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Abstract

Embedded trees are labelled rooted trees, where the root has zero
label and where the labels of adjacent vertices differ (at most) by
±1. Recently it was proved (see [6] and [9]) that the distribution of
the maximum and minimum label are closely related to the support
of the density of the integrated superbrownian excursion (ISE). The
purpose of this paper is make this probabilistic limiting relation more
explicit by using a generating function approach due to Bouttier, Di
Francesco, and Guitter [5] that is based on properties of Jacobi’s θ-
functions. In particular we derive an integral representation of the
joint distribution function of the supremum and infimum of the sup-
port of the ISE in terms of the Weierstrass ℘-function. Furthermore
we re-derive the limiting radius distribution in random quadrangula-
tions (by Chassaing and Schaeffer [6]) with the help of exact counting
generating functions.

1 Introduction

A planted plane tree is a rooted ordered tree, which means that all successors
of a node have a left-to-right order. It is a classical result that the number
pn of planted planted plane trees with n edges equals the Catalan number

pn =
1

n + 1

(

2n

n

)

.
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An embedded tree (with increments ±1 or 0 and ±1) is a planted plane tree,
where the vertices are labelled by integers such that the root has label 0
and labels of adjacent vertices differ by ±1 of 0 and ±1 (see Figure 1).
By construction the numbers qn and qn of different embedded trees (with
increments ±1 or 0 and ±1) is given by

qn = 2npn =
2n

n + 1

(

2n

n

)

and qn = 3npn =
2n

n + 1

(

2n

n

)

In what follows we assume that every embedded tree (with n edges) is equally
likely. Of course, in this random setting every parameter on embedded trees
becomes a random variable.
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Figure 1: Embedded tree with increments ±1 and increments 0 and ±1

Let Xn(j) denote the number of vertices with label j in a (random) em-
bedded tree of size n. The sequence (Xn(j))j∈Z is then the label profile,
and let Xn(t), t ∈ R, be the the linearly interpolated (random) function.
Recently, Bousquet-Mélou and Janson [3] proved that

(

n−3/4Xn(n1/4t), −∞ < t < ∞
) d−→ (fISE(t), −∞ < t < ∞) , (1)

where
d−→ denotes weak convergence in the space C0(R) and the stochastic

process (fISE(t), −∞ < t < ∞) is the densitiy of the integrated superbrown-
ian excursion (ISE). Recall that the ISE is a random measure which can be
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Figure 2: Contour of integration Γ

seen – despite of a scaling factor
√

2 – as the occupation measure of the head
of the Brownian snake (see Chassaing and Schaeffer [6], Janson and Marckert
[9], and Bousquet-Mélou and Janson [3]).

One interesting feature of the ISE is that the support of its density
[LISE, RISE] is (almost surely) a finite interval. By (1) it is clear that the
largest label Mn and the smallest label mn of a random embedded tree with
n edges is related to RISE and LISE:

Mn

n1/4

d−→ RISE and
mn

n1/4

d−→ LISE.

We also have
Mn − mn

n1/4

d−→ RISE − LISE. (2)

Note that RISE and −LISE have the same distribution but they are not inde-
pendent.

By using the relation between Mn and RISE and asymptotics on generating
functions Bousquet-Mélou [2] proved a remarkable integral representations of
the tail distribution function G(λ) = P{RISE > λ}:

G(λ) =
12

i
√

π

∫

Γ

v5ev4

sinh2(λv)
dv, (3)

where

Γ = {1 − te−iπ/4, t ∈ (−∞, 0]} ∪ {1 + teiπ/4, t ∈ [0,∞)}, (4)
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see Figure 2. In [7] one can also find a relation for the Laplace transform of

the function x− 3

2 P{RISE > x
1

4} which is given by

∫ ∞

0

x− 3

2 P{RISE > x
1

4} e−sx dx =
6
√

πs

(sinh((s/2)1/4))
2

and representations for the moments

E(Rr
ISE) =

24
√

π Γ(r + 1)ζ(r − 1)

2rΓ((r − 2)/4)
,

for ℜ(r) > −4, where the right hand side has to be analytically continued at
the points −3,−2,−1, 2.

