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Abstract

In 1960 Rényi in his Michigan State University lectures asked for the number of random
queries necessary to recover a hidden bijective labeling of n distinct objects. In each query
one selects a random subset of labels and asks, which objects have these labels? We consider
here an asymmetric version of the problem in which in every query an object is chosen with
probability p > 1/2 and we ignore “inconclusive” queries. We study the number of queries
needed to recover the labeling in its entirety (the height), to recover a single element (the
fillup level), and to recover a randomly chosen element (the typical depth). This problem
exhibits several remarkable behaviors: the depth Dn converges in probability but not almost
surely and while it satisfies the central limit theorem its local limit theorem doesn’t hold; the
height Hn and the fillup level Fn exhibit phase transitions with respect to p in the second
term. For example, in our strongest result we prove that with high probability (whp) we
need

log1/p n+ logp/(1−p) log n+ o(log log n)

queries to recover the entire bijection. This should be compared to its symmetric (p = 1/2)
counterpart established by Pittel and Rubin, who proved that in this case one requires

log2 n+
√

2 log2 n+ o(
√

log n)

queries. Notice the surprising phase transition at the second term. To obtain these results,
we take a unified approach via the analysis of the profile defined at level k as the number
of elements recovered by the kth query. We first establish new precise asymptotic results
for the average and variance, and a central limit law, for the profile in the regime where
it grows polynomially with n. These results on their own are quite challenging due to
extra dependency introduced by the provision of ignoring inconclusive queries, and they
provide distributional information about the depth. We then extend the profile results to
the boundaries of the central region, leading to the solution of our problem for the height
and fillup level. As a bonus, our analysis implies novel results for random PATRICIA tries,
as it turns out that the problem is probabilistically equivalent to the analysis of the height,
fillup level, typical depth, and profile of a PATRICIA trie built from n independent binary
sequences generated by a biased(p) memoryless source. These results are obtained through
tools of analytic combinatorics.

Index Terms: Rényi problem, PATRICIA trie, profile, height, fillup level, analytic combina-
torics, Mellin transform, depoissonization.
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1 Introduction

Alfred Rényi was known for posing simple problems whose analyses aren’t. In his lectures in
the summer of 1960 at Michigan State University, Rényi discussed several problems related to
random sets [20]. Among them there was the problem of recovering a labeling of n distinct
objects by asking random subset questions of the form “which objects correspond to the labels
in the set B?”. A sequence of queries corresponds to a refinement of partitions of the set of
objects. In this work we consider an asymmetric version of the problem in which in every query
each object is selected with probability p > 1/2 and we ignore inconclusive queries (i.e., those
that do not refine every element of the previous partition). We study three parameters of this
random process: Hn, the number of such queries needed to recover the entire labeling; Fn, the
number needed before any elements are recovered; and Dn, the number needed to recover an
element selected uniformly at random. Our objective is to present precise probabilistic estimates
of these parameters and to study the distributional behavior of Dn.

The symmetric version (i.e., p = 1/2) of the problem was discussed by Pittel and Rubin in
[18]. Here is how the authors of [18] formulated it. Given two sets X and A of equal cardinality,
the task is to identify the unknown bijective mapping φ : X → A, where we are allowed to ask
questions like, given B ⊆ A what is φ−1(B)? The function φ is determined once all elements
of the partition of A, hence X, have become singletons. In Rényi’s formulation the subsets are
selected randomly. In the simplest case, considered in [18], one chooses each element of A to be
an element of the query set B independently with probability p = 1/2. To make the problem
interesting, Pittel and Rubin put the additional constraint that the set B is admissible only
if it splits every nontrivial element of the current partition. We analyze the problem in the
asymmetric case (p > 1/2).

Again, the question asked by Rényi brings some surprises. For the symmetric model (p =
1/2) Pittel and Rubin [18] were able to prove that the number of necessary queries is with high
probability (whp) (see Theorem 1)

Hn = log2 n+
√

2 log2 n+ o(
√

log n). (1)

In this paper, we re-establish this result using a different approach and prove that for p > 1/2
the number of queries grows whp as

Hn = log1/p n+ logp/q log n+ o(log logn), (2)

where q := 1 − p. Note an unexpected phase transition in the second term! A similar phase
transition occurs in the asymptotics for Fn (see Theorem 1):

Fn =

{

log1/q n− log1/q log log n+ o(log log log n) p > q

log2 n− log2 logn+ o(log log n) p = q = 1/2.
(3)

The analysis of Dn reveals more surprises (see Theorem 2). We have Dn/ log n → 1/h(p) (in
probability) where h(p) := −p log p−q log q, but we do not have almost sure convergence. More-
over, Dn appropriately normalized satisfies a central limit result, but not local limit theorem
due to some oscillations discussed below.

We establish these results in a novel way by considering first the profile Bn,k, whose analysis
is an open problem of its own. The profile at level k is the number of bijection elements revealed
by the kth query. Its study is motivated by the fact that many other parameters, including
all of those that we mention here, can be written in terms of it. Indeed, Dn = E[Bn,k]/n,
Hn = max{k : Bn,k > 0} and Fn = min{k : Bn,k > 0} − 1.

