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Abstract. Embedded trees are labelled rooted trees, where the root has
zero label and where the labels of adjacent vertices differ by +1. Recently
it was proved by Chassaing and Schaeffer, and Janson and Marckert
that the distribution of the maximum and minimum label are closely
related to the support of the density of the integrated superbrownian
excursion (ISE). The purpose of this paper is make this probabilistic
limiting relation more explicit by using a generating function approach
due to Bouttier, Di Francesco, and Guitter that is based on properties
of Jacobi’s f-functions. In particular we derive an integral representation
of the joint distribution function of the supremum and infimum of the
support of the ISE in terms of the Weierstrass g-function.

1 Introduction

A planted plane tree is a rooted ordered tree, which means that all successors of
a node have a left-to-right order. It is a classical result that the number p, of
planted planted plane trees with n edges equals the Catalan number
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An embedded tree (with increments +1) is a planted plane tree, where the vertices
are labelled by integers such that the root has label 0 and labels of adjacent
vertices differ by +1 (see Figure 1). By construction the number ¢ of different
embedded trees (with increments £1) is given by
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In what follows we assume that every embedded tree (with n edges) is equally
likely. Of course, in this random setting every parameter on embedded trees
becomes a random variable.

Let X,,(j) denote the number of vertices with label j in a (random) embedded
tree of size n. The sequence (X,,(j));jez is then the label profile, and let X,,(¢),
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Fig. 1. Embedded tree and contour of integration I

t € R, be the the linearly interpolated (random) function. Recently, Bousquet-
Mélou and Janson [3] proved that

(n_3/4Xn(n1/4t), o<t < oo) BN (fise(t), —o0 < t < 00), (1)

where —5  denotes weak convergence in the space Co(R) and the stochastic
process (fise(t), —0o < t < 00) is the densitiy of the integrated superbrownian
excursion (ISE). Recall that the ISE is a random measure which can be seen
— despite a scaling factor v/2 — as the occupation measure of the head of the
Brownian snake (see Chassaing and Schaeffer [6], Janson and Marckert [9], and
Bousquet-Mélou and Janson [3]).

One interesting feature of the ISE is that the support of its density [Lisg, Risg]
is (almost surely) a finite interval. By (1) it is clear that the largest label M,
and the smallest label m,, of a random embedded tree with n edges is related to

RISE and LISE:
n mn
n1/4

d
— — LigE.
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d
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We also have
Mn — My

nl/4
Note that Risg and —Lisg have the same distribution but they are not indepen-
dent.
By using the relation between M,, and Risg and asymptotics of generating
functions Bousquet-Mélou [2] proved a remarkable integral representation of the
tail distribution function G(\) = P{Risg > \}:

d
— Risg — L1sE.
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G(\) = i ) sinh2(>\v)

dv, (2)

where ' '
I'={1—te ™4 t € (00,0} U{l+te™* t €[0,00)}, (3)



see Figure 1. In [7] one can also find a relation for the Laplace transform of the
function z~ 2 P{Risg > 23} which is given by

6y/7s
(sinh((s/2)1/4))?

/ Jf%IP’{RISE > x%} e dr =
0

and representations for the moments

L UYL+ 1)C(r — 1)
E(RISE) - QTF((T — 2)/4) ’

for R(r) > —4, where the right hand side has to be analytically continued at the
points —3, -2, —1, 2.

The purpose of this paper is to extend the result (2) by Bousquet-Mélou. We
will provide integral representations for the joint distribution of Ligg and Risg
and also for the length Risg — Lisg of the support of the ISE. In the proof we use
an explicit representation of the corresponding generating function of embedded
trees in terms of O-functions (see [5]) and use asymptotics of these generating
functions, where Eisenstein series the Weierstrass p-function appear.

The structure of the paper is as follows. In Section 2 we give precise state-
ments of our results. The proof is then divided into two major parts. First we
discuss combinatorics on embedded trees (Section 3) and derive then the asymp-
totic results in Section 4.

2 Results

As above let M, and m,, denote the maximum and minimum labels in embedded
trees of size n, respectively. In order to formulate our main result we need the
notion of the Weierstrass p-function

1 1
oz = 5+ ( ;- ).
z (mma) BN {000} (z = miT — ma) (my7 + ma)

where 7 and z are complex variables with $(7) > 0 and z ¢ Z + 7Z. The p-
function — considered as a function in z — is an elliptic function that has periods
1 and 7. It is analytic in 7 and meromorphic in z with double poles on the lattice
points Z + 7Z; for details we refer to [10].

Theorem 1. The distribution function
F(A1,A2) = P{Risg < A1, —Lisg < A2}
of the limit

( M, —m,

d
pEYZe n1/4> — (Risk, —Lisg)

is given by

20 i i1+ A2) 5
Fow) = g Lo (-5t - ) b



Similarly we obtain an integral representation for the length of the support
of the ISE.

