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We develop a combinatorial structure to serve as model afaiarreal world networks. Starting with plane oriented
recursive trees we substitute the nodes by more comlex graphsuch a way we obtain graphs having a global
tree-like structure while locally looking clustered. Tfiis with observations obtained from real-world networks. |
particular we show that the resulting graphs are scale-fret is, the degree distribution has an asymptotic power
law.
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1 Introduction

There has been substantial interest in random graph modheleewertices are added to the graph suc-
cesively and are connected to several already existingsnac=rding to some given law. The so-called
Albert-Barabasi model (see Albert and Barabasi (20G#))sj a new node to an existing one with proba-
bility proportional to the degree. The idea behind is to nMiedeiousreal-word graphdike the internet

or social networks.
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It turns out that the Albert-Barabasi model is not unambglp defined. One rigorous approach is
due to Bollobas and Riordan (2004) They introduced a ran¢foniti)graphG?},. For exampleGY is
described in the following way. One starts with an initialded with a loop. (This means thdt has
degree?). Then at stefi: we add one node that is connected tg k& with propability

deggffl(]‘)
2k —1
1

2k —1

if j <k,

if j = k.

Of course, aften steps we have produced a random (multi)graph with verteXk&t ..., n} andn
edges. Now the random gragHj, can be constructed fro&@}*" by identifying the node$(¢ — 1)m +
1L,l—1m+2,....4m} (1 < ¢ < n)of GP" to a new nodée (and all edges within the nodg$/ —
1)m+1,(£—1)m+2,...,¢m} are now loops of the new nodg Of course, this procedure results in a
random (multi)graph with vertex sét, 2, ..., n} andmn edges.

It turns out that the degree distribution Gf:, satisfies gpower law The probability that a randomly
chosen node of:", has degred is asymptotically2/d* (see Bollobas et al. (2001)). Graphs with this
property are calledcale-free

We now use a slightly modified evolution process that alwagsl$ to a labelled recursive tree. The
process starts with the root that is labeled wiithThen inductively at step a new node (with label) is
attached to any previous node of outdegt@@th probability proportial tok + 1. These kinds of trees are
also calledplane oriented recursive treBORT'S).

This evolution process is quite similar to the process thatipces (usual) recursive trees. A (usual)
recursive tree is a rooted tree (withnodes) where the nodes are labeled witB, . .., n such that all
successors of each node have a larger label. In partichtarobt has label, and every path from the
root to a leaf has strictly increasing labels. As above, weamsider a recursive tree as the result of an
evolution process. Thprocessstarts (as above) with the root (that gets labelNext, another node is
attachted to the root (that gets lat®land in every step a new node is attachted to an alreadyrexisti
node (and gets the next label). The labels arehtbmry of the tree evolution.

The PORT-model, where we attach a new node according to theelalistribution of the already
existing tree, can be also seen as a planar version of thesreetrees. Namely, if a node of a planar
(rooted) tree has out-degréethat is, it has degre¢ = k + 1, then there are precisetyways to attach
there a new node in order to get different planar trees. Ttptaens the namelane oriented recursive
trees

We will indicate in the next section that the degree distidiuof these random trees is scale-free as in
the case ot7},. In fact, we have

. 4
A pald) = T @)
wherep,, (d) denotes the probability that a random node in random POREehshas degred.
We now introduce a substitution process that creates ramgtaphs that have a global tree structure
that is governed by plane oriented recursive trees.
For everyk > 0 let 7; denote a non-empty set of labelled graphs with 1 additional orderedhalf
edges Now consider the following random process. For every tré&RP T we substitute every node
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v (of outdegreek) by a randomly chosen graph @f where thek + 1 half edges argluedto the edge
coming from the predecessor ofresp. thek successors of corresponding to the given order of the
half-edges. Further we relabel all nodes in the new gr@ph G(T) in a way that is consistent with the
original labelling. We denote the graphs that are obtairyatiis processhickened treesr more precisely
thickened PORT!s

The idea behind this model is to simulate real networks thatpaoduced by an evolution process
(following, for example, the Albert-Barabasi principba)d have a@lobal tree structuravith local clusters.
Of course, we make a strong simplification. Our model relieadwo-step-procedure. We first let a
tree network evolve (following the Albert-Barabasi piiple) and then replace the tree nodes by random
clusters. Hence, the clusters are not produced by an ewnlptocess. Nevertheless we think that our
model has several advantages and can be used to explaialg@gogrerties that are obsered in practice:

e There is large flexibility in choosing the structure of lochisters and, thus, can be adapted to the
situation.

e The model is feasable for an analytic treatment.

e It can be used to study (analytically) the influence of lodemges of the network to the global
behaviour.