We now discuss our new results concerning the probabilistic behavior of the profile. We
establish precise asymptotic expressions for the expected value and variance of Bn,k with k ∼
α log n, where, for any fixed ǫ > 0, α ∈ (1/ log(1/q) + ǫ, 1/ log(1/p) − ǫ) (the left and right
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endpoints of this interval are associated with Fn and Hn, respectively). Specifically, we show
that both the mean and the variance are of the same (explicit) polynomial order of growth (with
respect to n) (see Theorem 3). More precisely, we show that both expected value and variance
grow for k ∼ α log n as

H(ρ(α), logp/q(p
kn))

nβ(α)√
C log n

where β(α) ≤ 1 and ρ(α) are complicated functions of α, C is an explicit constant, and
H(ρ, x) is a function that is periodic in x. The oscillations come from infinitely many
regularly spaced saddle points that we observe when inverting the Mellin transform of the
Poisson generating function of E[Bn,k]. Finally, we prove a central limit theorem; that is,
(Bn,k − E[Bn,k])/

√

Var[Bn,k] → N (0, 1) where N (0, 1) represents the standard normal distri-
bution. The expected value analysis of Bn,k in the central range gives precise distributional
information about Dn, since Pr[Dn = k] = E[Bn,k]/n, and the oscillations in E[Bn,k] are the
source of the peculiar behavior of Dn.

In order to use these results to estimate the first and the second order term for Hn and
Fn, we need to estimate the mean and the variance of the external profile beyond the range
α ∈ (1/ log(1/q) + ǫ, 1/ log(1/p) − ǫ); in particular, for Fn and Hn we need expansions at the
left and right side, respectively, of this range. This, it turns out, requires a novel approach and
analysis, leading to the announced results on the Rényi problem in (2) and (3).

Having described most of our main results, we mention an important equivalence pointed
out by Pittel and Rubin [18]. They observed that their version of the Rényi process resembles
the construction of a digital tree known as a PATRICIA trie1 [11, 22]. In fact, the authors of
[18] show that Hn is probabilistically equivalent to the height (longest path) of a PATRICIA
trie built from n binary sequences generated independently by a memoryless source with bias
p (that is, with a “1” generated with probability p; this is often called the Bernoulli model
with bias p). It is easy to see that Fn is equivalent to the fillup level (depth of the deepest
full level), Dn to the typical depth (depth of a randomly chosen leaf), and Bn,k to the external
profile of the tree (the number of leaves at level k). Thus, our results on these parameters for
the Rényi problem directly lead to novel results on PATRICIA tries. In addition to their use
as data structures, PATRICIA tries also arise as combinatorial structures which capture the
behavior of various processes of interest in computer science and information theory (e.g., in
leader election processes without trivial splits [8] and in the solution to Rényi’s problem which
we study here [18, 2]).

Now we briefly review known facts about PATRICIA tries and other digital trees when
built over n independent strings generated by a memoryless source. Profiles of tries in both
the asymmetric and symmetric cases were studied extensively in [15]. The expected profiles
of digital search trees in both cases were analyzed in [5], and the variance for the asymmetric
case was treated in [9]. Some aspects of trie and PATRICIA trie profiles (in particular, the
concentration of their distributions) were studied using probabilistic methods in [4, 3]. The
depth in PATRICIA for the symmetric model was analyzed in [2, 11] while for the asymmetric
model in [21]. The leading asymptotics for the PATRICIA height for the symmetric Bernoulli
model was first analyzed by Pittel [16] (see also [22] for suffix trees). The two-term expression
for the height of PATRICIA for the symmetric model was first presented in [18] as discussed
above (see also [2]).

The plan for the paper is as follows. In the next section we formulate more precisely our
problem and present our main results regarding the external profile, height, fillup level, and
depth. Sketches of proofs are provided in the last section.

1We recall that a PATRICIA trie is a trie in which non-branching paths are compressed ; that is, there are no
unary paths.
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2 Main Results

In this section, we formulate precisely Rényi’s problem and present our main results. Our goal
is to provide precise asymptotics for three natural parameters of the Rényi problem on n objects
with each label in a given query being included with probability p ≥ 1/2: the number Fn of
queries needed to identify a single element of the bijection, the number Hn needed to recover
the bijection in its entirety, and the number Dn needed to recover an element of the bijection
chosen uniformly at random from the n objects. If one wishes to determine the label for a
particular object, these quantities correspond to the best, worst, and average case performance,
respectively, of the random subset strategy proposed by Rényi. We call these parameters, the
fillup level Fn, the height Hn, and the depth Dn, respectively (these names come from the
corresponding quantities in random digital trees). One more parameter is relevant: we can
present a unified analysis of our main three parameters Fn, Hn, and Dn via the profile Bn,k,
which is the number of elements of the bijection on n items identified by the kth query.

Again, the simple question asked by Rényi brings unexpected surprises. Our analysis reveals
several remarkable behaviors: the depth Dn converges in probability but not almost surely and
while it satisfies the central limit theorem its local limit theorem doesn’t hold. Perhaps most
surprisingly, the height Hn and the fillup level Fn exhibit phase transitions with respect to p in
the second term. This unusual performance is a consequence of an oscillatory behavior of Bn,k
for the asymmetric problem (when p 6= 1/2) as discussed in Theorem 3.

To begin, we express Fn, Hn, and Dn in terms of Bn,k:

Fn = min{k : Bn,k > 0} − 1 Hn = max{k : Bn,k > 0} Pr[Dn = k] = E[Bn,k]/n.

Using the first and second moment methods, we can then obtain upper and lower bounds on
Hn and Fn in terms of the moments of Bn,k:

Pr[Hn > k] ≤
∑

j>k

E[Bn,k], Pr[Hn < k] ≤ Var[Bn,k]

E[Bn,k]2
,

and

Pr[Fn > k] ≤ Var[Bn,k]

E[Bn,k]2
, Pr[Fn < k] ≤ E[Bn,k].

The analysis of the distribution of Dn reduces simply to that of E[Bn,k].
In the next section, we show that the fillup level Fn and the height Hn have the following

precise asymptotic expansions. Both exhibit a surprising phase transition with respect to p in
the second term.