Theorem 2. The distribution function
H(\) =P{Risg — Lisg < A}
of the limit

M, —my,

d
4 Risg — L
n1/4 ISE ISE

is given by
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There is almost no literature on explicit results on the support [Lisg, Risg]
of the ISE. Besides the aforementioned results on Rigg the expected values

(u+1)

E (—RispLisg) = —3\/27T+2\/27T/ /
(—RiseLisk) v oh VBB —L(u+ Ve +utl)

and
E (min{Ris, —Lisg}) = 6v/271 (1 B % (/1OO \/%)2>

have been computed by Delmas [7].

du dt

3 Combinatorics

Let P(t) denote the generating function of planted plane trees, where the expo-
nent of ¢t counts the number of edges. Then by using the combinatorial decom-
position — namely that all subtrees of the root are again planted plane trees, see
Figure 2 — we obtain the relation

1

P(t) = 1+tP(t) + *P(t)* + *P(t)* + - = 1—tP(t)

and consequently

B 2t _n>0n+1 n '

It is also very easy to count embedded trees without any restriction with the
help of generating functions. Let R(t) denote the generating function of embed-
ded trees, where the exponent of ¢ counts the number of edges. Furthermore let
R, (t), n € Z, be the generating function of embedded trees, where we assume
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Fig. 2. Recursion for planted plane trees

that the root is labelled by n (and labels of adjacent vertices differ by +1). Then
by using the same decomposition as above we have
B 1

1= t(Rn-1(t) + Rnsa (1)

Since there are no restrictions on the embedded trees we have R, (t) = Ro(t) =
R(t) for all n € Z leading to the relation

R (t) (4)

1

Rt == 2R(t)

and to the explicit representation

1—+v1-8t 2" (2n
R(t) = = .
®) 4t 7;0”+1(n)

The situation becomes more interesting if we just consider embedded trees,

where all labels are non-negative. Let RLO ) (t) be the generating functions of those

embedded trees, where the root has label n. By definition R (t)=0if n < 0.

However, we have the same recurrence relation as above:

1
R (t) =
1R (1) + RYL (1)

, (n20). (5)

Interestigly, this system of equations has an explicit solution of the form

RIO(t) = R(¢) _Unlntd

Un+1Un+3 ,
where " "
Up =un(t) =Z() 2 — Z(t)” 2
and

- (1-8pl/
2 = 1+ (1—8t)l/4

is the solution of the equation
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that is analytic at ¢ = 0. This miraculous relation was observed by Bouttier, Di
Francesco, and Guitter [4]. In fact this explicit solution was used by Bousquet-
Mélou [2] to obtain the integral representation for (2).

In another paper Bouttier, Di Francesco, and Guitter [5] considered the class
of embedded trees, where all labels are bounded between 0 and L, where L is a

non-negative integer. Let RL? L] (t) be the generating functions of those embedded

trees, where the root has label n. By definition RI"" (t)=0ifn<0ofn>L.
We have the same recurrence relation as above:

! 0<n<L). (6)

)= : <n<
1— (R @) + R 1))

RIOLI(t

Interestingly there is an explicit solution of this system of equation in terms of
the Jacobi theta function

01 (u; q) = 2isin(mu) H (1 —2¢’ cos(2mu) + ¢*) . (7)

First let ¢ = ¢(t) be determined by the equation
1 * 4
61 (m#]) 0, (m#])
t =

o (hwa)

Then we have (see [5])

RIOL () = b1 (%’q)g o (Z—Jré’q) 0 (Z—Jrg’q) . 9)
0 (5e0) 00 (g O (£52.0) 00 (555.9)

4 Asymptotic Analysis

In [5] the generating functions RE? 1] (t) have been analyzed by considering so-
called scaling limits which can be interpreted in terms of potentials and char-
acteristic lengths etc. For our purpose we have to be more precise, since we are
interested in asymptotics of the coefficients. Nevertheless, we use — more or less
— the same of scaling as in [5].

By shifting labels from 0 to j it follows that

[¢) R 1)
n_(2n
wrr()
(0,5+F] (t).

