STOCHASTIC ANALYSIS OF TREE-LIKE DATA STRUCTURES

MICHAEL DRMOTA

ABSTRACT. The purpose of this article is to present two types of data structures, binary search
trees and usual (combinatorial) binary trees. Although they constitute the same set of (rooted)
trees they are constructed via completely different rules and thus the underlying probabilitic
models are different, too. Both kinds of data structures can be analyzed by probabilistic and
stochastic tools, binary search trees (more or less) with martingales and binary trees (which can
be considered as a special case of Galton-Watson trees) with stochastic processes.

It is also an aim of this article to demonstrate the strength of analytic methods in specific
parts of probabilty theory related to combinatorial problems, especially we make use of the
concept of generating functions. One reason is that that recursive combinatorial descriptions
can be translated to relations for generating functions, and second analytic properties of these
generating functions can be used to derive asymptotic (probabilistic) relations.

1. INTRODUCTION

Probably the most widely used sorting algorithm is the algorithm Quicksort which has been
invented by C. A. R. Hoare [28, 29]. It is the standard sorting procedure in Unix systems, and the
basis idea can be described as follows:

A list of n (different) real numbers A = (x1,2x2,... ,T,) is given. Select an (pivot)
element x; from this list. Divide the remaining numbers into sets A<, A5 of numbers
smaller (or equal) and larger than z;. Next apply the same procedure to each of these
two sets if they contain more than one element. Finally, we end up with a sorted list
of the original numbers.

This sorting procedure can be encoded with a binary tree with n (internal) nodes.! The first
selected element x; is put to the root, whereas recursively A< produces a left subtree of z; and
A the right subtree of ;. (An empty string produces an empty tree which is usually encoded as
an external node.)

This kind of binary trees are also called binary search trees and are also quite common as a data
structure to store data represented by keys which can be totally ordered (compare with [35, 40]).
It is then easy to search for an item by comparing it with the root and then proceeding to the left
subtree if it is smaller resp. to the right subtree if it is larger.

In what follows we will discuss several parameters which are important in the analysis of
Quicksort resp. in searching in binary search trees. In doing this we assume that the data 21, ... , 2,
constitute iid random continuous variables. We start with the number of comparisions needed for
Quicksort which is the same as the total path length of the corresponding binary search tree.
We then present a martingale approach to describe the profile of binary search trees, and finally
a generating function approach to the height of binary search trees which equals the maximal
number of comparisions needed for searching in binary search trees or the maximal number of
recursive calls of Quickstep. 2

Date: June 10, 2002.

Key words and phrases. binary search tree, binary tree, height, path length, profile, generating functions.

Institut fiir Geometrie, TU Wien, Wiedner Hauptstrasse 8-10/118, A-1040 Wien, Austria, email:
drmota@tuwien.ac.at.
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2There are also quite similar search trees, e.g. digital search trees or tries, which appear as data structures (see
[40]) but will not be discussed in this article.



2 MICHAEL DRMOTA

FIGURE 1. Binary search tree generated by the list (4,2, 3,5,1), where the pivot
element is always the first element.

FIGURE 2. Binary tree for the arithmetic expression ((1+2)-3) — (7-8).

Binary trees appear also in other application. For example, consider an arithmetic expression
((1 +2)-3) —(7-8). which can be stored as a binary tree in an obvious way.

Although this kind of data structure looks like binary search trees, its average behaviour is
completely different. In this context it is natural to assume that every binary tree (with n internal
nodes) appears with equal probability. This induces a completely different probabilistic model for
binary trees with n internal nodes (which is more or less a translation of a combinatorial problem
for trees). For example, the number of binary trees with n internal nodes is exactly the mn-th

Catalan number
. = 1 <2n>
n+1\n

and hence every binary tree (of size n) has probability 1/C,,.

Interestingly, there is natural (probablistic) generalization of binary trees (considered in that
way), namely Galton-Watson branching processes (resp. Galton-Watson trees) conditioned on the
total progeny.

Thus, the second part of this paper is devoted to (critical) Galton-Watson trees (with finite
offspring variance). As for random binary search trees we will discuss the path length, the profile
and the height. The results will be of a completely different flavour. We will use again the concept
of generating functions, however, from the probabilistic side we are confronted with stochastic
processes, e.g. with Brownian excursion and its (total) local time.

Notation. Consider a (finite) binary tree t. Then for every internal node z the distance to the
root is denoted by h(z). Then the (internal) path length is given by

I=1l = > h(z)

z internal node of ¢
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and the height by

h=h = h(z).

We will also consider the profile (vi)r>0, where vy denotes the number of (internal) nodes at level
k:

max
z internal node of ¢

v = #{z : h(z) = k}.
Observe that the path length is also given by

I, = Zkuk

k>0
and the height by
hy = max{k > 0: v > 0}.
Finally, the width of ¢ is defined by

W = Wy = MaAX Vg-
k>0

2. BINARY SEARCH TREES

2.1. Probabilistic Model. When analyzing Quicksort or binary search trees it is standard to
assume that the data z; = X;,20 = Xs,...,z, = X, are iid real random variables with a
(common) continuous probability distribution. For example, this implies that their ranks form a
random permutation of {1,2,...,n}. Thus, the kind of the distribution of X; (1 < j < n) has no
influence on the distribution of the parameters of Quicksort or the corresponding binary search
tree. It is therefore no loss of generality to assume that X; are uniformly distributed on [0, 1].
Even the choice of the pivot element (in Quicksort) does not change the probabilistic structure. It
is therefore common to assume that the pivot elment is always the first in corresponding list.?

In this context it is also natural to consider an infinte sequence (X),>1 of iid random variables
(uniformly distributed on [0,1]) which induce a random sequence (T%,),>o of binary search trees.
This means that T}, contains n internal nodes, where the data X, Xy,...,X,, are stored in a way
that all (internal) nodes of the left subtree of X; have smaller values than X; and all nodes of the
right subtree are larger than X;. Furthermore, T, is generated from 7}, by inserting X, 1 at
one of the n + 1 external nodes of T, in the following way. One starts at the root and goes to the
left subtree if X,,11 is smaller that the value of the root and to the right subtree if X,,; is larger.
This procedure is recursively applied until one reaches an external node where X, is inserted.
By assumption each of these n + 1 external nodes (or free places) is replaced by X, 1 with equal
probability 1/(n + 1). Thus, we also have a kind of Markov property: T}, ;1 just depends on T,
(and this in a very simple way).

In what follows we will discuss just parameters in (random) binary search trees. As explained
above there is a direct correspondance to Quicksort.

2.2. Internal Path Length. Let L,, denote the internal path length of random binary search
trees T, (or equivalently the number of comparisions which are needed to sort a random per-

mutation of {1,2,...,n} with Quicksort). The recursive description of binary search trees (or
Quicksort) immediately translates to*
‘C(Ln) =L (LZn—l +Zn—Zn +n— ]-) s n > 27 (1)

where Lo = Ly =0, Ly = 1, Z, is uniformly distributed on {1,2,... ,n}, £(L;) = L(L;), and Z,,
L;, L; (1 < j <n) are independent.
Equivalently we can consider the generating functions

lo(u) = Euln

3In Unix systems the pivot element is always an element in the middle position.
4We denote by £(X) the distribution function of X.
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and get the recurrence

n

Z lj,I (u)ln,j (u)

Jj=1

unfl

ln (u) =

n

Consequently the differential equation for the double generating function L(z,u) = ", <o ln(u)z":

LL(‘(;: w = L(zu,u)?
with the side conditions
W =1 and L(z,1)= 1 !
We will not use these relations here but we will see that corresponding generating functions for
the profile and the height have a similar structure.
It is now an easy exercise to obtain explicit representations for the expeced value EL,,, e.g. the
recurrence

_:L'.

1 n
EL,=n—-1+— EL;, 1 +EL, ;
n + n ]:21( j—1 7+ i)
can be explicitly solved to

n+11
ELn:Q(n+1)ZE—4(n+1)+2
h=1

=2nlogn +n(2y—4)+2logn+2y+ 1+ O ((logn)/n)
with v = 0.57721... beeing Euler’s constant.
In fact, much more is known about this random variable.’

Theorem 1. The normalized path length

converges weakly to a random variable Y :
Y, =Y,
which distribution is defined by the fized point equation
LY)=L(UY +(1-0U)Y +¢(U)), (2)
where U is uniformly distributed on on [0,1], L(Y) = L(Y), U,Y,Y are independent, and
c(z) =2zlogz +2(1 —z)log(l — z) + 1.