Theorem 1 (Asymptotics for Fn and Hn). With high probability,

Hn =

{

log1/p n+ logp/q logn+ o(log log n) p > q

log2 n+
√

2 log2 n+ o(
√
log n) p = q

(4)

and

Fn =

{

log1/q n− log1/q log log n+ o(log log log n) p > q

log2 n− log2 logn+ o(log log n) p = q
(5)

for large n.

While the behavior of the fillup level Fn could be anticipated [17] (by comparing it to the
corresponding result in a Rényi’s problem with inconclusive queries), the performance of the
height Hn is totally unexpected and stunning.
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Moving to the number of questions Dn needed to identify a random element of the bijection,
we have the following theorem that brings more unexpected behaviors (note that due to the
evolution process of the random PATRICIA trie, all random variables can be defined on the
same probability space).

Theorem 2 (Asymptotics and distributional behavior of Dn). For p > 1/2, the normalized
depth Dn/ logn converges in probability to 1/h(p) where h(p) := −p log p−q log q is the entropy,
but not almost surely. In fact,

lim inf
n→∞

Dn/ logn = 1/ log(1/q) (a.s) lim sup
n→∞

Dn/ logn = 1/ log(1/p).

Furthermore, Dn satisfies a central limit theorem; that is, (Dn − E[Dn])/
√

Var[Dn] → N (0, 1),
where E[Dn] ∼ 1

h(p) logn and Var[Dn] ∼ c logn where c is an explicit constant. A local limit

theorem does not hold: for x = O(1) and k = 1
h(log n + x

√

κ∗(−1) log n/h), where κ∗(−1) is
some explicit constant and h = h(p), we obtain

Pr [Dn = k] ∼ H
(

−1; logp/q p
kn

) e−x
2/2

√
2πC logn

for an oscillating function H(−1; logp/q p
kn) (see Figure 1) defined in Theorem 3 below and an

explicitly known constant C.

Again, the depth exhibits a phase transition: for p = 1/2 we have Dn/ logn → 1/ log 2
almost surely, which doesn’t hold for p > 1/2. We note that some of the results on the depth
(namely, the convergence in probability and the central limit theorem) are already known (see
[19]), but our contribution is a novel derivation of these facts via the profile analysis.

We now explain our approach to the analysis of the moments of Bn,k in appropriate ranges.
For this, we take an analytic approach [7, 22]. We first explain it for the analysis relevant to
Dn, and then show how to extend it for Hn and Fn. More details can be found in the next
section.

We start by deriving a recurrence for the average profile, which we denote by µn,k := E[Bn,k].
It satisfies

µn,k = (pn + qn)µn,k +
n−1
∑

j=1

(

n

j

)

pjqn−j(µj,k−1 + µn−j,k−1) (6)

for n ≥ 2 and k ≥ 1, with some initial/boundary conditions; most importantly, µn,k = 0 for
k ≥ n and any n. Moreover, µn,k ≤ n for all n and k owing to the elimination of inconclusive
queries. This recurrence arises from conditioning on the number j of objects that are included
in the first query. If 1 ≤ j ≤ n − 1 objects are included, then the conditional expectation is a
sum of contributions from those objects that are included and those that aren’t. If, on the other
hand, all objects are included or all are excluded from the first potential query (which happens
with probability pn+ qn), then the partition element splitting constraint on the queries applies,
the potential query is ignored as inconclusive, and the contribution is µn,k.

The tools that we use to solve this recurrence (for details see [12, 14]) are similar to those
of the analyses for digital trees [22] such as tries and digital search trees (though the analytical
details differ significantly). We first derive a functional equation for the Poisson transform
G̃k(z) =

∑

m≥0 µm,k
zm

m! e
−z of µn,k, which gives

G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + e−pz(G̃k − G̃k−1)(qz) + e−qz(G̃k − G̃k−1)(pz).

This we write as
G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + W̃k,G(z), (7)
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and at this point the goal is to determine asymptotics for G̃k(z) as z → ∞ in a cone around the
positive real axis. When solving (7), W̃k,G(z) complicates the analysis because it has no closed-
form Mellin transform (see below); we handle it via its Taylor series. Finally, depoissonization
[22] will allow us to directly transfer the asymptotic expansion for G̃k(z) back to one for µn,k.

To convert (7) to an algebraic equation, we use theMellin transform [6], which, for a function
f : R → R is given by

f∗(s) =

∫ ∞

0
zs−1f(z) dz.

Using the Mellin transform identities, we end up with an expression for the Mellin transform
G∗
k(s) of G̃k(z) of the form

G∗
k(s) = Γ(s+ 1)Ak(s)(p

−s + q−s)k = Γ(s+ 1)Ak(s)T (s)
k,

where Ak(s) is an infinite series arising from the contributions coming from the function W̃k,G(z).
It involves µm,j − µm,j−1 for various m and j (see [12, 13]). Locating and characterizing the
singularities of G∗

k(s) then becomes important. We find that, for any k, Ak(s) is entire, with
zeros at s ∈ Z ∩ [−k,−1], so that G∗

k(s) is meromorphic, with possible simple poles at the
negative integers less than −k. The fundamental strip of G̃k(z) then contains (−k − 1,∞). It
turns out that the main asymptotic contribution comes from infinite number of saddle points
defined by the kernel T (s) = p−s + q−s.