The purpose of this paper is twofold. First we extend the result (3) by
Bousquet-Mélou. We will provide integral representation for the joint distri-
bution of LISE and RISE and also on the length RISE − LISE of the support
of the ISE. In the proof we use explicit representation of the corresponding
generating function of embedded trees in terms of θ-functions (see [5]) and
asymptotics with Eisenstein series the Weierstrass ℘-function. The second
purpose is to re-derive the limiting radius distribution of random quadran-
gulations by Chassaing and Schaeffer [6] with the help of exact counting
generating functions. Here we make use of the well-known Schaeffer [11] bi-
jection between quadrangulations and embedded trees with increments 0 and
±1, where all labels are non-negative. A major property of this bijection is
that the distances from the root vertex translate into the labels of the tree.
Thus, the distance distribution persists, in particular the maximum distance
from the root vertex (= radius of the quandrangulation) translates into the
maximum label of the corresponding embedded tree.

The structure of the paper is as follows. In Section 2 we give precise
statements of our results. The proof is then divided into two major part.
First we discuss combinatorics on embedded trees (Section 3). In Section 4
we deal with the support of the ISE and in the final Section 5 with the length
of the support of the ISE.

2 Results

As above let Mn and mn denote the maximum and minimum labels in em-
bedded trees of size n, respectively. In order to formulate our main result we
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need the notion of the Weierstrass ℘-function

℘(z; τ) =
1

z2
+

∑

(m1,m2)∈Z2\{(0,0)}

(

1

(z − m1τ − m2)2
− 1

(m1τ + m2)2

)

,

where τ and z are complex variables with ℑ(τ) > 0 and z 6∈ Z + τZ. The
℘-function – considered as a function in z – is an elliptic function that has
periods 1 and τ . It is analytic in τ and meromorphic in z with double poles
on the lattice points Z + τZ; for details we refer to [10]. We will also need
the notion of Eisenstein series

G2k(τ) =
∑

(m1,m2)∈Z2\{(0,0)}

1

(m1 + m2τ)2k
.

Theorem 2.1 The distribution function

F (λ1, λ2) = P{RISE ≤ λ1, −LISE ≤ λ2}

of the limit
(

Mn

n1/4
,
−mn

n1/4

)

d−→ (RISE,−LISE)

is given by

F (λ1, λ2) =
12

iπ5/2

∫

Γ

℘

(

iλ1

π
v;

i(λ1 + λ2)

π
v

)

v5 ev4

dv.

This result can be used to obtain also a closed form expression for the dis-
tribution function of the length of the support RISE −LISE by using the limit
relation (2). However, we use a direct approach, where we re-derive a result
of Chassaing and Schaeffer [6] on the radius of random quadrangulations.

Theorem 2.2 Let rn denote the maximum distance from the root vertex in
random quadrangulations with n faces. Then

γn−1/4rn
d−→ RISE − LISE,

where γ = (3/2)−1/2. The distribution function of the limit is given by

H(λ) = P{RISE − LISE ≤ λ} =
1260

iπ13/2

∫

Γ

G6

(

iλ

π
v

)

v9 ev4

dv.
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It seems that there is almost no literature on the explicit results on the
support [LISE, RISE] of the ISE. Besides the aboved mentioned results on RISE

the expected values

E (−RISELISE) = −3
√

2π+2
√

2π

∫ ∞

1

∫ ∞

1

(u + 1)√
t3 − 1

√
u3 − 1(u +

√
u2 + u + 1)

du dt

and

E (min{RISE,−LISE}) = 6
√

2π

(

1 − 1

8

(
∫ ∞

1

du√
u3 − 1

)2
)

have been computed by Delmas [7].

3 Combinatorics

3.1 Planted Plane Trees

Let P (t) denote the generating function of planted plane trees, where the
exponent of t counts the number of edges. Then by using the combinatorial
decomposition – namely that all subtrees of the root are again planted plane
trees, see Figure 3 – we obtain the relation

P (t) = 1 + tP (t) + t2P (t)2 + t3P (t)3 + · · · =
1

1 − tP (t)

and consequently

P (t) =
1 −

√
1 − 4t

2t
=
∑

n≥0

1

n + 1

(

2n

n

)

tn.