The existence of a limiting distribution (the Quicksort distribution) was first observed by Régnier
[50] via a martingale approach, whereas the characterization of ¥ with a fixed point equation is
due to Rosler [54]. It is now also known that there exists a density ([58]), which is a bounded
C* function, tail estimates are available, and orders of convergence are estimated (compare with
[21, 22, 23, 34]). However, no explicit representations for the limiting distribution are known. In
the meantime various properties of the limiting distribution,

From the fixed point equation (2) it also possible to calculate moments step by step, e.g. the
variance of Y is given by

VarY =7— ;7‘[’2.

We briefly describe Résler’s approach which has developed to a powerful method in the prob-
ablistic analysis of algorithms, the contraction method (compare with [55]). His main obervation
was that (2) has a unique fixed point because (because it constitutes a contraction with respect
to the Wasserstein metric ds).

5We will always denote weak convergence of with “=".
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Let D denote the space of distribution functions with finite second moment and zero first
moment. Then the Wasserstein metric dy is defined as

do(F,G) = inf | X = Y2,

where || - ||2 denotes the Ly-norm and the infimum is taken over all random variables X with
distributions function F' and all Y with distribution function G. It is well known that (D, dz)
constitutes a Polish space.®

Let us consider the random variables Y;, = (L,, — EL,,)/n. From (1) we directly get

Zn—1 — n—2Zn,
+Yann

L(Yn) =L (Yan + Cn(Zn)> , N Z 2;

where Yy = Y1 = 0, Z,, is uniformly distributed on {1,2,...,n}, and £(Y;) = £(Y;), and Z,, Y},

Y; (1 <j <n) are independent. Furthermore,

. n—1 1
cn(f) = " + ” (ELJ-,I +EL,_; — EL,).

Thus, if ¥;, has a limiting distribution Y then it has to satisfy (2).
The first step is to show that (2) has actually a unique solution with EY" = 0.

Lemma 1. Let S: D — D be a map defined by
S(F):=LUX + (1-U)X +¢c(U)),

where X, X,U are independent, L(X) = L(X) = F, and U is uniformly distributed on [0,1]. Then
S is a contraction with respect to the Wasserstein metric ds and, thus, there is a unique fized point
F €D with S(F)=F.

Proof. Let F,G € D and suppose that £L(X) = L(X) = F, L(Y) = L(Y) =
[0,1] such that U,X,X and U,Y,Y are independent. Then S(F) = L(UX +
and S(G) = L(UY + (1 = U)Y +¢(U)) and consequently
d(S(F),5(G)) < IUX +(1-U)X -UY - 1-U)Y|}3
=UX -Y)+(1-U)X -Y)lz
=E(X-Y)??-EU’+EX -Y)*-E(1-U)?

G, and Uis ud on
(1 -0)X +cU))

2
= E(X -Y).

Taking the infimum over all possible X,Y we obtain
2
(S, 5@) <2 a(R0),
which completes the proof of the lemma. O

The next step is to show that Y, actually converges to Y. (Recall that d>(£L(Y,),L(Y)) — 0
implies Y;, = Y.)

Lemma 2. We have

j—1

d3(L(Yn), L(Y)) < e -

)2 BLYj1), £(V)) + O (1°g2") .

S
.M:
~

I
-

J

and consequently 1i_>m da(L(Yn),L(Y)) =0.

~—

6 A sequence Fj, converges to F' in D if and only if F}, converges weakly to F and if the second moments of F),
converge to the second moment of F'.
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Proof. Let Gy, = L(Y;,), where Y,, is the normalized path length, and let Y and Y be independent
with £(Y) = L(Y) = F, where F is the unique fixed point of S(F) = F. Next choose versions Y7,
Y; (which are independent for 1 < j <n — 1) with

Var(Y; -Y) =d5(G; — F) and Var(Y;-Y)=d3(G; - F)
and set V, = Y; and V, = Y for = € (£, 2], Then, for U ud on [0,1] and independent of Y;

and Y; we have
-1
G =L (Wﬂ Vi + " L”UW Vo + cn([nU'|)>

Since

sup |en([na]) — c(@)| = O <logn)

n

j=1
1 « n—j > log®n

+EZ‘IE( - (le—Y)) +0< >
J:

<3§: i-1 2d2(G- e

“ne 2= n )

Thus, with a; = d3(G;, F) one has

<2 log®
— max aJ+(9<Og n),
3 0<j<n-1 n

which implies that a,, — 0. O

2.3. Profile. We now consider the sequence (T,),>0 of binary search trees generated by an iid
sequence (X, ),>1 of random variables which are ud on [0, 1]. The profile will be denoted Vj ,,, i.e.
Vik,n equals the number of internal nodes of T, at level k. We will also consider the external profile
Uk n, where Uy ,, counts the number of external nodes of T, at level k. In fact it turns out that
Ui,n is much easier to handle. Furthermore we have

Vin = Z 2k_jUj7n. 3)
>k
Thus, it is sufficient to work with Uy .
Next, let us introduce the generating functions

Yi(z,u) ZEuU’“" -z (4)
n>0
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Then we have Yy(z,u) = u + z/(1 — ) and recursively

Vi1 (z, u) _ 2
P = Yi(z,u)

with Y (0,u) = 1.
There is no method known to solve this kind or recurrence (explicitly or asymptotically). Nev-
ertheless it can be used to derive the expected profile By definition we have

Yi(z, 1)
Zi(z) = 9 ” =Y EU, o
n>0

Furthermore, Zo(z) = 1 and by (4)

Zya(&) = Dila, ) 2u(a) = 1= Zu(a)
with Zg1(0) =0 (for k£ > 0). Hence,
2k /1 \F
Ze(@) = 37 (m)
and one obtains
2k
EUk,n = Hsn,ka (5)

where s, are the (absolute) Stirling number of the first kind, in other words the number of
permutations o of n elements such that the canonical cyclic representation of ¢ has exactly k
cycles. (It seems that this explicit formula was first observed by Lynch [39], compare also with
[40]). By well known asymptotics for Stirling numbers (see [43]) we derive (for k = O(logn))

2% (logn)* n&n.k(1=log(an k/2)) -1 1
EUj, = ~ Lro(t 6
o k' (o) 2k ( * (n)) ’ (6)

where oy, 1, = log" Especially, if we just consider a local expansion which is tight for & close to

2logn we obtain

n (k—2log n) 1
EUgp,=—F———— (e  dlsn o . 7
b varlogn (e + (\/iogn>) Q

By (3) we get the same for Vj ,,:

EV,, = " (vt oL
o = Jdrlogn Viegn /) )~

This indicates that the mass of a binary search tree T;, is concentrated around level 2logn. There
exist no distributional results for Uy, or Vi . However it is possible to obtain an almost sure
result of the following kind.

Theorem 2. We have a.s.

Upn = (e(k_j;g"") +(’)( 1 )) and
fon = VAarlogn Vlogn

Vi _ n (e_(k 421(1)23"7»)2 10 ( 1 >>
fan = VAarlogn vlogn
as n — 0o, where the error term O(1/+/logn) is uniform for all k > 0.

This shows that the profile of T;, is more or less given by its expected value. The probability is
hidden in the O-term. However, one can be a little bit more precise.
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Theorem 3. There exists a random analytic function M(z) for |z — 1| < (v/2)~' with M(1) =1
such that for any given € > 0 we have a.s.

Uk.n k
LI V4
EUs,n (210gn) =0 and

Vi,n k
EVin -M (210gn> =0

as n — 00, uniformly for all k with 1.2logn < k < 2.8logn.

In fact, M (z) is the limit of a certain martingale of analytic functions as we will describe below.
The uniformity property of Theorem 2 can be used to obtain also a result for the width and
for the path length.

Theorem 4. Let U,, = rlrclg())c Ui,n and V= rlrclg())c Vi,n- Then we have a.s.

U, 1
L — 140 | —),
n/+/A4rnlogn * (\/logn)

n//A4rlogn Viogn /)’

Ln 1+0 (—1 )
2nlogn Viogn

as n — 00.

We will now present an outline of the proof of Theorems 2 and 3 which are due to Chauvin,
Drmota, and Jabbour-Hattab [8].
The basic tool for the proofs are the so-called profile polynomials

Wa(z) = Z Uk’nzk.
k>0
By (5) it is easy to derive that
nf—22
BW, () = (-1 (7). ®

The basic property of W, (z) is that the normalized version is a martingale (see [31]).