We then must asymptotically invert the Mellin transform to recover G̃k(z). The Mellin
inversion formula for G∗

k(s) is given by

G̃k(z) =
1

2πi

∫ ρ+i∞

ρ−i∞
z−sG∗

k(s) ds =
1

2πi

∫ ρ+i∞

ρ−i∞
z−sΓ(s+ 1)Ak(s)T (s)

k ds, (8)

where ρ is any real number inside the fundamental strip associated with G̃k(z). For k in the
range in which the profile grows polynomially (that coincides with the range of interest in our
analysis of Dn), we evaluate this integral via the saddle point method [7]. Examining z−sT (s)k

and solving the associated saddle point equation

d

ds
[k log T (s)− s log z] = 0,

we find an explicit formula (10) for ρ(α), the real-valued saddle point of our integrand. The
multivaluedness of the complex logarithm then implies that there are infinitely many regularly
spaced saddle points on this vertical line, for which we must account (these lead directly to
oscillations in the Θ(1) factor in the final asymptotics for µn,k). The main challenge in com-
pleting the saddle point analysis is then to elucidate the behavior of Γ(s+ 1)Ak(s) for s → ∞
along vertical lines: it turns out that this function inherits the exponential decay of Γ(s + 1)
along vertical lines, and we prove it by splitting the sum defining Ak(s) into two pieces, which
decay exponentially for different reasons (the first sum decays as a result of the superexponential
decay of µm,j for m = Θ(j), which is outside the main range of interest). We end up with an
asymptotic expansion for G̃k(z) as z → ∞ in terms of Ak(s).

Finally, we must analyze the convergence properties of Ak(s) as k → ∞. We find that it
converges uniformly on compact sets to a function A(s) (which is, because of the uniformity,
entire). We then apply Lebesgue’s dominated convergence theorem to conclude that we can
replace Ak(s) with A(s) in the final asymptotic expansion of G̃k(z). All of this yields the
following theorem which is proved in [12, 14].

Theorem 3 (Moments and limiting distribution for Bn,k for k in the central region). Let ǫ > 0

be independent of n and k, and fix α ∈
(

1
log(1/q) + ǫ, 1

log(1/p) − ǫ
)

. Then for k = kα,n ∼ α log n:
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(i) The expected external profile becomes

E[Bn,k] = H(ρ(α), logp/q(p
kn)) · nβ(α)

√

2πκ∗(ρ(α))α logn

(

1 +O(
√

log n)
)

, (9)

where

ρ(α) = − 1

log(p/q)
log

(

α log(1/q)− 1

1− α log(1/p)

)

, β(α) = α log(T (ρ(α)))− ρ(α), (10)

and κ∗(ρ) is an explicitly known function of ρ. Furthermore, H(ρ, x) (see Figure 1) is a non-zero
periodic function with period 1 in x given by

H(ρ, x) =
∑

j∈Z

A(ρ+ itj)Γ(ρ+ 1 + itj)e
−2jπix, (11)

where tj = 2πj/ log(p/q), and

A(s) = 1 +

∞
∑

j=1

T (s)−j
∞
∑

n=j

T (−n)(µn,j − µn,j−1)
φn(s)

n!
, (12)

where φn(s) =
∏n−1
j=1 (s+ j) for n > 1 and φn(s) = 1 for n ≤ 1. Here, A(s) is an entire function

which is zero at the negative integers.
(ii) Variance of the profile is Var[Bn,k] = Θ(E[Bn,k]).
(iii) Limiting distribution of the normalized profile is normal, that is,

Bn,k − µn,k
√

Var[Bn,k]

D−→ N (0, 1)

where N (0, 1) is the standard normal distribution.

We should point out that the unusual behavior of Dn in Rényi’s problem is a direct con-
sequence of the oscillatory behavior of the profile, which disappears for the symmetric case.
Furthermore, for the height and fillup level analyses we need to extend Theorem 3 beyond its
original central range for α, as discussed in the next section.

Figure 1: Plots of H(ρ, x) for ρ = −0.5, 0, 0.5.

Finally, we note that each of Hn, Fn, Dn, and Bn,k corresponds to an analogous parameter
of PATRICIA tries built on n independent binary strings generated by a memoryless source
with bias p ≥ 1/2: Hn corresponds to the height (the maximum depth of any leaf), Fn to the
fillup level (the highest level k containing 2k internal nodes), Dn to the typical depth (the depth
of a randomly chosen leaf), and Bn,k to the external profile (the number of leaves at level k.
Thus, the theorems given in this paper also tell us interesting things about random PATRICIA
tries.
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3 Proof sketches

Now we give sketches of the proofs of Theorems 1 and 2 with more details regarding the proof of
Theorem 1 in the Appendix. As stated earlier, the proof of Theorem 3 can be found in [12, 14].

3.1 Sketch of the proof of Theorem 1

To prove our results for Hn and Fn, we extend the analysis of Bn,k to the boundaries of the
central region (i.e., k ∼ log1/p n and k ∼ log1/q n).

Derivation of Hn. Fixing any ǫ > 0, we write, for the lower bound on the height, kL =
log1/p n + (1 − ǫ)ψ(n) and, for the upper bound, kU = log1/p n + (1 + ǫ)ψ(n), for a function
ψ(n) = o(log n) which we are to determine. In order for the first and second moment methods
to work, we require

µn,kL
n→∞−−−→ ∞

and
µn,kU

n→∞−−−→ 0.

