xn −Wn‖k∞ ≥ x) dx

≤ 1 +
∫ +∞

0

c2e
−c3t k√

n

(
c1 log n+ t√

n

)k−1

dt

where we have used the change of variables x = ((c1 log n+ t)/
√
n)k. This is bounded uniformly on n.

Thus, polynomial convergence lies between the standard weak convergence and strong approximation (in
the sense of Theorem 2).

We also want to mention that there are variations of Theorem 2 (e.g. Theorem 1.11 of Csörgő and L.
Horváth, 1993) which can be used to prove polynomial convergence of Xn, too, even if we only know that all
moments of Y1 exist. In this case it is also possible to check polynomial convergence of Xn via Theorem 1.
(4) is trivial for t0 = 0 and (5) can be checked with help of a result of Fuk & Nagaev (1971).

4 Applications to Trees and Excursions

It is well known that a lot of processes associated to simple trees by traversal algorithms (depth first
search, breadth first search...) converges weakly to the Brownian excursion (or to Brownian excursion
local time) see for example Aldous (1991), Drmota and Gittenberger (submitted paper), and Marckert and
Mokkadem (paper in print) It was one motivation of this paper to show that the convergence of these
processes to Brownian excursion is not only weak, but polynomial.

Section 4 is organized as follows: in Subsection 4.1 we show that Theorem 1 applies to the contour of
simple trees (that is the process of the height of leaves). As corollaries of Subsection 4.1 we prove polynomial
convergence of two important classes of processes to Brownian excursion by applying concentration results
of Marckert and Mokkadem (paper in print): in Subsection 4.2 we show that discrete excursions (under
some usual conditions) converge polynomially to Brownian excursion, and in Subsection 4.3 we prove that
the depth first walk associated to simple trees enjoys the same property.

4.1 The Contour of Trees

In this section we show that Theorem 1 applies to the contour of trees related to (critical) Galton-Watson
branching processes (Zk)k≥0 conditioned on the size.

Let ξ be a non-negative integer valued random variable with E ξ = 1, 0 < Varξ = σ2 <∞, and suppose
that there is α > 0 such that E eαξ <∞. (Zk)k≥0 is now given by Z0 = 1, and for k ≥ 1,

Zk =
Zk−1∑
j=1

ξ
(k)
j ,

where the (ξ(k)
j )k,j are i.i.d. random variables distributed as ξ.

It is well known that Galton-Watson branching processes can be represented by ordered rooted trees
T .1 We will denote ν(T ) the probability that T occurs. The generating function y(x) =

∑
n≥1 ynx

n of the
numbers

yn =
∑
|T |=n

ν(T )

1For a critical branching process the probability that T is finite equals 1.
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satisfies the functional equation

y(x) = xϕ(y(x)),

where ϕ(t) = E tξ =
∑
ϕit

i with ϕi = Pr{ξ = i}. If Tn denotes the set of rooted trees T such that |T | = n
then

νn(T ) :=
ν(T )
yn

is a probability distribution on Tn which we will use in the sequel. Note that

yn =
d√
2πσ

n−3/2 +O(n−5/2) (n ≡ 1 mod d),

where d = gcd{i > 0 : ϕi > 0}.
Let T denote a finite tree of size n appearing in such a branching process. There is a natural left to

right order of the descendents and consequently a natural left to right numeration of the leaves L(T ) (in
consistence with the depth first traversal). It is well known that the expected number of leaves in trees of
size n is given by ∑

|T |=n

|L(T )|νn(T ) = ϕ0n+O(1)

and that there is a central limit law with variance of order n. Thus, |L(T )|/n is concentrated around ϕ0 for
trees T ∈ Tn.

We want to get some informations on the contour h(0)
n of these trees Tn as n tends to infinity (for the

reader’s convenience we use the notation of Marckert and Mokkadem, paper in print). For an integer j ≥ 1
let h(0)

n (j) denote the height of the j-th leaf (in the natural left to right order). In order to get a process of
continuous functions we use linear interpolation between these discrete values. We also set h(0)

n (0) = 0 and
h

(0)
n (k) = 0 if k is larger than the number of leaves. The normalized contour is then given by

ẽn(t) :=
1√
n
h(0)
n (ntϕ0) .

It has been shown by Gittenberger (1999) (see also Marckert and Mokkadem, paper in print, for probabilistic
approach) that

ẽn
weakly−−−−→
n

2
σ
e,

where {e(t), 0 ≤ t ≤ 1}, denotes the Brownian excursion of duration 1.
We want to show that this weak convergence property can be strengthened to polynomial convergence.