Lemma 3. The polynomials
Wa(2)
M, = ="
()= gm0
constitute a martingale with respect to the natural filtration (Fn)n>o0 associated to the sequence of

trees (Tn)n>0-

Proof. With help of the above description how T}, 11 evolves from T,, one has

Uk—l n Uk n Uk—l n+ Uk n
E(U, = (U 2 . Upgn—1 : U 1-—
(k,n+1|fn) (k,n+ )n+1 +( k,n )n+1+ k,n n+1
_ 2Up-1n | nUgn
T on+1 n+1’
Hence
2z+n
E(Wpt1(2)|Fn) = n—HWn(Z)
and consequently
E(Mpy1(2)|Fn) = Mp(2),
which completes the proof of the martingale property. O

Hence, for positive values of z, the martingale converges to an almost sure limit M(z). Inter-
estingly this property is also true for certain complex values of z.
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Lemma 4. For any compact set C C {z € C : |z — 1| < 1//2} the martingale M,(z) converges
a.s. uniformly to its limit M (z) (which is again an analytic function).

We note that M (z) is exactly the random analytic function appearing in Theorem 3. We also
note that My (1) = 1. So there is no probability at z = 1.

The proof of Lemma 4 is based on an L2-study. With help of an explicit expression for
E(W,(21)Wy(22)) it is shown that M,(z) is bounded in L? for z with |z — 1| < 1/4/2, from
which it follows that M,(2) — M(z) a.s. and in L? for some random variable M (z). Next an
estimate of the kind

E|M(z) — M(z)|* < clz1 — 2

(for some constand ¢ > 0) and Kolmogoroff’s criterion show that for every continuously differen-
tialbe curve v : [0,1] = {2z € C : |z — 1| < 1/+/2} there is s continuous version M, of M (v(t))
(t € [0,1]) such that

E ( sup |J\;L,(t)|2) < 0.
0<¢<1

Finally, which help of a theorem for vector martingales (see [44, Proposition V-2-6, p. 104]) it
follows that

sup [Mu(7(t)) = M,(5)] 0 as.
0<t<1

and

E (IMa(v(1) = M) 50 (n— o0).

Thus, by Cauchy’s formula M, (z) converges uniformly to its limit which is again an analytic
function. (For details see [8]).

Overall, we know that
Wi(2) ~ M(2) - EWn(2) 9)
if |z — 1] < 1/+/2. The idea of the proof of Theorems 2 (and completely similar for Theorems 3)
is to use Cauchy’s formula to evaluate Uy, p:

I Y A
kin = 211 |z|=1 Zk+1

dz.

For z with |z — 1| < 1/4/2 we can use Lemma 4 (resp. (9)).
For z with |z — 1| > 1/+/2 we need some information, too.

Lemma 5. For any K > 0 there exists § > 0 such that a.s.

sup [Wa(2)| = O (ﬁ)

|z|=1,|z—1|>1/v/2—§
as n — 00.

The proof of Lemma 5 is not difficult. It relies on explicit expressions for the second moment
of W, (z), Markov’s inequality, and the Borel-Cantelli lemma (compare with [8]).

It is now easy to complete the proof of Theorem 2. We have

_ 1 T it\ —kit
Uin = 5- /,WW”(e e kit gt

L / + / W, (e')e it dt
2w

t|<arccos £—§ arccos 3 —5<t<w

=L+ 5.
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With help of Lemma 5 we can easily estimate I, from above. A.s. we have

1 .
<o [ W
arccos %—5§t§7r

n

< Togn)x
For |t| < arccos 3 — &, M, (e®) is uniformly bounded a.s. Hence, we have by (8)
|Wn(ez’t)| & ne2(cost—1)logn ne—c’t2 logn

for some constant ¢’ > 0. Now fix some (sufficiently small) 5 > 0. Then we have

o0

1 i !
27 / |Wh(e™)|dt < n / o't logn gy
T
(log n)~(—m/2<|¢|<arccos § —§ (log n)(1=m)/2
< nefc'(k)g n)?
So it remains so consider the integral

1 . )
I = — W (et)e kit dt.
27
[t <(log ) ~=m)/2
For |t| < (logn)~(="/2 we have (8) a.s. and uniformly in k
Wn(eit)e—kit — (n + l)eit(Z log n—k)—t2logn (1 +0 (t 4 t3 IOg TL)) .
Since

1
/ 7t IOg" |t| + |t|3 logn)dt < m

and

/ —t logn(1+|t|+ |t|3logn) Le (log n)"

|t]> (log n)=(-=m)/2

Ii — i /oo eit(Zlogn—k)—t2 logndt +0 1
n+1 27 J_ logn

1 (k—2log n)? 1
— 76_ 2logn + 0 ,
V2m2logn logn

which completes the proof of Theorem 2.

it follows that

2.4. Height. The distribution of the height H,, of binary search trees has turned out to be an
interesting (and difficult) problem. We start with some history.

In 1986 Devroye [10] proved that the expected value EH, satisfies the asymptotic re-
lation EH,, ~ clogn (as n — o0), where ¢ = 4.31107... is the (largest real) so-
lution of the equation clog(2¢) = 1. (Earlier Pittel [47] had shown that H,/logn —
v almost surely as n — oo, where v < ¢, compare also with Robson [51]. Later
Devroye [11] provided a first bound for the error term, he proved H, — clogn =
O(y/logn loglogn) in probability.) Based on numerical data Robson conjectured that the vari-
ance Var H,, is bounded. In fact, he could prove (see [52]) that there is an infinite subsequence for
which

E|H, — EH,| = O(1),

and that his conjecture is equivalent to the assertion that the expected value of the number of
nodes at level k = H,, is bounded (see [53]). The best bounds (before 1999) were given by two
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completely different methods by Devroye and Reed [12] and later by Drmota [15]. They (both)
proved
EH, = clogn + O(loglogn) (10)
and
VarH,, = E(H, — EH,)? = O((loglogn)?).
Eventually, Reed [49] settled Robson’s conjecture saying that
VarH, = O(1) (n — o0).

His approach is related to that of [12], moreover he could also show that

EH, =clogn — loglogn + O(1). (11)

3c
2(c—-1)
A second proof of Robson’s conjecture was given (independently) by the author [16] (just a few
months later than Reed).

Before stating the result on the distribution of the height of binary search trees we want to
present a first flavour of this problem. It is clear that Uy, = 0 implies H,, > k (the converse
statement is almost true). By (7) it follows that we have EU,, , < 1if k > clogn— ﬁ loglog n+
O (1), where ¢ = 4.31107... is the (largest real) solution of the equation clog (%) = 1. Hence,
one might expect that H, is concentrated around ¢, := clogn — ﬁ loglogn. We can be even

more precise. Since
Pr[H, > k] < Pr[Uk,, = 0] < EU
we get (with help of (6))
EH, =Y Pr[H, >k
£>0
S Cp + Z EUk,n
k>cn

<ecp+0(1).

This estimate would be optimal if EU ,?,n = 0(1) for k > ¢,. However, this is not true. And this

is really the crux of the matter. As mentioned above, see (11), the expected height is definitely
smaller.

In what follows we want to present an approach to the height of binary search trees which
is totally based on generating functions (and is completely different to Reed’s method [49]). We
mainly follow [17].

Let

ye(z) =) Pr[H, < k] - 2"
n>0

Then yo(z) =1 and
Yir1(2) = yi(2)®
with initial condition yz11(0) = 1. Obviously, yx(z) are polynomials of degree 2¥ — 1 and have a

limit y(z) = 1/(1—2z) (for 0 < z < 1). Thus, there is a singularity for = 1, and in fact everything
can be formulated in terms of the (singular) sequence yg(1).

Theorem 5. There exists a monotonically decreasing function ¥(y), y > 0, with ¥(0) = 1 and
limy o ¥(y) = 0 satisfying the integral equation

yU(y/ce) = / () - 2)dz
such that
PrlH, < K = ¥(n/yx(1)) +0(1) (n - o), (12)
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where the o(1)-error term is uniform for all k > 0. Furthermore, there exist constants C,np > 0
such that

Pr[|H, — hy| >y] < Ce™™,  (y>0), (13)
where hy, = max{k : yr(1) <n}.
Especially, it follows from Theorem 5 that the expected value of the height H,, of binary search
trees of size n is given by
EH, = max{k: g(1) <n}+ O(1)  (n— o0). (14)
and that all centralized moments are bounded:”
E|H, -EH,|"=0() (n — o0). (15)
If one combines (11) and (14) one gets®

yk(]-) — ek/c+72(c3—1) log k+0(l)‘ (16)

It would be (very) interesting to find a direct proof of (16) or even tighter estimates.