(We additionally need that Var[Bn,kL ] = o(µ2n,kL), but this is not too hard to show by induction

using the recurrence for Ṽk(z), the Poisson variance of Bn,k.) In order to identify the ψ(n) at
which this transition occurs, we define k = log1/p n+ ψ(n), and the plan is to estimate E[Bn,k]
via the integral representation (8) for its Poisson transform. Specifically, we consider the inverse
Mellin integrand for some s = ρ ∈ Z

− + 1/2 to be set later. This is sufficient for the upper
bound, since, by the exponential decay of the Γ function, the entire integral is at most of the
same order of growth as the integrand on the real axis. We expand the integrand in (8), that
is,

Jk(n, s) :=

k
∑

j=0

n−sT (s)k−j
∑

m≥j

T (−m)(µm,j − µm,j−1)
Γ(m+ s)

Γ(m+ 1)
, (13)

and apply a simple extension of Theorem 2.2, part (iii) of [13] to approximate µm,j − µm,j−1

when j → ∞ and j ≫ logm:

Lemma 4 (Precise asymptotics for µm,j , j → ∞ and m near j). Let p ≥ q. For n → ∞ with
k ≫ logn,

µn,k ∼ (n− k)
1/2+ log q

log p
n!

(n− k)!
pk

2/2+k/2qk/2 · exp
(

− log2(n− k)

2 log(1/p)

)

Θ(1). (14)

Now, we continue with the evaluation of (13). The jth term of (13) is then of order pνj(n,s),
where, defining ∆j = j − ψ(n), we set

νj(n, s) = ∆2
j/2+∆j(s+log1/p(1+(p/q)s)+ψ(n)+1)−log1/p n log1/p(1+(p/q)s)+ψ(n)2/2+o(ψ(n)2).

The factor T (s)k−j ensures that the bounded j terms are negligible. By elementary calculus,
we can find the j term which maximizes νj(n, s), and then we minimize over all s, which gives

∆j = s+ log1/p(1 + (p/q)s) + ψ(n) + 1, s = −ψ(n) +O(1).

The optimal value for νj(n, s) then becomes

νj(n, s) = − log1/p n log1/p(1 + (p/q)s) + ψ(n)2/2 + o(ψ(n)2). (15)
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Now, to find ψ(n) for which there is a phase transition, we set the exponent in the above
expression equal to zero and solve for ψ(n). When p = 1/2, the expression log1/p(1 + (p/q)s)
becomes 1, which gives

− log2 n+ ψ(n)2/2(1 + o(1)) = 0 =⇒ ψ(n) ∼
√

2 log2 n,

as expected. On the other hand, when p > 1/2, we cannot solve for ψ(n) directly, owing to the
fact that log1/p(1 + (p/q)s) now depends on s. We instead observe that the asymptotics of the
Lambert W function [1] play a key role: by our choice of s, (p/q)s = o(1), so that

log1/p(1 + (p/q)s) ∼ (p/q)s/ log(1/p) = es log(p/q)/ log(1/p).

Then we must solve the equation

log1/p ne
s log(p/q)/ log(1/p) = ψ(n)2/2.

Multiplying by log(p/q) and taking the square root of both sides gives
√

2 logn log(p/q)/ log(1/p) = (log(p/q)/2)ψ(n)e−s log(p/q)/2,

and substituting in our choice of s gives

Θ(
√

log n) = (1 + o(1))
log(p/q)

2
ψ(n)eψ(n)(1+o(1)) log(p/q)/2.

Setting W = (1 + o(1)) log(p/q)2 ψ(n), this becomes WeW = Θ(
√
log n), which is precisely in the

form of the recurrence satisfied by the Lambert W function. This yields

ψ(n) = logp/q logn+O(log log log n).

Note that replacing ψ(n) in (15) with (1− ǫ)ψ(n) yields as a maximum contribution to the sum

p−Θ((logn)ǫ) → ∞. (16)

while replacing it with (1 + ǫ)ψ(n) gives

pΘ((log logn)2) → 0.

The above analysis gives asymptotic estimates for G̃k(n). We then apply analytic depois-
sonization [22] to conclude that µn,k ∼ G̃k(n), which gives the claimed result.

Derivation of Fn. We now set k = log1/q n+ ψ(n) and

kL = log1/q n+ (1 + ǫ)ψ(n), kU = log1/q n+ (1− ǫ)ψ(n). (17)

Here, ψ(n) = o(logn) is to be determined so as to satisfy µn,kL → 0 and µn,kU → ∞. We use a
technique similar to that used in the height proof to determine ψ(n), except now the Γ function
asymptotics play a role, since we will choose ρ ∈ R tending to ∞. Our first task is to upper
bound (as tightly as possible), for each j, the magnitude of the jth term of (13). First, we
upper bound

T (−m)(µm,j − µm,j−1) ≤ 2pmµm,j ≤ 2pmm, (18)

using the boundary conditions on µm,j . Next, we apply Stirling’s formula to get

Γ(m+ ρ)

Γ(m+ 1)
∼

√

1 + ρ/m

(

m+ ρ

e

)m+ρ(m+ 1

e

)−(m+1)

(19)

= e(m+ρ) log(m+ρ)−(m+ρ)+m+1−(m+1) log(m+1)+O(log ρ) (20)

= exp((m+ ρ) log(m+ ρ)− (m+ 1) log(m+ 1) +O(ρ)) (21)

= exp(m log(m(1 + ρ/m)) + ρ log(ρ(1 +m/ρ))−m logm− logm+O(ρ)) (22)

= exp(m log(1 + ρ/m) + ρ log(ρ) + ρ log(1 +m/ρ)− logm+O(ρ)). (23)
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Multiplying (18) and (23), then optimizing over all m ≥ j, we find that the maximum term of
the m sum occurs at m = ρp/q and has a value of

exp(ρ log ρ+O(ρ)). (24)

Now, observe that when logm≫ log ρ, the contribution of the mth term is pm+o(m) = e−Θ(m).
Thus, setting j′ = ρlog ρ (note that log j′ = (log ρ)2 ≫ log ρ), we split the m sum into two parts:

∑

m≥j

2pmm
Γ(m+ ρ)

Γ(m+ 1)
=

j′
∑

m=j

2pmm
Γ(m+ ρ)

Γ(m+ 1)
+

∞
∑

m=j′+1

2pmm
Γ(m+ ρ)

Γ(m+ 1)
.