The main focus of our paper is the degree distribution. Wavsthat under natural conditions the
resulting network is scale-free and that the number of nofigiven degree satisfy a central limit theorem.

2 The degree distribution of PORT’s

In this section we shortly present a proof that PORT's aréesftae. In particular we show the following

property that is due to Mahmoud et al. (1993), see also Berget al. (1992) for similar results and
Kuba and Panholzer (2007) for generalizations. The reamoprésenting a proof is that the proof of a
corresponding property for thickened PORT’s will work adasimiliar lines.

Theorem 1 Letp, (d) denote the probability that a random node in a random PORTzefishas degree
d. Then

. 4
Jimp,(d) = FCESCES)h

Furthermore, for everyl > 1 let Xx{? denote the number of nodes of degidea random PORT's of size
n. ThenX,Sd) satisfies a central limit theorem

X -EX 4
T yx@ — N(0,1),

whereE X'V ~ 2B(3,d)n = 4n/(d(d + 1)(d + 2)) andV X\ ~ (2B(3,d) +4B(3,d)? — AB(4, 2d —
1))n and B(a, b) denotes the Beta-function.
Proof: The proof of Theorem 1 is based on a generating function aghrolt is well known that the
generating function
Zn
() =) un—y

n>1
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of PORT's satisfies the differential equation

1
/ 2
( (2) +9(2) =
that reflects the recursive structure of PORT’s. The safuiso
(n—1))! 2"
1-2z= -
y(z) = (n=1)! n!
77,>1
and, thus, one has
1 (2(n—-1))
In = o T i1y
We now turn to the degree distribution. By obvious reasomiadhave
E X"
n(d) = .
pn(d) -

Thus, we can get the degree distribution with help of theibistion ofX
Let y denote the number of PORTS's of simewith exactly k nodes with degred. Then the

probab|I|ty generating functioR u X s given by
(d)
an e Z yn k u
Yn k>0

and the double generating function

71

=Syt = S (B ) 2

n,k ’ n>1

satisfies the differential equation

dy 1 a1 _ 1y (1 -y)u-1)
Equivalently we have
Y 1-t¢
/0 T 1 Hu_1) " =* @
We first determine the expected valBer\” . For this purpose we set
oy(z,u
S(z):%) Zy" ENdn'_
u u=1p>1

From (2) we get that this function satisfies the differergmliation
5(2)

Py d—1
A=y TV

S'(z) =
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and has solution

1 y(2) d1
S(z):m/o (1 —t)*t? 1 dt.

Recall thaty(z) = 1 — /1 — 2z. Thus, it follows that
y(z) 1 1
/ (1 —t)%d—ldtz/ (1 —t)%d—ldt—/ (1—t)%tLat
0 0 y(2)
=B@3,d+1)+0 ((1 - 2z)3/2) .

Consequently, we have
_B(3,d+1)+0(1): 2 1
V1=2z dld+1)(d+2) V1-22
which implies (with help of the transfer-lemma of FlajoleideOdlyzko Flajolet and Odlyzko (1990)) that

+0(1)

4
(d) = _—
E X, nd(d+1)(d+2)+o(\/ﬁ)'
Consequently, we get the degree distribution
(d)
. . EX, 4
A pn(d) = lim == = dd+1)(d+2)

In order to prove the central limit theorem we go back to (2) similarly expand the integral

v 1—t ! 1—t ! 1—t
— dt = — dt — — dt
o 1+t-1(1—t)(u—1) o L+t=1(1—t)(u—1) y L+t (1 —t)(u—1)

=: C(u) — D(y,u)
Observe thaD(y, u) is asymptotically given by
1— 2
D) = T 1oy -1 1)),
Hence (2) translates to
z
2C(u)y 1 - ==y A+0(y—1]-|u-1))

C(u)
which can be inverted to

y(zu) =1 — /20(w) 1‘%”(‘“0@))'

Consequently it follows (compare with Flajolet and Soriaq3)) thatX,({i) satisfies a central limit theo-
rem with mean and variance

c'(1) cr()  C'(1)  C'(1)?
—C(l)n+0(\/ﬁ) and VX0 = (— ORI + C(l)z>n+0(\/ﬁ).