= + + + ...+

Figure 3: Recursion for planted plane trees

6



3.2 Embedded Trees with increments ±1

It is also very easy to count embedded trees without any restriction with
the help of generating functions. Let R(t) denote the generating function
of embedded trees, where the exponent of t counts the number of edges.
Furthermore let Rn(t), n ∈ Z, be the generating function of embedded trees,
where we assume that the root is labelled by n (and labels of adjacent vertices
differ by ±1). Then by using the same decomposition as above we have

Rn(t) =
1

1 − t(Rn−1(t) + Rn+1(t))
. (5)

Since there are no restrictions on the embedded trees we have Rn(t) =
R0(t) = R(t) for all n ∈ Z leading to the relation

R(t) =
1

1 − 2tR(t)

and to the explicit representation

R(t) =
1 −

√
1 − 8t

4t
=
∑

n≥0

2n

n + 1

(

2n

n

)

tn.

The situation becomes more interesting if we just consider embedded
trees, where all labels are non-negative. Let R

[0]
n (t) be the generating func-

tions of those embedded trees, where the root has label n. By definition
R

[0]
n (t) = 0 if n < 0. However, we have the same recurrence relation as

above:

R[0]
n (t) =

1

1 − t(R
[0]
n−1(t) + R

[0]
n+1(t))

, (n ≥ 0). (6)

Interestingly, this system of equations has an explicit solution of the form

R[0]
n (t) = R(t)

unun+4

un+1un+3

,

where
un = un(t) = Z(t)

n+1

2 − Z(t)−
n+1

2

and

Z(t) =
1 − (1 − 8t)1/4

1 + (1 − 8t)1/4
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is the solution of the equation

Z +
1

Z
+ 2 =

1

tR(t)

that is analytic at t = 0. This miraculous relation was observed by Bouttier,
Di Francesco, and Guitter [4]. In fact this explicit solution was used by
Bousquet-Mélou [2] to obtain the integral representation for (3).

In another paper Bouttier, Di Francesco, and Guitter [5] considered the
class of embedded trees, where all labels are bounded between 0 and L, where
L is a non-negative integer. Let R

[0,L]
n (t) be the generating functions of those

embedded trees, where the root has label n. By definition R
[0,L]
n (t) = 0 if

n < 0 of n > L. As above we have the same recurrence relation as above:

R[0,L]
n (t) =

1

1 − t(R
[0,L]
n−1 (t) + R

[0,L]
n+1 (t))

, (0 ≤ n ≤ L). (7)

Interestingly there is an explicit solution of this system of equation in terms
of the Jacobi theta function

θ1(u; q) = 2i sin(πu)
∏

j≥1

(

1 − 2qj cos(2πu) + q2j
)

, (8)

that we define here in an unnormalized form, see [5]. First let q = q(t) be
determined by the equation

t =
θ1

(

1
L+6

, q
)4

θ1

(

4
L+6

, q
)

θ1

(

2
L+6

, q
)5 (9)

Then we have (see [5])

R[0,L]
n (t) =

θ1

(

2
L+6

, q
)3

θ1

(

1
L+6

, q
)2

θ1

(

4
L+6

, q
)

θ1

(

n+1
L+6

, q
)

θ1

(

n+5
L+6

, q
)

θ1

(

n+2
L+6

, q
)

θ1

(

n+4
L+6

, q
) . (10)

3.3 Embedded Trees with increments 0 and ±1

The equations for embedded trees with increments 0 and ±1 are very close
to the previous ones.

Let R(t) denote the generating function of embedded trees, where the
exponent of t counts the number of edges. Furthermore let Rn(t), n ∈ Z, be

8



the generating function of embedded trees, where we assume that the root is
labelled by n (and labels of adjacent vertices differ by 0 and ±1). Then we
have

Rn(t) =
1

1 − t(Rn−1(t) + Rn(t) + Rn+1(t))
. (11)

which leads to the relation

R(t) =
1

1 − 3tR(t)

and to the explicit representation

R(t) =
1 −

√
1 − 12t

6t
=
∑

n≥0

3n

n + 1

(

2n

n

)

tn.