The terms of the initial part can be upper bounded by (24), while those of the final part are
upper bounded by e−Θ(m) (so that the final part is the tail of a geometric series). This gives an
upper bound of

j′eρ log ρ+O(ρ) + e−Θ(j′) = e(log ρ)
2+ρ log ρ+O(ρ) = eρ log ρ+O(ρ),

which holds for any j.
Multiplying this by n−ρT (ρ)k−j = qρ∆j+(∆j−log1/q n) log1/q(1+(q/p)ρ) gives

qρ∆j+(∆j−log1/q n) log1/q(1+(q/p)ρ)−ρ log1/q ρ+O(ρ), (25)

where ∆j is again j −ψ(n). Maximizing over the j terms, we find that the largest contribution
comes from j = 0 (i.e., ∆j = −ψ(n)). Then, just as in the height upper bound, the behavior
with respect to ρ depends on whether or not p = q, because log1/q(1 + (q/p)ρ) = 1 when
p = q and is dependent on ρ otherwise. Taking this into account and minimizing over ρ gives

that the maximum contribution to the j sum is minimized by setting ρ = 2
−ψ(n)− 1

log 2 when
p = q and ρ ∼ logp/q logn otherwise. Plugging these choices for ρ into the exponent of (25),
setting it equal to 0, and solving for ψ(n) gives ψ(n) = − log2 log n + O(1) when p = q and
ψ(n) ∼ − log1/q log logn when p > q. The evaluation of the inverse Mellin integral with k = kL
as defined in (17) and the integration contour given by ℜ(s) = ρ proceeds along lines similar to
the height proof, and this yields the desired result.

We remark that the lower bound for Fn may also be derived by relating it to the analogous
quantity in regular tries: by definition of the fillup level, there are no unary paths above the
fillup level in a standard trie. Thus, when converting the corresponding PATRICIA trie, no
path compression occurs above this level, which implies that Fn for PATRICIA is lower bounded
by that of tries (and the typical value for tries is the same as in our theorem for PATRICIA).
We include the lower bound for Fn via the bounding of the inverse Mellin integral because it is
similar in flavor to the corresponding proof of the upper bound (for which no short proof seems
to exist).

The upper bound for Fn can similarly be handled by an exact evaluation of the inverse
Mellin transform.

3.2 Proof of Theorem 2

Using Theorem 3, we can prove Theorem 2.

Convergence in probability: For the typical value of Dn, we show that

Pr[Dn < (1− ǫ)1/h(p) log n]
n→∞−−−→ 0, Pr[Dn > (1 + ǫ)1/h(p) log n]

n→∞−−−→ 0. (26)

For the lower bound, we have

Pr[Dn < (1− ǫ)1/h(p) log n] =

⌊(1−ǫ)1/h(p) log n⌋
∑

k=0

Pr[Dn = k] =

⌊(1−ǫ)1/h(p) logn⌋
∑

k=0

µn,k
n
.
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We know from Theorem 3 and the analysis of Fn that, in the range of this sum, µn,k = O(n1−ǫ).
Plugging this in, we get

Pr[Dn < (1− ǫ)1/h(p) log n] =

⌊(1−ǫ)1/h(p) logn⌋
∑

k=0

O(n−ǫ) = O(n−ǫ log n) = o(1).

The proof for the upper bound is very similar, except that we appeal to the analysis of Hn

instead of Fn.

No almost sure convergence: To show that Dn/ logn does not converge almost surely, we
show that

lim inf
n→∞

Dn/ logn = 1/ log(1/q), lim sup
n→∞

Dn/ logn = 1/ log(1/p). (27)

For this, we first show that, almost surely, Fn/ log n
n→∞−−−→ 1/ log(1/q) and Hn/ log n

n→∞−−−→
1/ log(1/p). Knowing this, we consider the following sequences of events: An is the event that
Dn = Fn+1, and A′

n is the event that Dn = Hn. We note that all elements of the sequences are
independent, and Pr[An],Pr[A

′
n] ≥ 1/n. This implies that

∑∞
n=1 Pr[An] =

∑∞
n=1 Pr[A

′
n] = ∞,

so that the Borel-Cantelli lemma tells us that both An and A′
n occur infinitely often almost

surely (moreover, Fn < Dn ≤ Hn by definition of the relevant quantities). This proves (27).
To show the claimed almost sure convergence of Fn/ logn andHn/ logn, we cannot apply the

Borel-Cantelli lemmas directly, because the relevant sums do not converge. Instead, we apply a
trick which was used in [16]. We observe that both (Fn) and (Hn) are non-decreasing sequences.
Next, we show that, on some appropriately chosen subsequence, both of these sequences, when
divided by log n, converge almost surely to their respective limits. Combining this with the
observed monotonicity yields the claimed almost sure convergence, and, hence, the equalities in
(27).

We illustrate this idea more precisely for Hn. By our analysis above, we know that

Pr[|Hn/ log n− 1/ log(1/p)| > ǫ] = O(e−Θ(log logn)2).