The first step of the proof is to solve a proper fixed point equation.

Lemma 6. Let o = e'/¢. Then there uniquely exists a function U(y), y > 0, with the following
properties:

1. ¥(y) — 1 ~cy®tlogy asy — 0+ for some constant c;.

2. ¥(y)=0 (e‘cyﬁ) as y — oo for some C > 0 and some v > 1.
3. U(y), 0 <y < o0, is decreasing.
4

U(y)dy = 1.
5. yU(y/a) = / () Uy - 2)de

Proof. We first suppose that 1 < p < a = €'/¢ and consider 8 < ¢ — 1 satisfying 2p° = 8 + 1.
(Note that then 2p°~! < ¢.) Let D denote the space of all decreasing functions ¥ on [0, 00) with
T(y) =1—yP + O (y°!) (for all y > 0) and ¥(y) — 0 as y — oc. Furthermore, set

d(®1,Ps) = sup [y' (L1 (y) — Ta(y)| .
y>0
Then (D, d) is a complete metric space. Next consider the mapping S : D — D defined by
1 ey
S = [ ¥EUe - 2)d
0

T
Suppose that d(¥;, ¥y) = § for some U1, 5 € D. From

[T1(2)P1(py — 2) — Va(2)Va2(py — 2)| < [P1(2) — Ca(2)| + [T1(py — 2) — Va2(py — 2)|
<6 (2N +(py—2)°7")

we obtain

25 Py 2 c—1
S W) - S@IWI < 2 [ 27 e = gyt
PY Jo ¢
and consequently d(S(¥1)(y), S(¥2)(y)) < L-d(¥y,¥s) with L =2p°1/c < 1. Thus, S: D — D
is a contraction and one gets a unique fixed point in D.

"Note that (15) solves Robson’s conjecture, however, in a quite implicit way. Interestingly, Theorem 5 does not
provide any information on the magnitude of yi (1) and thus (via (14)) no quantitative bound for the expected
height EH,,. It just uses the property that the sequence yz41(1)/yx (1) converges (see Lemma 9). The exact order
of EH,, was given by Reed [49] by improving the previous bound (10) by Devroye and Reed [12] and by the author
[15].

8Interestingly the asymptotic behaviour of y (1) was posed as an unsolved problem by C. Ponder [48] without
stating any connection to binary search trees.
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By keeping track of the iteration (leading to the fixed point W) it is easy to show that there
exists constants C > 0,7 > 1 such that ¥(y) = O (e=C¥") as y — oo (see [17]). Thus, the integral
fo y) dy exists and by proper scaling of the argument we can assume that this integral equals

(We will denote this function by ¥(y, p).

Unfortunately, we cannot use the same argument for p = a since 2a°1!/c = 1 and we have no
contraction. However, it is possible to consider the limit pgrg U (y, p) though not in a direct way.

Let ®(u) = ®(u, p) denote the Laplace transform

®(u,p) = / U(y,ple” " dy
0

of ¥(z,p). Then ®(u) = ®(u, p) satisfies the differential equation

vo=5o(;)

with the initial condition ®(0) = 1. It is now easy to show that for every p > 0 this differential
equation has a unique (entire) solution of the form

®(u,p) = Y _(~1)*ex(p)ut,
£>0
where ¢o(p) =1 and

k
C C
k+1 k+1§ kl

i.e. ¢ (p) are polynomials in 1/p with non-negative coefficients. For 1 < p < «a these solutions
coincide with the Laplace transforms of ¥(y, p). It is no problem to consider the (obvious) limit
lim, o ®(u, p) = ®(u, ) and then to use the inverse Laplace transform to ensure that the limit
lim, o ¥(y, p) actually exists and has all proposed properties (for details see [17]). O

With help of the function ¥(y) of Lemma 6 we define auxiliary functions

Jr(x) == /Ooo W(y/ak)e_y(l_w) dy = oF®(a*(1 — ), ), (17)

where k is an arbitrary real (not necessarily an integral) number. In some sense these functions
simulate the above polynomials yg(z).

Lemma 7. The functions i(x), k > 0, © > 0, defined by (17) satisfy
L G (z) = Gr(2)*.
2. 0< gx(0) < 1.
_ Cy ¢
1—yk(0)~—k (k = 0).

(1) = a*.
Uk(z) has a power series expansion §i(x) = >, <o ankx™ with positive coefficients any > 0
which are asymptotically given by -

ank = ¥(nfa*) +o(1),

where the o(1) error term is uniform for all integers n > 0 and all real numbers k > 0.
6. For every integer k > 0 and for every real number | the difference yi(z) — Gi(z) has exactly
one zero for xp; on the positive real line. Furthermore, these zeros satisfy Tp41,14+1 > Tk,

crks @

Proof. The first 4 properties are direct translations of corresponding properties of ¥(y).
Next, by definition we have

Jx(z) = Z (% /000 y"ey\Il(yak)dy) x

n>0
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If C; < na™* < O, for some constants Cy,Cy > 0. then by the Laplace method and by using the
relation

1 o0

— [ yleVdy=1,

n! Jo
we obtain (by expanding locally around y = n) anr ~ ¥(n/aF) uniformly for this kind of range.
However, this directly implies a,x = ¥(n/a¥) + o(1) for the whole range.

In order to prove the last property we proceed by induction on k. For convenience we set
Oka(x) = yr(x) — §i(z). Since §;(x) is strictly increasing and satisfies 0 < §;(0) < 1 and
lim, o0 §i(x) = oo the assertion is surely true for k£ = 0. Now suppose that d;(x) has exatly
one zero Ty > 0. Since

5;c+1,l+1 ('Z') = y;c+1($) - gll-q-l (w)
= yi(2)” = Gi(z)?
= 0k (=) (yr(2) + ().
it follows that dgxt1,41(x) is increasing for 0 < x < xp; and decreasing for x > x,. Since

Ok+1,1+1(0) > 0 and limy_,o0 Og41,441(2) = —oo there exists a unique zero 41441 > X,y of
Okt1,141(2)- O

With help of these auxiliary function g (z) we obtain proper tail estimates of the distribution
of H,.

Lemma 8. Set e = clogy(1). Then epy1 > e + 1 and there exist a constant C < 0 such that
Pr[H, < k] < Ca~(clogn—ex)
and
Pr[H,, > k] < Ca~(ex—clogn)
Proof. By definition g, (1) = yx(1). Thus, by 6. of Lemma 7 we have §,, (z) < yg(z) for 0 <z <1
T

and §e, (z) > yx(z) for > 1. Especially it follows that g, +1(z) < ygps1(z) for 0 < z 5_ 1 and
consequently a®**! < a®+1 which gives ep11 > e + 1.
Suppose that z > 1. Then we get (by using the trivial inequality Pr[H,, < k] < Pr[H,11 < k])
” zntl —1
Jeo (@) > yi(x) > Y Pr{H, < k]a' > Pr[H, < k] ———
1=0

z—1

Choosing £ = 1 + a~ ° and using the definition of §, () we obtain the upper bound
1

_ _ ,—(clogn—ex)
Pr[H, < k] < (0T a—enyni= 1<I>( 1) < i « L (18)
In the same fashion we have for 0 < z < 1
1 1
I 1 >
(@) > —— — ()
> (1-Pr[H < k)
I=n
> (1— Pr[H, < k) =
— r .
- e
Finally, setting = 1 — 1/n we directly get
1— PI'[Hn < k] <1— aekfclogn(b(aekfclogn) & af(ekfclogn)‘ (19)
O

Obviously, the tail estimate (13) follows from Lemma 8. In order to complete the proof of
Theorem 5 we have to refine the methods a little bit. The idea is to approximate yi(x) by Je, (z).
Recall that e, was defined such that yg(1) = @, (1). It turns out that the next property is crucial
in order to get more.
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Lemma 9. We have
2(1 1
Yr+2(1) < Yer1(1) (20)
Yr+1(1) ye(1)
Consequently the sequence yg11(1)/yr(1) converges and its limit is given by

Yrt1(1) 1/e
=a=e’". 21
k—00 yk(l) ( )

Proof. Let v € (0,1) be a fixed constant and let zp(z,v) be defined by zo(z,v) = 1/(1 — z) for
z <1—7,by zo(z,v) =1/ for x > 1 — v, and recursively by

zet1(z,v) =1 +/ 21(t,y)?dt for h > 0.
0

Of course, by induction it follows that zj(z,v) =1/(1 — z) for x <1 — ~ and that

1
zp(w,y) = Yk ((z=1+7v)/y) forz>1-—1.