It is an easy exercise to compuiél) = 1/2, C'(1) = B(3,d), andC” (1) = 2B(4,2d — 1). O

EXx =




6 Michael Drmota, Bernhard Gittenberger, and Alois Panholze

3 The degree distribution of thickened PORT's

We now deal with a substitution process that creates randaphg that have a global tree structure that
is governed by plane oriented recursive trees.
Let us consider the formal solutian= y(z, zo, 21, x2, . . .) of the differential equation

v = anyt,

k>0

where’ denotes differentiation with respect4olt is clear thay = y(z, zo, 1, z2, . . .) can be considered
as a power series in xg, 1, . . . By construction the coefficient

[zhahoah | Jy(z, 20, 71,20, . . )

is exactly the number of PORTE of sizen andk; nodes of outdegreg(j > 0).
For everyk > 0 let 7 denote a non-empty set of labelled graphs with- 1 additionalhalf edges

€o, €1, ..., €. Further, let
el

te(z) = > —=

|
GeTy, | |

denote the exponential generating function of these graphs

We recall that we consider the following random process.dvery PORTI" we substitute every node
v (of outdegreé) by a randomly chosen graph @ where the half edge®, é1, . . ., é, aregluedto the
edge coming from the predecessowaEsp. the: successors af corresponding to the left-to-right order.
Further we relabel all nodes in the new gragh= G(T') in a way that is consistent with the original
labelling. Thus, the generating function of the number) = >", -, gn% of the numberg,, of graphs
that are produced in this way is given by -

9(2) = y(z,t0(2) /2, t1(2) /2, .. ).
The graphs that are obtained by this process are denotebytitiekened treesr thickened PORT:s

Lemmal Set

v dt
Flzy) = /0 Do te(2)/zth

Theng(z) satisfies the functional equation

F(z,9) =z
Proof: We recall thaty = y(z, zo, 21, . . .) satisfies the differential equatigh = Zkzo zry*. Hence,

/y dt n
= =%2+c¢
0 Zkzo rryk

for some constant. Of course, if we substitute;, by ¢;(z)/z then we immediately get the result. Note
further thatg(0) = 0 andF'(0,0) = 0. Thus, we can fix = 0. O
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Fig. 1: The substitution sef;

In a similar way we can deal with parameters. For example, figgreed and let

t,(cd)(z,u) = Z

GeTy,

G
iuNd(G)
G| ’

where N, (G) denotes the number of nodesGhof degreed including the half-edgeég, . .., é;. Then
the generating function

g(z,u) = y(z, téd)(z, u)/z, tgd)(z, w)/z,...)

encodes the distribution of nodes of degteaf thickened trees. Of course, the above lemma extends to
this case. It is now convenent to introduce the notation

1
Tu(z.yow) = — Y 17 (2w,
k>0

Of course, for alkd we havely(z,y,1) = > ;5 te(2)/2 yk.
Lemma?2 Set

v dt
Galz,y,u :/ - .
alzy,u) o Ta(z,t,u)

Theng(z, u) satisfies the functional equation
Ga(z,9,u) = 2.

Example We just give a simple example. Suppose thatonsists for every > 0 of exactly two graphs,
the first one with one node and the second with two nodes, wdlehalf-edges, .. ., & that will be
linked to thek subgraphs are on the second node. Figure 1 depicts the.set

In this example we have fat > 3

22 .
ICRIIES S Th#d—1
koA uz +u%y  else,
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and consequently

Tu(z,y,u) = (1 + —) (L + (u— 1)yd_1) )
The cased = 1 andd = 2 are similar.

Our main result is the following theorem:

Theorem 2 Let 7}, be substitution sets (as described above) so that the equati

/1 dt
B 0 Td(pvtal)

has a unique positive solution in the region of convergercg; ¢z, y, v) and that thel;(z, y, ) can be
represented as

Colz,y) + Culz,y)(1 =)y (w—1) + 0 (1 =) (u—1)%)
(1—-y)r ’

wherer’ andr are real numbers withh < v < r, « in an integerCy(z,y) andC1 (z, y) are power series
that containz = p andy = 1 in their regions of convergence and that satify(p, 1) # 0 fori = 0, 1,
and theO (-)-term is uniform in a neighbourhood ef= p andy = 1.