Then we fix t, and we define nr,t = 2t
222r . On this subsequence, by the probability bound

just stated, we can apply the Borel-Cantelli lemma to conclude that Hnr,t/ log(nr,t)
r→∞−−−→

1/ log(1/p) · (t+ 1)2/t2 almost surely. Moreover, for every n, we can choose r such that nr,t ≤
n ≤ nr,t+1. Then

Hn/ log n ≤ Hnr,t+1/ log nr,t,

which implies

lim sup
n→∞

Hn

log n
≤ lim sup

r→∞

Hnr,t+1

lognr,t+1

lognr,t+1

log nr,t
=

1

log(1/p)
· (t+ 1)2

t2
.

Taking t → ∞, this becomes 1/ log(1/p), as desired. The argument for the lim inf is similar,
and this establishes the almost sure convergence of Hn. The derivation is entirely similar for
Fn.

Asymptotics for probability mass function of Dn: The asymptotic formula for Pr[Dn =
k] with k as in the theorem follows directly from the fact that Pr[Dn = k] = E[Bn,k]/n, plugging
in the expression of Theorem 3 for E[Bn,k].
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APPENDIX

3.3 More details of the derivation of Hn

We sketch here in more detail the derivation of the bounds for Hn. We note that the fine
analysis of Fn is similar.

Using Lemma 4, we can complete the details of estimating the m sum of the jth term of
(13) when j → ∞. We start by upper bounding by

∑

m≥j

T (−m)µm,j ,

where we’ve used the fact that µm,j − µm,j−1 ≤ µm,j and, since we will choose ρ ∈ Z
− + 1/2,

Γ(m+ ρ)/Γ(m+ 1) ≤ 1. Next, we split the terms into two parts:

∑

m≥j

T (−m)µm,j =

j3
∑

m=j

T (−m)µm,j +
∑

m>j3

T (−m)µm,j .

The initial sum is estimable using Lemma 4, since j ≫ m1/3:

j3
∑

m=j

T (−m)µm,j ≤
j3
∑

m=j

pj
2/2+o(j2) ≤ j3pj

2/2+o(j2) = pj
2/2+o(j2).

Meanwhile, the final sum can by upper bounded using the exponential smallness of T (−m) and
the fact that µm,j ≤ m:

∑

m>j3

T (−m)µm,j ≤
∑

m>j3

e−Θ(m)m =
∑

m>j3

e−Θ(m) = e−Θ(j3).

Adding these together, we get that the m sum for j → ∞ is pj
2/2+o(j2), and the rest of the

derivation of (15) is as in the height analysis.
To bound those terms for which j < C, for any constant C, we trivially upper bound the m

sum by
∑

m≥j

T (−m)m = O(1),

and n−ρT (ρ)k−j is seen to be negligible because of the factor T (ρ)k−j .

3.3.1 Upper bound for Hn

For the upper bound, we show that µn,k decays to 0 sufficiently quickly, for k ≥ kU = log1/p n+
(1 + ǫ) logp/q log n. We set j∗ = j∗(n) = k − log1/p n and ρ = −j∗(n) +O(1), and we note that,
since G∗

k(s) is analytic at least in the strip ℜ(s) ∈ (−k− 1,∞), there are no contributions from
residues. We bound |G̃k(n)| as follows: letting C denote the vertical line ℜ(s) = ρ, we split it
into a central region (near the real axis) CI and tails (bounded away from the real axis) CO:

CI = {ρ+ it : |t| ≤ (log n)(log logn)
1−δ} CO = {ρ+ it : |t| > (log n)(log logn)

1−δ}, (28)

where δ < 1 is some fixed positive number. Intuitively, the tail integral is small because of
the exponential decay of the Γ function on vertical lines, and the central region contribution is
small by the analysis sketched in the height analysis. We start, in both cases, with the triangle
inequality:

|G̃k(n)| ≤
1

2π

∫ ρ+i∞

ρ−i∞

k
∑

j=0

n−ρ|T (s)k−j |
∑

m≥j

T (−m)|µm,j − µm,j−1|
∣

∣

∣

∣

Γ(m+ s)

Γ(m+ 1)

∣

∣

∣

∣

ds. (29)
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Bounding the central region: In the central region, we can (essentially) control the inte-
grand by bounding above by its value on the real axis. Multiplying by the length of the central
region (which we’ve chosen to be not too large) gives a sufficient upper bound.

More concretely, we start by noting that

|T (s)k−j | = |T (s)|k−j ≤ |T (ρ)|k−j , (30)

where the inequality follows from writing

|T (s)| = |p−s||1 + (p/q)s| = p−ρ|1 + (p/q)s| ≤ p−ρ(1 + |(p/q)s|) = p−ρ(1 + (p/q)ρ) = T (ρ).
(31)

Here, we’ve applied the triangle inequality.
Furthermore, it can be checked that |Γ(m+ s)| ≤ |Γ(m+ ρ)| (which follows easily using the

integral representation of the Γ function; see [1]). Applying (30) and the Γ function inequality
to (29) gives an upper bound on the integrand of

k
∑

j=0

n−ρT (ρ)k−j
∑

m≥j

T (−m)|µm,j − µm,j−1|
∣

∣

∣

∣

Γ(m+ ρ)

Γ(m+ 1)

∣

∣

∣

∣

.

From the analysis of the height, we get that the largest term of this sum is at most pΘ((log logn)2),
so bounding all terms uniformly by this gives an upper bound of

(k + 1)pΘ((log logn)2) = pΘ((log logn)2)−Θ(log logn) = pΘ((log logn)2).

Since this is a uniform upper bound on the integrand in the central region, to bound the integral,
we multiply by the length of the contour, which yields

|CI |pΘ(log logn)2 = pΘ(log logn)2 ,

since we chose |CI | to be eo(log logn)
2
.