Thus, in order to prove Theorem 1 we need asymptotics of the coefficient [t"] R ;
Note that it is not necessary to prove asymptotics in the full range of parameters.
In particular, we will set j ~ A\yn'/* and k ~ Aan'/* for positive real numbers
A1, Ao

P{M, <k, m, >—j} = (10)



We use Cauchy’s formula

j 1 0,5+K] /4y y—re
. R[Q]-H’d D= RL JHR] (=1 gy
1R = o [ B0 a
where 7 is a certain contour of winding number +1 around the origin, contained
in the analyticity region of R;(¢)[®9** In this case we will use a path of inte-

gration v of the form v = v, U s U y3 U 74, where z¢ = %, c> 0,

; 1/4 _
’yl{zz0<1cm78>:0§s§nl/4},
n
1 R T, <
=<qzr=z —c—e e =
V2 0 n 2_50_2 s
{x=x0(1+c’+sz)ogs§n”‘*},
n

and 74 is a circular arc centred at the origin and making v a closed curve (see

also Figure 3). Note that 71 U~ U3 constitutes a so-called Hankel contour that
appears in Hankel’s integral representation of 1/I'(s).

73
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Fig. 3. Contour of integration and Hankel contour

By the relation (8), t and ¢ are related. We will first study this relation for
t € v1 U2 U~s. For this purpose we use the following asymptotic property.

Lemma 1. Suppose that ¢ = e*>™"
¢ > 0. Then

ACHEACY)

o ()

and L satisfy |1 —q| > ¢/L for some constant

(- a0 i) o



where G4(7) denotes the Eisenstein series

1
Gu(r) = Z —_—.
(m1,m2)€Z2\{(0,0)} (m +ma)

Proof. By using the Taylor series expansions for sin(mu) and cos(27u) we can
represent 01 (u, q) as

j
01(u,q) = 2miu exp<<g+47r22m>u2

7j>1
d 4t ¢ q¥ u®
< 180 3 ;(1*(13)2 ;(lqu)“ [1—ql°
This gives

4
01 (£5.0) 01 (500)
5
01 (735.4)

1 1007 1 1
— (1 =" 25, +88S of—"
8 ( (L +6)* (180 Tyt 2) + (L6|1q|6))’

where S7 and S5 abbreviate

S=N gt ad =Y L
1= 1 _a2 B 2= 11— )4
& 1-d) & 1-d)
By using the notation oy(n) =3_,, d* we have
4 4 3 jk _
5514—852:32/{? j 20'3
7.k n>1
Since
G ( ) Z 1 7T4 + 167T4 Z ( ) 2minT
() = - - - o3(n)e )
(ma1,m2)€22\{(0,0)} (m1+mer)t 45 3 =
it follows that .
T
rso =+ 37'('451 + 87T SQ —G4(T). (12)

This proves (11).
Alternatively to the previous proof we could have used the relation
5(070,9)\* | 36570
G4(T)—< 1/(7(1)> 4+ = 1/(5(])7
91 (Oa q) 8 91 (Oa Q)

where ’ denotes the derivative with respect to the first variable u.
Next we discuss the behaviour of G4(7) if 7 is close to 0.




Lemma 2. We have uniformly for 7 — 0 with ¢ < arg(t) < m —¢ (for any

e>0)
4

Gy(1) = Z—5 4+ 0 (7'_3) . (13)
Proof. We just study the behaviour of S5, since it constitutes the asymptotic
leading term in the representation (12). Set ¢ = e~*. Then by using the repre-
sentation

S2= Sala) = ¢ 3 (os(n) — 1 () e

n>1

we obtain that the Mellin transform of Ss(x) (see [8]) is given by

P = [ st e = Lo cts -3 - cls - 1),

for complex s with R(s) > 4. By taking the inverse Mellin transform (and shifting
the line of integration to the left and taking into account the residue at s = 4)
one gets directly

4
Salw) = (@W)a™" + 0(a™) = 5o 2™ + O™

which is uniform for 2 — 0 when |arg(z)| < 7 — ¢ for any € > 0 (see again [8]).

Finally by setting 7 = —z/(27i) and by using the relation G4(7) ~ 327155 we

obtain (13).

We now assume that L ~ j +k = (A + A2)n'/* for some positive constants
A1 and Ao. Furthermore it is convenient to introduce a new variable

w=5-(log(1/q) ' = L.

Now suppose that ¢ varies in v UyaUys (with zg = %) If we write t = % (1 - “’7/

then w’ varies in —H’, where H' is a Hankel contour cut at real part n'/4. For
simplicity we neglect this cut for a moment. With the help of the asymptotic
relations of Lemmas 1 and 2 we have

, 5

_ 4 2
V=S O

Hence w varies on a contour coming from +e'™/%o0o0, cutting the real axis at
some positive value and leaving to +e~ /%00 (compare with Figure 4). Hence,
without loss of generality we can assume that w varies on I , where I is defined
in (3) and " denotes the time reversed contour.