Now we proceed as in the proof of 6. of Lemma 7 and obtain that the difference 2 (z, v) — yp+1(z)
has exactly one zero & (7y) in the range z > 0, i.e. zx(z,7) > yr+1(z) for 0 < z < &(v) and
zp(z) < ypy1(x) for & > k(). Furthermore &x11(y) > &k(y). We now apply this property for
v = yk(1)/yr+1(1). Since 2x(1,v) = yx(1)/7 it follows that

y(1) ) _
o (1) =)

or & (ye(1)/yk+1(1)) = 1. Consequently &1 (yr(1)/yr+1(1)) > 1 and thus

ye(1) \ _ yra(1)?
Zk+1 (1, ka(l)) =T > Yry2(1)

as proposed.
Since the sequence yr+1(1)/yr(1) is decreasing and non-negative is it thus convergent. We
already know that logyx(1) ~ k/c (compare with (16)). Hence the limit is given by (21). O

For example, it follows from Lemma 9 that
(1) = ye-1(1)” ~ yr(1)’a? = G 1 (1)? = g, (1)

Inductively, one gets for every fixed I > 0 that y,(f)(l) ~ gjé?(l) as k — o0. Thus, yi(z) can
be properly approximated by ., (z) in a complex neighbourhood of = 1. Together with some
further (technical but easy) estimates (compare with [17]) it follows via Cauchy’s formula that

Pr[H, <k] = =l /| . v () dx

27 zntl
AR
= — d 1
2i /|E|_1 e+l z + o(1)

=T(n/a) +o(1)
= B(n/ys(1) + o(1),
which completes the proof of Theorem 5.

2.5. Branching Random Walks. Devroye and others (see [10, 12, 47, 49]) have used a slightly
modified apporach to tackle the height H,, of binary search trees. Let T, denote the infinte binary
tree rooted at vro0t- Each node v of To, has a rights son r(v) and a left son (v). For every node v
we consider iid random variable U (v), which are ud on [0, 1], and label the edge (v,r(v)) by U(v)
and the edge (v,1(v)) by 1 — U(v). Furthermore, let f(v) denote the product of the labels of the
edges on the unique path from the root vyee to v. If the labels on the path from the root to v are
Uy,Us,...,U then we also define

hn(v) = [--- [[nUp|Uz] - - - Ug].
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One observation from Devroye [10] was that the sequence of random trees
Tpn={v €T :hy(v) >1}

constitute exactly random binary search tree. In this context it is also quite natural to consider
another sequence of random trees:

T,={veTy: flv)>1/n}.
Since
nf(v) — k < hp(v) <nf(v)

for every node v of distance k to the root the random trees 7}, and T, are quite close, especially
their heights H,, and H,.? Note that Reed [49] has used this connection, in fact, we first provded
that

EH, = clogn — loglogn + O (1) (22)

3c
2(e—1)
and Var H,, = O(1) as n — 0o, where ¢ = 4.31107... is the same constant as in (11). The
corresponding result for binary search trees was (more or less) a corollary from these facts.

The height distribution of H,, is also very closely connected to the Random Bisection Problem
or Random Fragmentation Problem (see [37]). There, an interval of length x is cut into two halves
of length 1 = Uz and x5 = (1 —U)z, where U is ud on [0, 1]. Next, each of these two fragments is
cut again into two parts (independently of the other and previous cuts). After the k-th step, there
are 2F fragments whose lengths are correlated random variables. Given the initial length 2z, the
problem is to determine the probability Py (z,!) that each of the 2* fragments is shorter (or equal)
than [. (Obviously this problem is homegeneous in z and [, thus we can write Pj(z,l) = Py(z/l)
or set | = 1.) By definition we have Po(z) = 1 for 0 < z < 1 and Py(x) = 0 for z > 1 and
recursively

_ 1 z_ _
Pinie) = [ Pew)Pulo—w)dy. (23)
0
For later use we also define

Ty 1= /000 Py(z) dr, (24)

which is surely finite because Py (z) = 0 for = > 2*.
The connection between the height H,, and the random bisection problem (which is valid for
non-integral n, too) is given by

Pr[H, < k] =P (1, %) = Pi(n) (25)

(which is obvious by definition).
There is even another interpretation of H,,. Consider the discrete branching random walk defined
by the point process

Z = (5)(1 +5X2,

where X1 = log(1/U) and X5 = log(1/(1 — U)) with U ud on [0, 1].1° Let L, denote the left most
particle at stage k (and Ry, the corresponding right most particle). Then the distribution of Ly is
given by

Pr[L;, > z] = Pj(e%).

9In what follows it will be convenient to consider n in the defintion of T, and H,, also as a continuous parameter
n > 0. Of course, this can be also done for T, and H, but then there is no interpretation as usual random binary
search trees for non integral n.

10The branching random walk is a sequence of point processes Zj, where Zg = g and Z+1 evolves from Zj, by
splitting each particle of Zj, (independently of the others) into (a random number) N of points with displacements
given by a fixed point process Z = dx, + -+ dxp-
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Thus, we have three different but equivalent problems. We will show that the height H, can
be treated in completely the same way as above H,,. The result reads as follows.

Theorem 6. Let U(y), y > 0, be the same function as in Theorem 5. Then
Pr[H, < k] = ¥(n/x}) +o(1) (n = o), (26)

where the o(1)-error term is uniform for all k > 0. Furthermore, there exist constants C,np > 0
such that

Pr(|H, — hn| > y] < Ce™™, (y >0), (27)
where hy, = max{k : z;, < n}.

As in the case of binary search trees it follows from Theorem 6 that the expected value of the
height H,, is given by

EH, = max{k:z; <n}+ O(1) (n — 00). (28)
and that all centralized moments are bounded:
E|H,-EH,|"=0(1) (n — 00). (29)
If one combines (22) and (28) one gets as above
o) = ek/c+ﬁ log k+(9(1)' (30)

Equivalently, we have solved the random bisection problem:

Pi(z,1) = Py(z/l) = ¥ (%) +o(1).

Finally, the distribution of the left most particle Ly at stage k in the above discrete branching
random walk is given by

Pr[Ly > z] = w(x — m(k)) + o(1), (31)

where w(z) = ¥(e”) and

k
m(k) =logzy = p + logk + O(1)

3
2(c—1)
is closely related the ¥(1)-quantil of the distibution of Lj. Note that the function w(z) is known
as a travelling wave in the context of branching random walks. The existence of travelling waves
is an important problem in branching random walks and only known for special cases (see [7]
for the classical Branching Brownian motion and [4] for discrete branching random walks with
iid displacements X; (of the defining point process Z) with a log-concave density.) The relation
(31) seems to be the first travelling wave solution for a discrete branching random walk with
non-independent and unbounded increments of the defining point process Z.

The proof of Theorem 6 is (as already mentioned) very close to that of Theorem 5. If we define
the Laplace transforms

Ue(x) = / Pr[H, < k]e® YU adn
0

_ / Po(y)e™ Vv dy
0

then (23) directly translates to

i1 (@) =T (2)?

with initial conditions

Jo(@) = — (" = 1)

and

7,(0) = /000 Pr(y)e Vdy ~ 1.
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Hence, we have a completely similar situation as for the case of binary search trees. Note also that

As above, the priciple idea is to approximate 7, (z) by e, (), where €, = clog7,(1) and

@) = [ Bly/ah)ee I dy
0
is the same function as above.

3. GALTON WATSON TREES

3.1. Probabilistic Model. Let £ be a non-negative integer valued random variable with E€ =1,
0 < Var¢ = o2 < co.'! The Galton-Watson branching process (Zy)r>o is now given by Zy = 1,
and for £ > 1 by

Zy-1

Zy = Z ‘f;k)a

Jj=1

where the (§](-k)) k,; are iid random variables distributed as &.

