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Abstract. The purpose of this paper is to provide upper bounds for the dis-

crepancy of generalized Van-der-Corput-Halton sequences that are built from

Halton sequences and the Zeckendorf Van-der-Corput sequence.

1. Introduction

Suppose that q ≥ 2 is a given integer and

n =
∑
j≥0

εq,j(n)qj , εq,j(n) ∈ {0, 1, . . . , q − 1}

denotes the q-ary representation of a non-negative integer n. Then the q-ary Van-
der-Corput (φq(n))n≥0 sequence is defined by

φq(n) =
∑
j≥0

εq,j(n)q−j−1.

It is well known that the Van-der-Corput sequence is a low discrepancy sequence,
that is, the (star-) discrepancy D∗N (φq(n)) satisfies

D∗N (φq(n))� logN

N
;

Similarly a d-dimensional Halton equences Φq(n) that is defined by Φq(n) = (φq1(n), . . . , φqs(n))
satisfies

D∗N (Φq(n))� (logN)s

N
,

if q = (q1, . . . , qs) consists of pairwise coprime integers qj ≥ 2. In particular all
these sequences are uniformly distributed modulo 1 (which just means that the
discrepancy tends to 0 as N → ∞). For more details on discrepancy theory and
uniformly distributed sequences we refer to [2, 6]. We just note that the (star-)
discrepancy D∗N (xn) of a s-dimensional real sequence (xn)n≥0 is defined by

DN (xn) = sup
0<α1,...,αs≤1

∣∣∣∣∣ 1

N

N−1∑
n=0

1[0,α1)×···×[0,αs)(xn mod 1)− α1 · · ·αs

∣∣∣∣∣ .
Recently Hofer, Iaco, and Tichy [4] considered generalized Van-der-Corput and

Halton sequences of the following form. Suppose that b ≥ 1 and d ≥ 2 (or b ≥ 2
if d = 1) are integers and G = (Gn)n≥0 is an integer sequence defined by G0 = 1,
Gk = b(Gk−1 + · · ·+G0) + 1 for 1 ≤ k < d and

Gk = b(Gk−1 + · · ·+Gk−d)

for k ≥ d. Then every non-negative integer n can be uniquely represented by

(1.1) n =
∑
j≥0

εG,j(n)Gj ,
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where the digits ε ∈ {0, 1, . . . , bGj+1/Gjc} are (uniquely) chosen by the greedy
condition

J−1∑
j=0

εG,j(n)Gj < GJ .

We will call (1.1) the G-ary expansion of n. Of course, this generalizes q-ary ex-
pansions, where b = q, d = 1, and Gk = qk.

Furthermore let β > 1 be the dominating root of the adjoint polynomial

xd − bxd−1 − · · · − b = 0.

Then the (so-called) β-Van-der-Corput sequence (φβ(n))n≥0 is defined by

φβ(n) =
∑
j≥0

εG,j(n)β−j−1.

As in the case of the usual Van-der-Corput sequence it is well known that in this case
the β-Van-der-Corput sequence is a low-discrepancy sequence, that is D∗N (φβ(n))�
(logN)/N , see [1, 8]. A very prominent example is the β-Van-der-Corput sequence

corresponding to the golden mean ϕ = (1 +
√

5)/2, where the base sequence G =
(Gn)n≥0 is given by the Fibonacci numbers Gn = Fn+2. Here the digital expansion
(1.1) is called Zeckendorf expansion. And the digits εG,j(n) ∈ {0, 1} just have to
satisfy εG,j(n)εG,j+1(n) = 0, that is, there are no consecutive 1’s. For convenience
we will denote this sequence the Zeckendorf Van-der-Corput sequence (φZ(n))n≥0.

Similarly to the usual Halton sequence the β-Halton sequence is defined by
Φβ(n) = (φβ1

(n), . . . , φβs
(n)), where the entries of β = (β1, . . . , βs) correspond

to Gi-adic expansions of the above kind, 1 ≤ i ≤ s.
By the use of ergodic properties it was shown in [4] that Φβ(n) is uniformly

distributed modulo 1 provided that the integers bi are pairwise coprime and the
dominant roots βi have the property that βki /β

l
j 6∈ Q for all integers k, l ≥ 1 and

i 6= j. However, the discrepancy was not considered at all.
The purpose of the present paper is to provide a first quantitative discrepancy

analysis of β-Halton sequences.

Theorem 1. Suppose that q1, . . . , qs ≥ 2 are pairwise coprime integers. Then the
discrepancy of the (s+ 1)-dimensional sequence

Φ(n) = (φq1(n), . . . , φqs(x), φZ(n))

satisfies
D∗N (Φ(n))� N1−ε

for every ε > 0.

It remains an open problem whether this kind of generalized Halton sequences
are low discrepancy sequences. Nevertheless the upper bound given in Theorem 1
is close to optimality. We leave this as an open problem.