Letp, (d) denote the probability that a random node in a thickened PORSIzen has degreel. Then
the limits

Ti(z,y,u) =

lim_py,(d) =: p(d)

n—oo

exist and we have, ab— oo,
C
p(d) ~ =

Furthermore, for everyl > 0 let X{¥ denote the number of nodes of degiki@ random thickened
PORT's of sizex. ThenX\” satisfies a central limit theorem

X -EXy
T yx@ — N(0,1),

whereE XV andV X are both asymptotically proportial to.

Remark. The conditions on the generating functi®iz, y, u) can be (more of less) interpreted in the
following way. If we setu = 1 then the singularity /(1 —y)" in T'(z, y, 1) essentially says that the s&t
consists~ k"1 graphs. Furthermore fdr > d + o there arex k”~"'~! graphs with a vertex of degree
d, compare also with the examples given in Section 4.

Proof: The proof runs along similar lines as that of Theorem 1. We &iainspecting the generating
function g(z) of all thickened PORT’s. For simplicity we assume that thessiution sets7;, are of a
form thatg,, > 0 for sufficiently largen > ny, that is, we exclude, for example, the case that the number
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of nodes of graphs iff;, are all congruent td modulo some integem > 1.0 Then it follows that
lg(2)| < g(|z]) if z is not contained in the positive real line.

We first observe thap > 0 is the only singularity on the circle of convergene¢ < p and that
g(p) = 1, that is,g(z) is convergent at = p. First it is clear thay(z) can be analytically continued
starting withg(0) = 0 and the functional equatioR(z,g) = z. However, ifg(zy) # 1 for somez,
contained in the region of convergence¢f) then we have

B 1 (1 —=g(20))"
Fyz0.9(20)) = 7= 2515 = Colror 9(20))

Thus, we can continue analytically with help of the implitihction theorem. Thus, §(z) has a singu-

larity p and if g(p) is convergent thep(p) = 1. Sinceg(z) is monotone and analytic it certainly reaches

a value withg(p) = 1 where it has to be singular. Furthgiis characterized by the equatidtip, 1) = p.
Next we characterize the kind of singularitygf:) atz = p. By Lemma 1 we have

Y ) Y S ) LR S Sl LR
Z_/o Col=1) dt_/o Cote ) /g Colz,p @ = OB~ Hiz9)

Hence, by expanding/Cy(z, t) locally around = 1 we thus get

G(z) =z =co(z)(1 = g)" " (1+ O (|1 - g]))
or

L)\ MO
(%) — (1 —g)(1+0(1—gl). ®)

CQ(

SinceG(p) = p andCy(z,y) is increasing i we can represefG(z) — z)/co(z) = K(2)(1 — z/p).
Furthermore, we can invert the relation (3) and obtain

> 1/(r+1) 5
g(z) =1 - K(2)Y/+D (1— —) +0 ‘1— z
P

2/(r+1)
p ) '

Since there are no other singularities on the citele< p andg(z) can be analytically continued to a
larger range (despite at the point p) it follows from Flajolet and Odlyzko (1990) that

r42

- Ve P T
9n K(p) T (_L)
r+1

Next we determine asymptotics on the average valng. . SetS(z) = a%g(z, 1). Then it follows
from Lemma 2 that

_ 1 (](Z) r4+r yd4+a
S(2) = (Z))T/O Ch (2, £)(1 — 1)+ e gy,

(1-g

@ We call this the aperiodic case. In the periodic case we hawde&l withm singularities on the boundary of the circle of
convergence of(z) which are all of the same kind.
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As in the proof of Theorem 1 it follows that

S(z) = ! /1 Ch(z, ) (1 — )t dt + 0 (1)
K(2)7 (1-2/p)7 Jo ’

which proves that

1t ,
EXD ~n. TKL(,))/ Ci(p,t)(1 — )+ dtegr,
0

Thus, the limitp(d) = lim,,— EX,(ld)/n exists and is asympotically given by

C

r+1 ' rr’ «
/O Cl(p,t)(l—t) + td+ dtNW

K(p)

p(d) =

for some constan® > 0.
Finally the proof that the limiting distribution is norma very similar to the corresponding proof of
Theorem 1. We skip the details. O