Similarly let R
[0]

n (t) be the generating functions of those embedded trees,

where the root has label n. By definition R
[0]

n (t) = 0 if n < 0. As above we
get

R
[0]

n (t) =
1

1 − t(R
[0]

n−1(t) + R
[0]

n (t) + R
[0]

n+1(t))
, (n ≥ 0). (12)

and an explicit solution of the form

R
[0]

n (t) = R(t)
unun+3

un+1un+2
,

where
un = un(t) = Z(t)

n+1

2 − Z(t)−
n+1

2

and Z(t) is the solution of the equation

Z +
1

Z
+ 4 =

1

tR(t)

that is analytic at t = 0 (see [4]).

Next let R
[0,L]

n (t) be the generating functions of those embedded trees,
where the root has label n and all labels are bounded between 0 and L.
Then we have (as above) R

[0,L]

n (t) = 0 if n < 0 of n > L and

R
[0,L]

n (t) =
1

1 − t(R
[0,L]

n−1 (t) + R
[0,L]

n (t) + R
[0,L]

n+1 (t))
, (0 ≤ n ≤ L). (13)
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The explicit solution of this system of equations is given by (see [5])

R
[0,L]

n (t) = 4
θ1

(

1
L+5

, q
)

θ1

(

2
L+5

, q
)

θ′1 (0, q) θ1

(

3
L+5

, q
)

(

θ′1
(

1
L+5

, q
)

θ′1
(

1
L+5

, q
) −

θ′1
(

2
L+5

, q
)

2θ′1
(

2
L+5

, q
)

)

×
θ1

(

n+1
L+5

, q
)

θ1

(

n+4
L+5

, q
)

θ1

(

n+2
L+5

, q
)

θ1

(

n+3
L+5

, q
) , (14)

where q = q(t) be determined by the equation

t =
θ′1 (0, q)2 θ1

(

3
L+5

, q
)

16 θ1

(

1
L+5

, q
)

θ1

(

2
L+6

, q
)2
(

θ′
1( 1

L+5
,q)

θ′
1( 1

L+5
,q)

− θ′
1( 2

L+5
,q)

2θ′
1( 2

L+5
,q)

)2 (15)

In particular we will be interested in the function

R
[0,L]

0 (t) = 4
θ1

(

1
L+5

, q
)2

θ1

(

4
L+5

, q
)

θ′1 (0, q) θ1

(

3
L+5

, q
)2

(

θ′1
(

1
L+5

, q
)

θ′1
(

1
L+5

, q
) −

θ′1
(

2
L+5

, q
)

2θ′1
(

2
L+5

, q
)

)

(16)

which corresponds to embedded trees where all labels are non-negative and
bounded by L. By the Schaeffer bijection this is also the generating function
of rooted quadrangulations with n faces, where all distances to the root are
bounded by L.

4 Asymptotic Analysis 1: Proof of Theorem 2.1

In [5] the generating functions R
[0,L]
n (t) have been analyzed by considering

so-called scaling limits which can be interpreted in terms of potentials and
characteristic lengths etc. For our purpose we have to be more precise, since
we are interested in asymptotics of the coefficients. Nevertheless, we use –
more or less – the same of scaling as in [5].

By shifting labels from 0 to j it follows that

P{Mn ≤ k, mn ≥ −j} =
[tn] R

[0,j+k]
j (t)

2n

n+1

(

2n
n

) . (17)

Thus, in order to prove Theorem 2.1 we need asymptotics on the coefficient
[tn] R

[0,j+k]
j (t). Note that it is not necessary to prove asymptotics in the full
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range of parameters. In particular, we will set j ∼ λ1n
1/4 and k ∼ λ2n

1/4 for
positive real numbers λ1, λ2.

We use Cauchy’s formula

[tn] R
[0,j+k]
j (t) =

1

2πi

∫

γ

R
[0,j+k]
j (t)t−n−1 dt,

where γ is a certain contour of winding number +1 around the origin, con-
tained in the analyticity region of Rj(t)

[0,j+k]. In this case we will use a path
of integration γ of the form γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4, where x0 = 1

8
, c > 0,

γ1 =

{

x = x0

(

1 − c
i + n1/4 − s

n

)

: 0 ≤ s ≤ n1/4

}

,

γ2 =

{

x = x0

(

1 − c
1

n
e−iϕ

)