Theorem 3 (Polynomial convergence of the contour of trees) The sequence of processes ẽn converges
polynomially to 2

σ e.

For this purpose we apply Theorem 1, i.e. we have to prove (4) and (5). (4) is trivially satisfied since
Xn(0) = 0.

In order to show (5) we use the following estimate which is already contained in Gittenberger (1999),
compare also with Drmota and Gittenberger (submitted paper).

Lemma 4 There exist constants C,D > 0 such that for all s, t ∈ [0, 1] and ε > 0,

Pr{|ẽn(s)− ẽn(t)| ≥ ε} ≤ C

ε4|s− t|
exp

(
−D ε√

|s− t|

)
.
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Now (5) follows from the following property.

Lemma 5 Suppose that a sequence of processes Xn on C[0, 1] satisfies

Pr{|Xn(s)−Xn(t)| ≥ ε} ≤ C

εη1 |s− t|η2
exp

(
−D ε√

|s− t|

)
for all s, t ∈ [0, 1] (8)

for some positive constants C,D, η1, η2. Then for every integer d > 0 there exists a constant Cd > 0 such
that

E |Xn(t)−Xn(s)|2d ≤ Cd|t− s|d for all s, t ∈ [0, 1].

Proof. In order to simplify our notation we set

Zn := |Xn(s)−Xn(t)|

and Fn(y) = Pr{Zn > y}. Note that for every m > 0, e−x = O(x−m) for x ≥ 1. Thus, taking m = d+ 2η2

(8) gives

Fn(y) = O

(
1

yη1 |s− t|η2
exp

(
−D y√

|s− t|

))

= O
(

1
yη1 |s− t|η2

|s− t|η2+d/2

yd+2η2

)
= O

(
|s− t|d/2

yd+η1+2η2

)
for y ≥

√
|s− t|. Hence

EZdn = −
∫ ∞

0

yddFn(y)

= d

∫ ∞
0

yd−1Fn(y) dy

= d

√
|s−t|∫
0

yd−1Fn(y) dy + d

∫ ∞
√
|s−t|

yd−1Fn(y) dy

= d

√
|s−t|∫
0

yd−1 dy +O

(
d

∫ ∞
√
|s−t|

|s− t|d

y1+η1+2η2
dy

)
= O(|s− t|d/2)

and the lemma is proved. �

4.2 Polynomial convergence of discrete excursions to Brownian excursion

In this part, we show that under some natural conditions, discrete excursion converges polynomially to
Brownian excursion.

Let (Sn)n≥0 denote a random walk with i.i.d. increments (λi)i≥1 with law given by (ϕ̃i)i≥−1, that is:

Pr(λ1 = k) = ϕ̃k = ϕk+1,

and

S0 = 0, and Sk = Sk−1 + λk, for k ≥ 1.
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We will study the convergence of the process (Sk)k=0,...,n conditioned by the event {S0 = 0, S1 ≥
0, · · · , Sn−1 = 0, Sn = −1} to Brownian excursion. The convergence of the process Sn (suitably normalized)
to e is well known. But, as far as we know, there is no strong approximation theorem of Sn to e. (for example,
Komlós, Major and Tusnády type theorem) that gives the speed of convergence. The aim of this subsection
is to prove the following Theorem:

Theorem 4 (Polynomial convergence of discrete excursion) The sequence of processes

Xn(t) =
Sn(nt)√

n
(0 ≤ t ≤ 1)

converges polynomially to X = σe.

Note that λ1 is distributed as ξ1 − 1, where ξ1 is the offspring distribution defined in the beginning of
Subsection 4.1; hence, the only negative increment of Sn are −1 and Sn appears to be the Lukasiewiecz path
(called depth first queue process (DFQP) in ) associated to the family representation of τ conditioned by
|τ | = n.

In order to prove this Theorem, we will use the strong relation between Sn and h(0)
n given in Marckert and

Mokkadem (paper in print) and Theorem 3. First let us state a corollary of Theorems 3 and 4 of Marckert
and Mokkadem (paper in print):

Lemma 6 For any positive ν, there exists two constants γ > 0 and N > 0 such that

∀n ≥ N, Pr
(∥∥∥∥Sn(n·)− σ2

2
h(0)
n (nϕ0)

∥∥∥∥
∞
≥ n1/4+ν

)
≤ exp(−γnν). (9)

Proof of Theorem 4. Let e′n denote the process defined by

e′n(t) :=
1√
n
Snt, for t ∈ [0, 1]

and by linear interpolation between the integer values of nt. Then Lemma 6 says that for any positive ν,
there exists a γ > 0 such that, if n is sufficiently large,

Pr
(∥∥∥∥e′n − σ2

2
ẽn

∥∥∥∥
∞
≥ n−1/4+ν

)
≤ exp(−γnν). (10)

We already know that ẽn is polynomially convergent. In order to prove a corresponding property for e′n we
have to show that

sup
n

E
(
‖e′n‖k∞

)
<∞.