Bounding the tails: Here we use the following standard bound on the Γ function: for
s = ρ + it, provided that |Arg(s)| is less than and bounded away from π and |s| is sufficiently
large, we have

|Γ(s)| ≤ C|t|ρ−1/2e−π|t|/2.

This is applicable on CO, and we again use the fact that |T (s)| ≤ T (ρ) and µm,j − µm,j−1 ≤
µm,j ≤ m (justified by the boundary conditions on µm,j), which yields an upper bound for the
integrand of

k
∑

j=0

n−ρT (ρ)k−j
∑

m≥j

T (−m)m
Θ(|t|m+ρ−1/2e−π|t|/2)

Γ(m+ 1)
. (32)

Then the m sum becomes

C|t|ρ−1/2e−π|t|/2
∑

m≥j

m(p|t|)m
m!

≤ Cp|t|ρ+1/2e−π|t|/2ep|t|, (33)

where we’ve pulled out a factor of p|t|, extended the bottom index of the sum to 0, and applied
the Taylor series of the exponential function. Note that −pi/2 + p < 0, so that we’re left with

e−Θ(|t|)+(ρ+1/2) log |t|.

By our choice of |t|, this is simply
e−Θ(|t|),
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uniformly in j. Integrating this on CO gives

e−Θ((logn)(log logn)1−δ
).

Plugging this upper bound on the integral of the m sum into (29) gives

e−Θ((logn)(log logn)1−δ
)

k
∑

j=0

n−ρT (ρ)k−j ,

and, since ρ < 0, T (ρ)k−j = o(1), so that the j sum is upper bounded by

kn−ρ = eΘ(log logn log n),

so that the entire integral on the outer tails is at most

e−Θ((logn)(log logn)1−δ
).

Summing the contributions on CO and CI : Thus, we have shown that

µn,k ∼ G̃k(n) ≤ pΘ(log logn)2 + e−Θ((logn)(log logn)1−δ
) = e−Θ(log logn)2 . (34)

Now, our original goal was to bound the sum

∑

k≥kU

µn,k,

and the above upper bound is applicable for all terms, but it is too coarse on most of the range.
Thus, we split the sum into two parts:

n
∑

k=kU

µn,k =

⌈(logn)2⌉
∑

k=kU

µn,k +
n
∑

k=⌈(logn)2⌉+1

µn,k.

The initial part can be bounded using (34), and the final part we handle using Lemma 4. The
location of the split is dictated by two opposing forces: it must be small enough that uniformly
upper bounding the initial part by (34) is sufficient and large enough that we can apply Lemma 4
to the tail sum.

The initial sum is then at most

e−Θ(log logn)2Θ(log n)2 = e−Θ(log logn)2+Θ(log logn) = e−Θ(log log n)2 .

The final sum is at most
ne−Θ(logn)2 = n1−Θ(logn).

Adding these upper bounds together shows that

Pr[Hn > kU ]
n→∞−−−→ 0,

as desired.
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3.3.2 Lower bound for Hn

For the lower bound, we first remark that Var[Bn,k] is easily seen to be O(E[Bn,k]) by an
inductive argument using the Poisson variance Ṽk(z) (see [12, 14]). Thus, in order to apply
the second moment method, it is sufficient to obtain a lower bound for E[Bn,k] for k = kL =
log1/p n + (1 − ǫ) logp/q log n. As with the upper bound, we set j∗ = j∗(n) = k − log1/p n and
ρ = −j∗(n) +O(1).

First, we rewrite the inverse Mellin integral representation of G̃k(n) (recall that this is the
Poisson transform of E[Bn,k], and it satisfies G̃k(n) ∼ E[Bn,k]) as follows:

G̃k(n) = −
k

∑

j=0

∑

m≥j

T (−m)µm,j
Γ(m+ 1)

· 1

2πi

∫ ρ+i∞

ρ−i∞
n−sT (s)k−j−1Γ(m+ s) ds(1− T (s)),

which follows simply from collecting all terms for which µm,j is a factor, then exchanging sums
and the integral. Note that, by our choice of ρ, T (s) = o(1), and some terms are positive
because Γ(m+ s) is sometimes negative (indeed, the dominant term is positive).

Next, we use the binomial theorem to write T (s)k−j−1 as a sum, which gives

G̃k(n) ∼ −
k

∑

j=0

∑

m≥j

T (−m)µm,j
Γ(m+ 1)

k−j−1
∑

ℓ=0

(

k − j − 1

ℓ

)

1

2πi

∫ ρ+i∞

ρ−i∞
n−s(pℓqk−j−ℓ−1)−sΓ(m+ s) ds.

(35)

We pull nm(pℓqk−j−ℓ−1)m out of the integral, then make the substitution s 7→ s+m, yielding

1

2πi

∫ m+ρ+i∞

m+ρ−i∞
n−s(pℓqk−j−ℓ−1)−sΓ(s) ds.

We can evaluate this exactly via the residue theorem by shifting the integration contour to
ℜ(s) = 1, which gives that the integral is precisely

∞
∑

ℓ′=(−⌈m+ρ⌉+1) ∨ 0

(−npℓqk−j−ℓ−1)ℓ
′

ℓ′!
,

which is a tail of the Taylor series of e−np
ℓqk−j−ℓ−1

(here, a ∨ b denotes the maximum of a and
b). Now, it can be shown that only those terms of (35) for which |j − j∗| = O(1) contribute
non-negligibly to G̃k(n). In fact, the dominant term comes from j = j∗ and ⌈m+ ρ⌉ = 0, which
gives a maximum contribution of (16). It may be checked that there is not sufficient cancellation
to perturb this result.
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