: −π

2
≤ ϕ ≤ π

2

}

,

γ3 =

{

x = x0

(

1 + c
i + s

n
:

)

0 ≤ s ≤ n1/4

}

,

and γ4 is a circular arc centred at the origin and making γ a closed curve (see
also Figure 4). Note that γ1 ∪ γ2 ∪ γ3 constitutes a so-called Hankel contour
that appears in Hankel’s integral representation of 1/Γ(s).

x
0

γ
H

Figure 4: Contour of integration and Hankel contour

By the relation (9), t and q are related. We will first study this relation
for t ∈ γ1 ∪ γ2 ∪ γ3. For this purpose we first have to analyze θ1(u, q).
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Lemma 4.1 We have for u sufficiently close to 0 and for |q| < 1

θ1(u, q) = 2πi u
∏

j≥1

(1 − qj)2j

× exp

((

−π2

6
+ 4π2

∑

j≥1

qj

(1 − qj)2

)

u2 −
∑

k≥2

u2k

2k
G2k(τ)

)

,

where q = e2πiτ and G2k(τ) denote the Eisenstein series

G2k(τ) =
∑

(m1,m2)∈Z2\{(0,0)}

1

(m1 + m2τ)2k
.

Proof. Since ℘(u, τ) = − log(θ1(u, q))′′ + c (for c = θ′′′1 (0, q)/(3θ′1(0, q)), see
[1]) and the Laurent series expansion of ℘(u, τ) is given by

℘(u, τ) =
1

u2
+
∑

k≥2

(2k − 1)u2k−2G2k(τ)

it follows that

log θ1(u, q) = c3 + c2u +
c

2
u2 + log u −

∑

k≥2

u2k

2k
G2k(τ)

for some constants c2, c3. However, by using the Taylor series expansions for
sin(πu) and cos(2πu) we can represent θ1(u, q) as

θ1(u, q) = 2πi u
∏

j≥1

(1−qj)2j ·exp

((

−π2

6
+ 4π2

∑

j≥1

qj

(1 − qj)2

)

u2 + O(u4)

)

.

Hence

c = −π2

3
+ 8π2

∑

j≥1

qj

(1 − qj)2
, c2 = 0, and c3 = log

(

2πi
∏

j≥1

(1 − qj)2j

)

,

which completes the proof of the lemma. �

With the help of Lemma 4.1 we immediately obtain the following asymp-
totic representation.
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Lemma 4.2 Suppose that q = e2πiτ and L satisfy |1 − q| ≥ c/L for some
constant c > 0. Then

θ1

(

1
L+6

, q
)4

θ1

(

4
L+6

, q
)

θ1

(

2
L+6

, q
)5 (18)

=
1

8

(

1 − 45

(L + 6)4
G4(τ) − 630

(L + 6)6
G6(τ) + O

(

1

L8|1 − q|8
))

.

Next we discuss the behaviour of G4(τ) if τ is close to 0.

Lemma 4.3 We have uniformly for τ → 0 with ε ≤ arg(τ) ≤ π− ε (for any
ε > 0)

G4(τ) =
π4

45
τ−4 + O

(

τ−3
)

. (19)

Proof. We use the alternate representation

G4(τ) =
∑

(m1,m2)∈Z2\{(0,0)}

1

(m1 + m2τ)4
=

π4

45
+

16π4

3

∑

n≥1

σ3(n)e2πinτ ,

where σℓ(n) abbreviated σℓ(n) =
∑

d|n dℓ. Hence, it suffices to consider the
asymptotic properties of the sum

S(x) =
∑

n≥1

σ3(n)e−nx

The Mellin transform of S(x) (see [8]) is given by

F (s) =

∫ ∞

0

S2(x)xs−1 dx = Γ(s)ζ(s)ζ(s− 3)

for complex s with ℜ(s) > 4. By taking the inverse Mellin transform (and
shifting the line of integration to the left and taking into account the residue
at s = 4) one gets directly

S(x) = Γ(4)ζ(4) x−4 + O(x−3) =
π4

15
x−4 + O(x−3)

which is uniform for x → 0 when | arg(x)| ≤ π − ε for any ε > 0 (see again
[8]). Finally by using the relation G4(τ) ∼ (16/3)π4S(−2πiτ) we obtain (19).
�
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We now assume that L ∼ j+k = (λ1+λ2)n
1/4 for some positive constants

λ1 and λ2. Furthermore it is convenient to introduce a new variable

w =
1

2π
(log(1/q))−1 =

i

τ
.