Since E ‖σ
2

2 ẽn‖
k
∞ is bounded over n and

E
(
‖e′n‖k∞

)
≤ 2kE

(∥∥∥e′n − σ2

2
ẽn

∥∥∥k
∞

)
+ 2kE

(∥∥∥σ2

2
ẽn

∥∥∥k
∞

)
it is (surely) sufficient to show that

E
(∥∥∥σ2

2
ẽn − e′n

∥∥∥k
∞

)
→ 0

for all k > 0. By construction, we have ẽn ≤
√
n and e′n ≤

√
n (this comes from the constraints that the

height of a leave in a tree is smaller that the size of the tree, and that Sn is also smaller than n since Sn = −1
and that the only negative increments are −1). Thus, one gets

E

(∥∥∥∥σ2

2
ẽn − e′n

∥∥∥∥k
∞

)
≤ Pr

(∥∥∥∥σ2

2
ẽn − e′n

∥∥∥∥k
∞
≥ nk(−1/4+ν)

)
(
σ2

2
+ 1)nk/2 + nk(−1/4+ν)

Taking 0 < ν < 1/4, (10) shows that this last quantity goes to 0 when n goes to +∞. �
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Remark 4 Polynomial convergence of the Lukasiewiecz path to Brownian excursion in the case of Poisson
discrete excursion is used in Spencer (1997) to identify the Wright constants.

4.3 Convergence of the depth first walk associated to simple trees

We define Vn the depth first walk (DFW) associated to τ (under the same settings that in the preceding
subsection, and with linear interpolation between the integer values): Vn is a 2n − 2 length walk that can
be considered as a walk around the tree (see Aldous, 1991, or Marckert and Mokkadem, paper in print, and
Figure 1).

7

1

2 3

4 5 8

6

010 14 1
8

Figure 1 : A tree and its associated DFW, DFQP.

According to Marckert and Mokkadem (paper in print, Theorem 2), we know that for any positive ν and
sufficiently large n

Pr
(∥∥∥ẽn − Vn((2n− 2).)√

n

∥∥∥
∞
≥ n−1/4+ν

)
≤ exp(−γnν). (11)

Following the same arguments that in the previous subsection, we obtain:

Theorem 5 (Polynomial convergence of the depth first walk) The sequence of processes

Xn(t) =
Vn((2n− 2)t)√

n
(0 ≤ t ≤ 1)

converges polynomially to X = 2
σ e.

This theorem allows to derive convergence of moments for some functionals of simple trees:
Let H(τ) denote the height of τ (that is the maximum distance between a node and the root) and PL(τ)

the path length of τ (that is the sum of the distance of each node to the root). Then it is well known that

H(τ)√
n

= max
0≤t≤1

Vn((2n− 2)t)√
n

and

PL(τ)
n3/2

=
1
2

(
n−1/2 +

(
2− 2

n

)∫ 1

0

Vn((2n− 2)t)√
n

dt

)
Since F = max and F =

∫ 1

0
. dt satisfy (2) it follows that

E

((
Hn√
n

)k)
→ E

(
max
t
ek(t)

)
(12)

and

E

((
PLn
n3/2

)k)
→ E

(∫ 1

0

2
σ
e(t)dt

)k
(13)

for any k > 0.
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Remark 5 The limit moments of the height of size n simply generated trees were computed by Flajolet and
Odlyzko (1982) (with some error terms, see also De Bruijn, Knuth and Rice, 1972). They already observed
that the limiting moments coincide with those of the maximum of the Brownian excursion (after renor-
malization). Thus, as a by-product, they have proved that the height of simply trees, suitably normalized,
converges weakly to the maximum of the Brownian excursion.

Aldous (1991), using probabilistic methods, proves that the depth first path associated to size n simple
trees, (suitably normalized) converges to the Brownian excursion. Hence, as a corollary he also obtains that
the height of simple trees converges weakly to the maximum of the Brownian excursion. The work of Aldous
gives a nice explanation of the convergence of the height of simple trees to the maximum of the Brownian
excursion, but the obtained convergence is just weak convergence: one cannot deduce from Aldous’ results
the moments convergence of Flajolet and Odlyzko (1982).
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