The next goal is to determine the asymptotic behaviour of Rgo’j k] (t) for
t € v1 U2 U~s. For this purpose we will use the following property.
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Fig. 4. Negative Hankel contour and contour of integration of w
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Lemma 3. Suppose that g = e
¢ > 0. Then

-2 e () o)) o

uniformly for e < j/L < 1 —¢ (for any e > 0), where p(z;7) denotes the
Weierstrass p-function

@(Z;T):%ﬁL Z ((z—mlj'—m2)2 ; (mlT-li-m2)2)

(m1,m2)€22\{(0,0)}

and L satisfy |1 —q| > ¢/L for some constant

Proof. By proceeding as in the proof of Lemma 1 we obtain

(o) S (R LY DY )

2 L +6)% 0,(0, L1 —gl*
61 (ﬁ_ﬁ’q) 04 (LL%JI) )? 01(0,q) | ql

Furthermore we have for u = (j + 1)/(L + 6) (and uniformly for e <u <1 —¢)

j+1 +5
o (Hha) 0 (£5) s (ea%u,q) (91<u,q>)2> 105

; ; - 2 n 411 —
0, (%26 q) 6, (% q) (L+6)% \ b1(u,q)  \Oi(u,q) LA|1—q|
Finally, by using the relation (see [1])

070.q) _ O¥(u.q) (91(1“1)
3 911 (07 Q) 91 (’U,, Q) 91 (’U,, Q)

we obtain the asymptotic relation (14).

)2 = p(u;7)

We are now ready to prove Theorem 1. We set j+3 = A\in!/4, k43 = \yn!/4
and L+6 = (j+3)+(k+3) = (A +X2)n'/%. As mentioned above we use Cauchy’s
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formula. For technical reasons we apply it to R[O J +k]( t)—2 instead of RE—O’j A (t).
Of course, if n > 0 we have

e RO @) = ) (R () - 2) = L / (R @) —2) et at

211
1 ) 1 ‘
= (RE»O’JHC] (t) — 2) g1 dt+—,/ <R20,3+k] (1) - 2) =1 gy
270 )5y Uy 27 ),

We will focus on the contribution coming from the contour 1 U~z U~s. Namely
if t € vy then [t| ~ & (14 cn=%*) (for some ¢ > 0) whereas REO’]HC] (t) stays
bounded (note that Lemma 3 still applies). Hence

/ (RBOJMJ (t) — 2) =1 g — O (8" e*cn”“)
Y4

which is negligible compared to the normalization —n =" ~ 82 ) /x
For t € y1 U~s U3 we use the substitution

1 5 mhwt
t==-(1—=-—,
8 9 L4
where w = i }/T now varies on a contour that we can deform (due to analyticity) to

I. Note, however, that we have to cut I" to a finite contour I ,sincet € y1Uy2Uvs
implies that w = O(n'/'%). In this range we use the approxunatlons

0,04k (y _ o _ _ 6 AL w!
Rj (t) 2= ()\1+)\2)2\/ﬁp()\1+>\2’w)+O(n)’

5 d wd
tfnfl _ n+1 4 -
i exp< 9 (A + A2)? +O<\/ﬁ>)’

and the substitution

that lead to the integral

1 ; 8" 40

— ROTHH ) 2) U /A
270 Sy Grya s ( J ®) 2mi n3/2 3(A1 + A2)8

A1 ) w* + w 5 7 4
.2 o — s 3d
X/ﬁ/ (p<>\1+>\27w>+ ( Vvn ))eXp<9(>\1+)\2)4w o

At this point we can neglect the error terms and extend the cutted path of
integration I to the infinite path I". Furthermore, we substitute v = mw/ (A1 +
X2), use the relation p(z; —1/7) = 72p(z7;7) and obtain (after reversing I" to I"
and deforming (7/(A1 + A2))I to I)

: 1 8" 2 M (A A 5 4
7] RO (1) ~ 8 0/ p<l_1v;mv> 05 o3t do.

73in3/2 3 ™ s
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Since HQ—J:l (2:) ~ 8"n=3/2 |\ /i we finally derive the proposed result of Theorem 1.

Theorem 2 can be deduced from Theorem 1 and by applying the following
property. Suppose that F(A1, \2) is the distribution function of a non-negative

random vector (X7, X2) which has density #E&F(/\l, A2). Then the distribu-
tion function H(A) of the sum Y = X3 + X5 is given by

A A—A1 82 A a

H(\) = ———F(\1, A2)dhod) = —F(A\ i, A=) dA

W= [ P dan = [ SR A=)
This directly implies

H(\) =

20 [ ) i\t A ) it A 6 5t
- —p |- j—— —p|——v;—— Y dvd).
37r7/3/0/p<87p< T ﬂ'v>+8zp< T WU)>1)69 Vs

Finally, since p(7 — 2z;7) = @(z;7) we have 6%@(7 —z;7) + %Q(T —z;7) =
a%p(z;T) and consequently (by setting s = A — A1) we derive the proposed
representation for H()\) that is given in Theorem 2. Note that it is not possible
to interchange the integrals, since the p-function is singular at z =0 and z = 7.
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