Now suppose that t varies in γ1 ∪ γ2 ∪ γ3 (with x0 = 1
8
). If we write t =

1
8

(

1 − w′

n

)

then w′ varies in −H ′, where H ′ is a Hankel contour cut at real

part n1/4. For simplicity we neglect this cut for a moment. With the help of
the asymptotic relations of Lemmas 4.2 and 4.3 we have

w′ =
π4

(λ1 + λ2)4
w4 + O(w2).

Hence w varies on a contour coming from +eiπ/4∞, cutting the real axis
at some positive value and leaving to +e−iπ/4∞ (compare with Figure 5).
Hence, without loss of generality we can assume that w varies on Γ̂, where Γ
is defined in (4) andˆdenotes the time reversed contour.

-H

Figure 5: Negative Hankel contour and contour of integration of w

The next goal is to determine the asymptotic behaviour of R
[0,j+k]
j (t) for

t ∈ γ1 ∪ γ2 ∪ γ3. For this purpose we will use the following property.

Lemma 4.4 Suppose that q = e2πiτ and L satisfy |1 − q| ≥ c/L for some
constant c > 0. Then

R
[0,L]
j (t) = 2

(

1 − 3

(L + 6)2
℘

(

j + 1

L + 6
; τ

)

+ O

(

1

L4|1 − q|4
))

(20)

uniformly for ε ≤ j/L ≤ 1 − ε (for any ε > 0).
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Proof. By proceeding as in the proof of Lemma 4.2 we obtain

θ1

(

2
L+6

, q
)3

θ1

(

1
L+6

, q
)2

θ1

(

4
L+6

, q
)

= 2

(

1 − 1

(L + 6)2

θ′′′1 (0, q)

θ′1(0, q)
+ O

(

1

L4|1 − q|4
))

.

Furthermore we have for u = (j+1)/(L+6) (and uniformly for ε ≤ u ≤ 1−ε)

θ1

(

j+1
L+6

, q
)

θ1

(

j+5
L+6

, q
)

θ1

(

j+2
L+6

, q
)

θ1

(

j+4
L+6

, q
) = 1+

3

(L + 6)2

(

θ′′1(u, q)

θ1(u, q)
−
(

θ′1(u, q)

θ1(u, q)

)2
)

+O

(

1

L4 |1 − q|

)

Finally, by using the relation (see [1])

θ′′′1 (0, q)

3 θ′1(0, q)
− θ′′1(u, q)

θ1(u, q)
+

(

θ′1(u, q)

θ1(u, q)

)2

= ℘(u; τ)

we obtain the asymptotic relation (20). �

We are now ready to prove Theorem 2.1. We set j + 3 = λ1n
1/4, k + 3 =

λ2n
1/4 and L + 6 = (j + 3) + (k + 3) = (λ1 + λ2)n

1/4. As mentioned above

we use Cauchy’s formula. For technical reasons we apply it for R
[0,j+k]
j (t)−2

instead of R
[0,j+k]
j (t). Of course, if n > 0 we have

[tn] R
[0,j+k]
j (t) = [tn]

(

R
[0,j+k]
j (t) − 2

)

=
1

2πi

∫

γ

(

R
[0,j+k]
j (t) − 2

)

t−n−1 dt

=
1

2πi

∫

γ1∪γ2∪γ3

(

R
[0,j+k]
j (t) − 2

)

t−n−1 dt+
1

2πi

∫

γ4

(

R
[0,j+k]
j (t) − 2

)

t−n−1 dt

We will focus on the contribution coming from the contour γ1∪γ2∪γ3. Namely
if t ∈ γ4 then |t| ∼ 1

8

(

1 + cn−3/4
)

(for some c > 0) whereas R
[0,j+k]
j (t) stays

bounded (note that Lemma 4.4 still applies). Hence

∫

γ4

(

R
[0,j+k]
j (t) − 2

)

t−n−1 dt = O
(

8n e−c n1/4
)

which is negligible compared to the normalization 2n

n+1

(

2n
n

)