It is well known that Galton-Watson branching processes can be represented by ordered (finite
or infinite) rooted trees T such that the sequence (Z;)x>o is just the profile sequence and Y, Zx,
which is called the total progeny, is just the number of nodes |T| of 7.1 We will denote v/(T') the
probability that T occurs. The generating function y(z) = >", < ynaz™ of the numbers

yn =Pr|T|=n]= > v(T)
|T|=n
satisfies the functional equation
y(z) = 2o(y(2)),

where p(t) = Et¢ = Y p;t! with ¢; = Pr[¢ = i]. If T,, denotes the set of rooted trees T of size
|T| = n then

v(T)
vn(T) :=
==
is a probability distribution on 7, which we will use in the sequel. Note that
d
Yn ~ ———n /2 (n =1 mod d), (32)
2o

where d = ged{i > 0: ¢; > 0}.13

For example, for o(t) = Et* = (1+t)%/4=1+ L+ % we just recover the class of binary trees
with n (internal) nodes, where each binary tree (of size n) has equal probability. Another well
know expample are planted plane trees (again with uniform distribution on trees of size n). They
are induced by ¢(t) =Ett =1/2-t)=1 + L + %—i—---.

In order to analyze a rooted tree we consider the so-called depth-first search. It can be described
as a walk (v(i),1 <4 < 2n — 1) around the vertices. Let v(1) be the root. Given v(i) choose (if
possible) the first (in the ordering) edge at v(i) leading away from the root which has not already
been travered, and let (v(i),v(¢ + 1)) be that edge. If this is not possible, let (v(i),v(i + 1)) be
the edge from v(i) leading towards the root. This walk terminates with v(2n — 1), which equals
(again) the root.

The search depth (i) is now defined as the distance from the root to v(i) plus 1 and z(0) =
z(2n) = 0. (For non-ingegral i we use linear interpolation and thus z(t), 0 < t < 2n, can be
considered as a continuous ezcursion).

1 Usually it is not assumed that E£ = 1 (which characterize so-called critical branching processes). However,
for our purposes it is no loss of generality to make this assumption (see [32]).

12For critical branching processes the probability that the total progeny is finite equals 1.

13Tn what follows we will always assume that d = 1. The case d > 1 is completely analogue.
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F1GURE 3. Depth-first search of a rooted tree

Note that the height h and the path lenght [ can be expressed with help of z():

. 1 . n
h —Oggnx(z) —1 and [= 52:{:(1) — 3

If we consider planted plane trees, i.e. Et¢ = 1/(2—t), then this excursion is nothing else than
the Dyck path, i.e. the standard random walk starting at the origin with probabilty % going one
step up resp. one step down conditioned on z(2n) =0 and z(j) #0for 1 < j < 2n — 1.

We will denote by X,,(t), 0 < t < 2n, the random search depth of trees in T, resp. of Galton-
Watson trees conditioned on the total progeny. As for binary search trees, the random profile
(for trees in 7,) will be denoted by (Vi,n)r>0 (which can be considered as the branching process
(Zk) k>0 conditions on the total progeny); L, denotes the total path length, and H,, the height.

3.2. Search Depth. The following general result on the search depth process has been proved
by Aldous [1, 2, 3].

Theorem 7. Suppose that the offspring distribution & of a Galton- Watson branching process is
critical, i.e. E€ = 1, and that the variance o> = Var ¢ is non-zero and finite. Then the rescaled
search depth process converges weakly to %e(t), where e(t) denotes the standard Brownian excursion
of duration 1:

/n

In view of the usual discrete excursion (correponding to the case Et¢ = 1/(2—t)), where the weak
convergence to Brownian excursion is a well known result, Theorem 7 is a natural generalization.
Since the height is given by

(ixn@nt), 0<t< 1) = <§e(t),0 <t< 1) :

and the internal path length by
Non
L, = —an(z) 373 X, (t) dt
=0
we directly obtain the following weak convergence results.

Theorem 8. We have
1 2
%Hn = - Org%xl e(t)

and

1 2
——L, — — t) dt.
— : / e(t)
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The distribution function of M = max e(t) is given by

0<i<1
,C(M) = PI‘[M < ;1;'] =1- 22(4$’2k2 _ 1)672“”2'“2
k=1

and the moments by
E(M") =2 " r(r = DI(r/2)((r),

where ((s) denotes the Riemann Zeta-function and (r — 1){(r) = 1 for » = 1. The moments of
I= fol e(t) dt determined by

4\/7_1'7“'
E(I") =K, ——"—~—+
( ) TF (3T2_1) 27‘/27

where K, is recursively given by

3r —4 =
K, =~ —K_i+ ZKjKr_j, (r>2),
j=1
with initial values Ko = —% and K; = §.

Thus, one might expect that E(H?) ~ (2)"E(M")-n™/? and E(L7) ~ (2)" E(I")-n®/2 (which
is fact true and has been proved by Flajolet and Odlyzko [24] resp. by Takécs [56]) but this does
follow from Theorem 7.

Aldous’ proof of Theorem 7 (see [1, 2, 3]) is based on a very elegant concept of the continuum
random tree (which will not be described here). But it only provides weak convergence, i.e. we get

2
Jlim EF (X,(2nt)/v/n) = EF (;e(t))
for bounded continuous functionals F' : C[0,1] — R. However, those functionals we are interested
in (projections, maximum, integral) are not bounded.

In what follows we will describe an alternate proof of Theorem 7 which is based on analytic
methods (singularity analysis) applied to generating functions and which is suitable to prove
convergence of moments of functionals of polynomial growth. In order to this we have to assume
a little bit more that the existence of the second moment of £. We suppose that there exits v > 0
such that

Ee™ < oo (33)
In order to simplify notation we set
g

n(t) i= ——=X,,(2nt).

en(t) == 3 n n(2nt)
Since e, (t) and e(t) are stochastic processes on the space C[0, 1] weak convergence of e,,(t) = e(t)
is equivalent to finite dimensions convergence and to tightness (see [5, Theorem 12.3]). These
two conditions can be directly checked. (The proof can be worked out in the same way as in
Gittenberger [27], where the contour, i.e. the sequence of heights of the leaves, has been considered.)

Lemma 10. Suppose that (33) is satisfied for some v > 0 and let 0 < 81 < 82 < -+ < 8 <
be fized (with k > 1). Then the random vector (e,(s1),en(82),-..,en(sk)) converges weakly to

(e(s1),e(s2),-- -, e(sk))-

Lemma 11. Suppose that (33) is satisfied for some v > 0 Then there exist constants C,D > 0
such that for all s,t € [0,1] and € > 0,

C 3
Pr{len(s) —en(t)] 2 €} < g exp ("Wﬁ) '
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Hence it follows that
s — ¢
Pr{len(s) —en(t)| > e} < CET
for every a > 1. Thus, by [5, Theroem 12.3] the sequence of processes e, (t) is tight. It would have
also sufficient to show

E (len(t) — en(s)[P) < C|t —s|* for all 5,t € [0,1]. (34)

for some o > 1 and some 3 > 0. Of course, this follows from Lemma, 11, too. For example, we can
choose 8 = 2a for every a > 1.

The idea of the proof is to use generating functions and analytic methods. The basic generating
function is y(x) = >_,,»; Pr[|T| = n]z", the solution of the function equation y = zp(y). It is
well known that (conditioned on (33)) the radius of convergence of y(z) equals 1, there is a local
expansion of the form

2
y(x)=1—£\/1—x+02(1—$)+O<|1—w|3/2) (35)

g

which is valid for a complex neighbourhood of z = 1 (without the half real axis z > 1), and y(z)
has an analytic continuation to the region {z € C: |z| < 1 + k,argz — 1 # 0} for some x > 0 (if
one assumes that d = 1 — for d > 1 the situation is similar). For example, (35) directly implies
(32) even with an error term of order O (n~%2)) by an application of the Transfer Lemma of
Flajolet and Odlyzko [25]:

Lemma 12. Suppose that F(z) =}, 5, fn2" is analytic in the domain
A={z:]z| <14k, |arg(z —1)| > 7}
for some k>0 and 0 <y < 5. If
IF(2)] < CJ1L— 2
for z € A (and some C > 0 and some real a) then, as n — oo
fa=0Mm ).