4 Examples
4.1 Substituting by one or two nodes

Let us continue the example preceding Theorem 2. Here we(f@vé > 3):

_ 2\ 1+ (1 —y)(u—1y+!
Td(z,y,u)—(1+2) - .
Thus, Theorem 2 applies with= 7/ = 1 anda = —1. The degree distributiop(d) is scale-free with
tail p(d) ~ C/d3. A detailed computation (including the instanegs< 3 also) shows that the degree
distribution is given as follows:

2++2 2++2 _14-5V2

p(d) = dd+1)[d+2) for d > 3, p(l) = 6 p(2) 21

4.2 Thickening with triangles 1

We consider two examples where we substitute each node afitiieal node by a triangle. More pre-
cisely, each node of out-degrkés then substituted by a triangle witht- 1 half-edge<,, . . ., é; attached
toit. Theéy is glued to the predecessor of the original nodes and the b#tieedges to the successors of
the original nodes according to their naturally given or@eg. left to right in the case of plane trees). Let
the parameter of interest be the number of hodes of defjréken we have

23

ti(z,u) = (aok + a1 pu+ a27ku2 + a37ku3)§

whereq; ;; is the number of configurations (triangles witlhalf-edges) containingnodes of degreé
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We first consider the special case where the ingoing edgecbftdangle is separated from the outgoing
edges. That means th&f connects the predecessor of the triangle to a vertex of dégtbe edges are
thené, and two edges of the triangle) whilg, ..., é; are connected to the other two vertices of the

triangle. Clearly we have then

23

3!
When focusing on the number of nodes of degigihen it is easy to see that (fdr> 4) we have

tp(z) = (k+1)

k+1 ifk<d-—2
apr =1k if k=2d—4
k—1 else.
This holds because of the following argument. Let us labehibdes of the triangle b, 1, 2 whereég is
attached to 0. Thefy, of the edgeg., ..., é; are attached td and/>, = k — ¢; to 2. The configuration

contains at least one node of degddgéand only if ¢ = d — 2 or ¢, = d — 2. Exactly these cases do not
contribute toag . Moreover we getis . = 0,

0 fk=2d—4ork<d—2 0 ifk#£2d—4
al = and as = .
’ 2 else, ’ 1 ifk=2d—-4.

This implies (ford > 4):

IS8
w

22

T(zyu) =5 | Db —1+2u)y" +
k>0

(]

2(1 — w)y® + (1 —u)?y*

ol
Il
=)

2214201 —y)yi2(u—1
6 1

| I~

+ (1= (u 1)
y)? '
Here Theorem 2 applies with = 1, » = 2 anda = —2. Hence the degree distributigiid) is scale-

free with tailp(d) ~ C/d*. A detailed computation (including the instancés: 4 also) shows that the
degree distribution is given as follows:

(d - 1)d(d1—2r Natoy erdz4 pl)=0 p2)= L=

p(d) =

4.3 Thickening with triangles 2

In the case of general triangles the edggs . ., éx can be attached to all the vertices of the triangles.
This gives, after somewhat tedious considerations, theviaig result fort;‘i)(z, u).

Lemma3 Letd > 3. Then we have

d d
1 (z,0) = —ay (u),
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with
(*3°) ifh<d—4
("5 = (k+ 1)k —d+4) + (k+ 1)(k — d+ 4)u ifd—3<k<2d—6
2
oy (u) = § (M%) — SEE 4 LDy (1) if k= 2d — 5
(53 = (k+ 1)k —d+3)+ (k+1)(k—d+2u+ (k+ 1)u? ifk>2d—4andk # 3d — 7
(k;g) . (k+l)g2k+3) + 2(k-§1)2u+ %ug ik —3d_T.

This implies (ford > 4):

[

Tz, u,0) = = I _1y)4 [14 (1= gy~ dyy + d —2)(u— 1)

— (
Now Theorem 2 applies with = 1, » = 4 anda = —3. Hence the degree distributigiid) is scale-

free with tailp(d) ~ C/dS. A detailed computation (including the instances: 4 also) shows that the
degree distribution is given as follows:

1600 5 20
Ao DddsNdrdrary ordz4 p)=0 p2) =5, pB) =7

—_

—y)?y? 0 (2d = 5)y — 2d + 4)(u — 1)* + (d — 2)(1 — »)*y* T (u — 1) |.

p(d) =
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