∼ 8nn−3/2/
√

π.
For t ∈ γ1 ∪ γ2 ∪ γ3 we use the substitution

t =
1

8

(

1 − π4w4

L4

)

,
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where w = i/τ now varies on a contour that we can deform (due to ana-
lyticity) to Γ̂. Note, however, that we have to cut Γ̂ to a finite contour Γ̂′,
since t ∈ γ1 ∪ γ2 ∪ γ3 implies that w = O(n1/16). In this range we use the
approximations

R
[0,j+k]
j (t) − 2 = − 6

(λ1 + λ2)2
√

n
℘

(

λ1

λ1 + λ2
;

i

w

)

+ O

(

w4

n

)

,

t−n−1 = 8n+1 exp

(

π4

(λ1 + λ2)4
w4 + O

(

w6

√
n

))

,

and the substitution

dt = −1

2

π4

(λ1 + λ2)4n
w3 dw

that lead to the integral

1

2πi

∫

γ1∪γ2∪γ3

(

R
[0,j+k]
j (t) − 2

)

t−n−1 dt =
π4

2πi

8n

n3/2

12

(λ1 + λ2)6

×
∫

Γ̂′

(

℘

(

λ1

λ1 + λ2

;
i

w

)

+ O

(

w4 + w6

√
n

))

exp

(

π4

(λ1 + λ2)4
w4

)

w3 dw

At this point we can neglect the error terms and extend the cutted path
of integration Γ̂′ to the infinite path Γ̂. Furthermore, we substitute v =
πw/(λ1 + λ2), use the relation ℘(z;−1/τ) = τ 2℘(zτ ; τ) and obtain (after
reversing Γ̂ to Γ and deforming (π/(λ1 + λ2))Γ to Γ)

[tn] R
[0,j+k]
j (t) ∼ 12

π3i

8n

n3/2

∫

Γ

℘

(

iλ1

π
v;

i(λ1 + λ2)

π
v

)

v5 ev4

dv.

Since 2n

n+1

(

2n
n

)

∼ 8nn−3/2/
√

π we finally derive the proposed result of Theo-
rem 2.1.

We note that the difference Mn −mn (and consequently the limit RISE −
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LISE) can be handled with the help of the generating function

∑

j+ℓ≤L

(

R
[0,ℓ]
j (t) − R

[0,ℓ−1]
j (t) − R

[0,ℓ−1]
j−1 (t) + R

[0,ℓ−2]
j−1 (t)

)

=

L
∑

j=0

∑

ℓ=j≤L

(

R
[0,ℓ]
j (t) − R

[0,ℓ−1]
j (t) − R

[0,ℓ−1]
j−1 (t) + R

[0,ℓ−2]
j−1 (t)

)

=
L
∑

j=0

(

R
[0,ℓ]
j (t) − R

[0,ℓ−1]
j−1 (t)

)

,

where we are interested in the n-th coefficient. However, this procedure is
much more involved as that presented in the next section.

5 Asymptotic Analysis 2: Proof of Theorem 2.2

Let rn denote the maximum distance from the root vertex (= radius of the
quandrangulation) which equals in distribution to the maximum label of
embedded trees with increments 0 and ±1, where all labels are non-negative.

Recall that all embedded trees with increments 0 and ±1, where all labels
are non-negative are counted by the generating function

R0(t) = R(t)
(1 − Z)(1 − Z

4
)

(1 − Z
2
)(1 − Z

3
)

= R(t)
1 + Z

2

1 + Z + Z
2

= R(t)(1 − tR(t)2)

It is an easy exercise (by using Lagrange’s inversion formula) to show that

[tn]R0(t) =
2 · 3n

(n + 1)(n + 2)

(

2n

n

)

∼ 2 · 12n

√
π

n−5/2.

This is (of course) the classical formula for the number of quadrangulations
with n faces.

We also recall that the generating function R
[0,L]

0 (t) (see (16), where t and
q are related by (15)) corresponds to embedded trees with increments 0 and
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±1, where all labels are non-negative and bounded by L. Hence

P{rn ≤ L} =
[tn] R

[0,L]

0 (t)
2·3n

(n+1)(n+2)

(

2n
n

) . (21)

In order to obtain an asmyptotic expansion for this probabilities we pro-
ceed as in the proof of Theorem 2.1. First we need an analogues to Lemma 4.2
and Lemma 4.4.