Next consider the probabilities agy,,, = Pr[|T| = n, z(m) = k] (where z(-) denotes the search
depth of T'). Then the generating function Ay(z,u) = Zm’n akmnz™u® of agm., is given by
(compare with [27])

Ap(z,u) = Az, u)d1 (z,u, 1)L, (36)
where
L an)plynd) — y(@)e(y(@)
Al = V) ~ (@)
and

o(y(zu?)) — p(y(zv?))
y(au?) —y(zv?)
Similarly one also gets explicit expressions for the generating function of the numbers

o1 (z,u,v) = UV

bkyma kama,n = PI‘[|T| =n, z(m1) = k1, x(mz) = k2]'

For k; < ks we obtain

Bl ks (T, u1,u2) = Z bk1m1,k2m2,nmnu;nlu;n2
m1,m2,n>0
= A(z(uruz)?, 1) A(z, u)p1 (z, uruz, u2)" ¢y (2, up, 1)1

1— qmin(kl,kz)

X ¢o2(x, uruz, us) T4

Y
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where
Go(m,u,v) =2y i Y ylau’)ry(av®)y ()’
i>2 Ji+je+js=i—2
and

= é1(z, uruz, 1)
b1 (x, urug, uz)d1 (2, u2,1)

(The general case is even more involved way, compare again with [27]).
With help of Cauchy’s formula it is possible to extract

Ag(z,u)
Qkm,n = / / — T dudx
27T’L lz|=r1 J |u|=rs .’L’"+ Um+

The advantage of (36) is that one exactly knows the behaviour of the singularities of Ag(z,u),
and it is no doubt that the asymptotic leading term of apm,, comes from that part of the Cauchy
integral, where x and u are close to the singularities. More precisely, one can use a double Hankel
contour (compare with [13, 27]) locally around the singularities and gets

o2k?

= wm(en — )2 P (‘%) +o(55)

uniformly for ¢ < M < 2 —¢ and k < Cy/n, as n — oo, where ¢ > 0 and C > 0 are arbitrary
constants. Thus, if m ~ tn then the distribution of agy,,,/yn behaves like the density of a Maxwell
distribution, which is exactly the marginal distributions of the Brownian excursion. (The multi
dimensional case is technically more involved (see [13, 27] but finally one gets an alternate proof
of Lemma 10).

Qkm,n

The proof of Lemma 11 is in some sense similar to that of Lemma 10. One uses explicit repre-
sentation for

D Braks(@,u1,u2)

[k1—k2|>1

in terms of y(zu?) and y(z) (which is easy) and then has to estimate the coeffients of z™u]" uj*2.

For this purpose one uses (again) Cauchy’s formula, estimates the integrand absolutely and applies
the following technical estimate:

Lemma 13. Suppose that F(z) =3, <, fn2" is analytic in the domain
A={z:]|2| <14k, |arg(z —1)| >~}
for some k>0 and 0 < v < 5. Suppose further that

[P(2)] < [em VI3

for z € A and for some C > 0, and let fr[lk] denote the coefficients of F(z)F = > >0 }lk]z". Then
there exists a constant C' > 0 such that, as n — oo,

= o (L (—or ko
)

The proof of Lemma 13 is quite similar to that of the Tranfer Lemma 12 (for details see [27]).

uniformly for oll k > 0.
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3.3. Convergence of Moments. The methods of Lemma 10 and 11 constitute an alternate proof
of Theorem 7. Of course, they need a little bit more restrictive assumption, namely (33), however,
they can be used to prove convergence of moment. Especially Lemma 11 (resp. an estimate of the
kind (34)) is important in this context.

Theorem 9. Suppose that a sequence of stochastic processes x,(t) defined on C[0,1] converges
weakly to x(t). Furthermore suppose that there exists sg € [0,1] such that for all v >0

SUp E (on (50)]") < 0o, (37)
and that for every a > 1 there is 8 > 0 and C > 0 with
E (|zn(t) — z4(5)|°) < C|t — s|* for all 5, € [0,1]. (38)
Let F : C[0,1] = R be a continuous functional of polynomial growth, i.e. there exits r > 0 with
IF@)| < llyllS
for ally € C[0,1]. Then
nlgréo E F(z,) = E F(z). (39)

For example, Theorem 9 implies that all finite dimensional moments of z,(t) converge to that
of z(t), i.e. for all fixed 0 <57 < 83 <--- < s <and ry,re,...,r, >0

Jim B (z(s1)" @a(s2)" - 2 (s8)™) = E (2(s1)" 2(52)"™ - - 2(s8)™) -

Furthermore, we have

T T
lim E (max mn(t)) =E <max x(t))
nroo  \0<t<1 0<t<1
and similarly for the integral fol z,(t)dt.

Especially we get these properties for the rescaled search depth process e, (t); we can use sg = 0
and apply (34).

The key of the proof of Theorem 9 is the following observation.

Lemma 14. Suppose that x,(t) and x(t) are stochastic processes satisfying the assumptions of
Theorem 9. Then for every a > 1 there exists a constant K > 0 such that fore >0 and 0 < § <1

a—1
P{ sup [2a(s) = on(t)] a} <k% (40)
ls—t[<é €
and consequently
E(mw%@—%wﬂ=0@?j (41)
|s—t|<6

for every fixed r < 8 — 1.

Note that if (38) holds for all @ > 1 then 8 = () is unbounded as a function in «. Thus, the
restriction r < 8 — 1 is not that serious.

Proof. First (40) follows from (38) by using the methods of Billingsley [5, pp. 95]. Finally, (41) is
an easy consequence of (40). O

It is now quite easy to complete the proof of Theorem 9:
Proof. By combining (37) and (38) it follows that for every s¢ € [0, 1]

sup B (|2 (50)[") < 00.
n>0
Next, by a direct combination of (37) with so = 3 and (41) with § = 1 we obtain (for all r > 0)

E t)|"
P (g o) <
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and consequently (for any ¢ > 0)

supE F(z,)'™ < oo.
n>0

By weak convergence we also have F(z,,) => F(z). Thus, by [6, p. 338] all moments of F(z) exist
and

lim E F(z,) = E F(z).

n—oe

O

3.4. Height. The distribution of the height H,, was already established in Theorem 8. With help
of Lemma 11 and Theorem 9 we directly obtain convergence of moments, too:

Theorem 10. Suppose that the offspring distribution & of a critial Galton- Watson branching pro-
cess satisfies (33) for some v > 0. Then, for every r > 0 we have, as n — oo,
E(H]) ~ 2T/ZU_T7'(7' — 1) (r/2){(r) -n'?
where ((s) denotes the Riemann Zeta-function and (r — 1){(r) =1 for r = 1.
This kind of approach is quite general, but we do not get any error term. The only method
known, which provides an error term, is due to Flajolet and Odlyzko [24]. In fact, they provided

the first proof of Theorem 10 (by the use of generating functions and analytic methods.
Let yr (z) denote the generating functions

yr(z) = Z Pr[|T| =n, hr < k] z",
n>1
where hr denotes the height of T', then yo(z) = poz, and recursively
yri1(z) = 2o(ye(2)), (K >0). (42)
With help of these function one gets the generating function of the expected height:
H(z):=) EH, yu-2" =Y (y(x) - yi(a)).
n>1 k>0

After a subtle analysis of the above recurrence (42) it is possible to derive a local representation
of the form

1
1-z
for some constant K and every (fixed) & > 0 (see [24]). Thus, with help of the Transfer Lemma 12
and (32) we directly get, as n — oo,

1
H(z) = — log +K+O<|1—x|%*")

@-\/E-I-O(n%”‘).

In a similar way one gets corresponding asymptotic equivalents for higher moments which charac-
terize again the distribution of n='/2H,, of Theorem 8 (see [24]).

EH, =

3.5. Internal Path Length. As for the height we can apply Lemma 11 and Theorem 9 to obtain
(without any further work) convergence of moments for the internal path length, too:

Theorem 11. Suppose that the offspring distribution £ of a critial Galton- Watson branching pro-
cess satisfies (33) for some v > 0. Then, for every r > 0 we have, as n — oo,

4\/7_TT!2T/2
E(L7)~K,—Y—— .p%/2
( n) TF (37‘2—1) or
where K, is recursively given by

r—1
3r—4
K, = 1 K,.,1+ZK]'KT,]', (7'22),

j=1

with initial values Ko = —% and K1 = %.
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Again there is no error term. However, (in contrary to the height) there is an easy method
to reprove Theorem 11 even with an error term (but then the relation to Brownian excursion is
completely hidden.)

The corresponding generating function p(z,u) = 35, (Pr[|T| = n, Ir = kJz"u* (where Ir
denote the path length of T') satisfies the functional equation
p(z,u) = zp(p(ru, u)). (43)

If we are interested, for example, in the expected value E L,, then we consider the partial derivative
with respect to u and set u = 1:

op(z,1)
=SN"EL, -y, - 2™
ou 7;) Yn - T

From (43) we directly get
op(x,1) _ 2*¢'(y(x))y'(x)

Ou  1-ay¢(y(z)
If we use also use the local expansions y'(z) = 1/(v20vT—=1z) + O (|1 — z|71/2) and z¢'(y(z)) =
1—v20y/1 =2+ O(|1 — x|) one gets
op(,1) 1 —1/2
= 1-—
du 202(1—x)+0<| i )

and with help of the Transfer Lemma 12 and (32)

=] 32
EL, = 552 " +0O(n).

In the same way one can evaluate all higher moments (compare with Takécs [56]) and obtain also
an error term of the form (1 + O (n=1/2)) .

3.6. Profile. Let (Vi 5)r>0 denote the profile of Galton-Watson trees, i.e. the branching process
(Zk)k>0 conditioned on the total progeny >, Z; = n. Then the following result holds.

Theorem 12. Suppose that the offspring distribution £ of a Galton- Watson branching process is
critical, i.e. E€ = 1, and that the variance o> = Var ¢ is non-zero and finite. Then the rescaled
ag

profile process converges weakly to ($1(%s),s > 0), where (I(s), s > 0) denotes the total local time
of the Brownian excursion of duration 1:

(LV[S Ay 8> 0) = (gl(gs),s > 0) .

vn 2°\2
The (total) local time I(s) can be defined by
1/
1) = lim > [ 1 (et .

It might be interpreted as the time a Brownian excursion stays at level s. (We can assume that
I(s) is continuous a.s.)

In view of Theorem 7 this result is not unexpected. However, it does not follow from it.'* The
first proof of Theorem 12 is due to Drmota and Gittenberger [18]. It uses generating functions and
analytic methods — we will comment on their proof in the sequel —, however, one has to assume
(again) that E e?¢ exists for some v > 0. The full version of Theorem 12 was given by Pitman [46]
and Kersting [33]. Partial results go back to [9, 26, 30, 38, 57].

The advantage of Drmota and Gittenberger’s approach is that one gets convergence of moments,
too, as already discussed for the depth search process. Thus, we get, for example, convergence of
moments of the width, see the next section.

™1n fact, Theorem 12 has been formulated as a conjecture by Aldous [2].
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The method of [18] is to use the generating functions

yi(w,u) =Y Pr|T| =n, vy = m]z"u™
n,m

= ZEuV’“’" “Yn - 2"

n>1

We have yo(z, u) = uy(x) and recursively

Yrt1(z,u) = 2oy (z,u)),  (k>0). (44)
Thus, with help of Cauchy’s formula one can extract E Y+~ which the characteristic function of
Vin if u= €. If u =1 then yx(z,u) = y(z). Thus, if u is close to 1 then yi(z,u) is close to y(z).
More precisely, if [u — 1] = O (n™Y/2) and |1 — VI —z| < 1+ O (n™'/2), then yi(z,u) can be
represented as

u— Dy(z)ak
el w) = y(a) + fu” () ,
VI-s+0(l—uy@)/V2  VI-s—o(l—w@)/V2 ,
+ ak + 0( I —x|)

2J/1—-x 2J/1—-x
where « is an abbreviation for a = z¢'(y(z)). It turns out that this representation for yy(x,u) is
suitable to prove one dimensional weak convergence. The multi dimensional case is more technical

but of the same flavour (for details see [18]).
If one is only interested in the expected profile E V}, , then (44) gives

ng’ D o S B Vi g 2" = (o) (a0 (u(2)*

n>0

Since z¢' (y(z)) = 1 — v/20/T—2 + O (|1 — z|) one can use [14] and obtains
E Vi = 20ke ¥/ 4 0 (1)
uniformly for k = O (y/n). (This has already been observed by Meir and Moon [42]).
In order to complete the proof of Theorem 12 one needs a tightness result for the profile.
Lemma 15. For every integer r > 1 there exist constants C1,C> > 0 such that
E (|Vk,n _ Vk+h,n|2T) < Cre=C2k/Vnpryr/2
for all k,h > 0.
Proof. Set ygo(z,u,v) = vyg(x,u) and recursively
Ykht1 (2, u,0) = 2p(yrp(2,u,0)), (b 20).
Then

a 2r
H, = — -1
k,h(»'b") (u(‘)u) yk,h(xau; u )

u=1
is the generating function
2
Hin(z) = Z E (|Vk,n — Vith,al T) “Yn 2"
n>0

It is not too difficult to show that Hj p(z) can be represented as

Hin(2) = ot Zaj,k,h(x)(l(l_;i)‘ﬂjﬂ, (45)
7=0

where a = z¢'(y(z)) (as above) and the functions G i, (z) satisfy
max |Gjk,n(z)] = O (1)
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with A = {z : |z| < 1+ &, |arg(z — 1)| > v} for some £ > 0 and 0 < v < §. Thus, a mixture of
the Transfer Lemma 12 and Lemma 13 completes the proof of Lemma 15. O

3.7. Width. A direct consequence of Theorem 12 is a weak convergence result for the width
W, = max Vi,n. Furthermore, if we apply the tightness inequality from Lemma 15 to a variant of

Theorem 9 we also obtain convergence of moments (see [19]).

Theorem 13. Suppose that the offspring distribution & of a critical Galton-Watson branching has
finite and non-zero variance Var & = 2. Then

1
—W, = g supl(s).

vn 2 5>0
If there is an vy > 0 such that Ee?® < oo then we also have (for every r >0)
E(W;) ~ 2”/20%(7‘ — 1T (r/2)¢(r) .nr/?
where ((s) denotes the Riemann Zeta-function and (r — 1){(r) =1 for r = 1.

Note that the distribution of sup(s) and max e(t) are almost the same:
>0 0<i<1

= 2 .
L (ilzlgl(s)) L ( 012?%{16(t))

The width of Galton-Watson trees has attracted the interest of many authors. First, Odlyzko
and Wilf [45] became interested in this tree parameter when studying the bandwidth

8) =min | max 1/ - S0)])

f (u,v)EE(T)
of a tree T', where f is an assignment of distinct integers to the vertices of the tree. They showed
for a tree with n vertices and height h(T') and width w(T") that

n—1
m <B(T) <2w(T) -1

and proved that there exist positive constants ¢; and ¢y such that

c1v/n < Ew, < czy/nlogn. (46)

The exact order of magnitude was left as an open problem.

Marckert and Chassaing [41] used the relation of parking functions and rooted trees as well as
the strong convergence theorem of Komlos, Major and Tusnady [36] to derive tight bounds for the
moments of the width (even with error terms) for the special case of Cayley trees (Et* = ef~1).
Theorem 13 (which is due to Drmota and Gittenberger [19]) does not provide an error term but
it applies for the general case.

4. CONCLUSIONS

There are several natural probablistic models for binary trees which appear as data structures.
In this paper we have concentrated on (so-called) random binary search trees which are closely
related to Quicksort and on combinatorial binary trees which can be considered as a special case
of Galton-Watson trees conditioned on the total progeny. Both probabilistic models are very well
discussed in the literature (most papers are from last two decades of the 20" century, and some
problems are still open).

The purpose of this paper was to present some very recent result on these kind of data structures.
Especially we have described the internal path length, the profile and the height. We have also
tried to present the major ideas of the proofs.

The internal path length of binary search trees is treated with help of a contraction mapping
for distribution functions, the profile with help of a martingale of analytic functions, and the
height with help of another contraction mapping and analytic methods for generating functions.
We present a complete description of the distribution of the height and give a proof of Robson’s
conjecture (saying that the variance of the height remains bounded).
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By a variation of the method for the height we also show that the distribution of the left most
particle in a specific discrete branching random walk can be described with a travelling wave.
Equivalently we have solved the Random Bisection Problem.

The analysis of Galton-Watson trees has a completely different flavour. Here the basis is a weak
convergence result of the depth-first search to Brownian excursion (due to Aldous [1, 2, 3]). This
general theorem directly implies weak convergence properties for the height and the path length
(but not for the profile and width for which we need another approach). In this paper we report on
an alternate proof of Aldous’ result which is based on analytic methods for generating functions.
This approach also allows to transfer convergence of moments of unbounded functionals (which
is impossible with weak convergence). A similar approach is used for the profile and consequently
for the width.

Thus, many interesting parameters of these kind of tree structures can be described in a satis-
factory way although some problems are still open, for example, no distributional results for the
profile and width of binary search trees are known, for the width we even do not know the exact
behaviour of the expected value.

It is also a purpose of this paper to demonstrate the strength of (complex) analytic methods
in the context of probabilistic limit theorems for recursive combinatorial structures (like rooted
trees), especially if they are combined with probabilistic methods (e.g. convergence of martingales,
tightness of sequences of stochastic processes).
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