Lemma 5.1 Suppose that q = e2πiτ and L satisfy |1 − q| ≥ c/L for some
constant c > 0. Then

θ′1 (0, q)2 θ1

(

3
L+5

, q
)

16 θ1

(

1
L+5

, q
)

θ1

(

2
L+6

, q
)2
(

θ′
1( 1

L+5
,q)

θ′
1( 1

L+5
,q)

− θ′
1( 2

L+5
,q)

2θ′
1( 2

L+5
,q)

) (22)

=
1

12

(

1 − 20

(L + 5)4
G4(τ) − 140

(L + 5)6
G6(τ) + O

(

1

L8|1 − q|8
))

.

Proof. In addition to the representation of θ1(u, q) of Lemma 4.1 we use the
expansion

θ′1(u, q)

θ1(u, q)
=

1

u
− cu −

∑

k≥2

u2k−1G2k(τ)

to obtain

θ′1(u, q)

θ1(u, q)
− 1

2

θ′1(2u, q)

θ1(2u, q)
=

3

4

(

1

u
+
∑

k≥2

4(4k−1 − 1)

3
u2kG2k(τ)

)

=
3

4u

(

1 + 4u4G4(τ) + 20u6G6(τ) + O(u8)
)

.

This leads to (22) immediately. �

Lemma 5.2 Suppose that q = e2πiτ and L satisfy |1 − q| ≥ c/L for some
constant c > 0. Then

R
[0,L]

0 (t) =
4

3

(

1 − 20

(L + 5)4
G4(τ) − 420

(L + 5)6
G6(τ) + O

(

1

L8|1 − q|8
))

(23)
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Proof. By using the relation (16) and by proceeding as in the proof of
Lemma 5.1 we derive the result. �

We are now ready to prove Theorem 2.2. We set L + 5 = λn1/4 and use

Cauchy’s formula. For technical reasons we apply it for R
[0,L]

0 (t)−16t instead

of R
[0,L]

0 (t). Of course, if n > 1 we have

[tn] R
[0,L]

0 (t) = [tn]
(

R
[0,L]

0 (t) − 16t
)

=
1

2πi

∫

γ

(

R
[0,L]

0 (t) − 16t
)

t−n−1 dt

=
1

2πi

∫

γ1∪γ2∪γ3

(

R
[0,L]

0 (t) − 16t
)

t−n−1 dt+
1

2πi

∫

γ4

(

R
[0,L]

0 (t) − 16t
)

t−n−1 dt

We will focus on the contribution coming from the contour γ1 ∪ γ2 ∪ γ3.
First, by combining Lemma 5.1 and Lemma 5.2 it follows that

R
[0,L]

0 (t) − 16t = − 1120

3(L + 5)6
G6(τ) + O

(

1

L8|1 − q|8
)

Hence, we using the corresponding substitutions (as in the proof of Theo-

rem 2.1: τ = i/w, t = 1
12

(

1 − 4
9

π4

L4 w
4
)

, λ = (L + 5)n1/4, v = (π/λ)w) we

derive

1

2πi

∫

γ1∪γ2∪γ3

(

R
[0,L]

0 (t) − 16t
)

t−n−1 dt

∼ π4

πi

12n

n5/2

8960

27λ10

∫

Γ̂

G6

(

i

w

)

exp

(

4

9

π4

λ4
w4

)

w3 dw

=
1

πi

12n

n5/2

8960

27λ6

∫

Γ̂

G6

(

iπ

λv

)

exp

(

4

9
v4

)

v3 dv

=
1

π7i

12n

n5/2

8960

27

∫

Γ

G6

(

iλv

π

)

exp

(

4

9
v4

)

v9 dv

Hence, by normalizing with 2 · 3n
(

2n
n

)

/((n + 1)(n + 2)) we obtain the limting
relation

P{rn ≤ λn1/4} ∼ 4480

27

1

π13/2i

∫

Γ

G6

(

iλv

π

)

exp

(

4

9
v4

)

v9 dv.

A final scaling by
√

2/3 provides the result of Theorem 2.2.
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