Problem. Suppose that Φβ(n) = (φβ1(n), . . . , φβs(n)) is a s-dimensional β-Halton
sequence that is uniformly distributed modulo 1. Is Φβ(n) also a low-discrepancy
sequence, too, that is,

D∗N (Φβ(n))� (logN)s

N
?

Actually it is not clear how far Theorem 1 can be generalized. It would be
desirable to cover (at least) the kind of sequences that are discussed in [4]. However,
it seems that the methods that are applied in the present paper are not sufficient
to handle these cases. In the case of the Zeckendorf Van-der-Corput sequence the
distribution can be reduced to distribution properties of the Weyl sequence nϕ mod
1 (see Lemma 5). This is due to the fact that the Zeckendorf expansion agrees
with the Ostrowski expansion related to the golden mean ϕ. In the more general
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case it might be possible to replace this approach by a distribution analysis of a
more-dimensional linear sequence (modulo 1) in Rauzy fractal type sets (see [7, 11]).

2. Discrepancy Bounds for Halton Sequences

The purpose of this section is to present a very basic approach to the discrepancy
of Halton sequences Φq(n). These results are by no means new but are helpful to
prepare the proof of Theorem 1.

Actually all subsequent properties follow from the following observation (that is
immediate from the definition).

Lemma 2. Suppose that q ≥ 2, k ≥ 0, and 0 ≤ m < qk are integers. Then we have

φq(n) ∈
[
m

qk
,
m+ 1

qk

)
if and only if

k−1∑
`=0

εq,k−1−`(n)q` = m,

that is, the digits εq,0(n), . . . , εq,k−1(n) are fixed or, equivalently, n is contained in
a fixed residue class mod qk.

Lemma 2 implies a discrepancy bound (2.1) for the Van-der-Corput sequence.
Note that in the present case we trivially have δk ≤ 1 so that the upper bound
q−L + L/N � (logN)/N follows immediately by choosing L = blogq Nc. The
reason for using the formulation (2.1) with explicit δk is that this kind of formula
naturally generalizes to (generalized) Halton sequences.

Lemma 3. Suppose that q ≥ 2 is an integer. Then we have for every integer L ≥ 1

(2.1) D∗N (φq(n))� 1

qL
+

1

N

∑
1≤k≤L

δk,

where

δk = max
0≤u<qk

∣∣∣∣#{n < N : n ≡ u mod qk} − N

qk

∣∣∣∣
Proof. Suppose that the interval [0, α) = I1 ∪ I2 ∪ · · · ∪ IR is partitioned into R
disjoint intervals Ir of lengths `r, 1 ≤ r ≤ R. Then by the triangle inequality we
have ∣∣∣∣∣

N−1∑
n=0

1[0,α)(xn)−Nα

∣∣∣∣∣ ≤
R∑
r=1

∣∣∣∣∣
N−1∑
n=0

1Ir (xn)−N`r

∣∣∣∣∣ .
Now if α ∈ [vq−L, (v + 1)q−L) and v has the digital expansion v = v0 + v1q + · · ·+
vL−1q

L−1 then we can partition the interval [0, α) into v0 + v1 + · · · + vL−1 + 1
intervals: v0 intervals of the form [m0q

−1, (m0 + 1)q−1), 0 ≤ m0 < v1; v1 intervals
of the form [v0q

−1 + m1q
−2, v0q

−1 + (m1 + 1)q−2), 0 ≤ m1 < v1 etc., and finally
the interval [vq−L, α).

By Lemma 2 it follows that for every interval of the form I = [mq−k, (m+1)q−k)
we have ∣∣∣∣∣

N−1∑
n=0

1I(φq(n))−Nq−k
∣∣∣∣∣ ≤ δk.
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Finally for the interval [vq−L, α) we set J = [vq−L, (v + 1)q−L) and obtain

N−1∑
n=0

1[vq−L,α)(φq(n)) ≤
N−1∑
n=0

1J(φq(n))

≤

∣∣∣∣∣
N−1∑
n=0

1J(φq(n))−Nq−L
∣∣∣∣∣+Nq−L

≤ δL +Nq−L.

and consequently∣∣∣∣∣
N−1∑
n=0

1[vq−L,α)(φq(n))− (α− vq−L)N

∣∣∣∣∣ ≤ δL + 2Nq−L.

Of course this proves Lemma 3. �

By using precisely the same proof method as in the proof of Lemma 3 we obtain
a direct generalization for Halton sequences. Note that the Lemma 2 together with
the Chinese remainder theorem has to be used to obtain (2.2). Note again that
δk1,...,ks ≤ 1 so that we derive from (2.2) the upper boundD∗N (Φq(n))� (logN)s/N
by choosing Lj = blogqj Nc.

Lemma 4. Suppose that q1, q2, . . . , qs ≥ 2 are pairwise coprime integers and q =
(q1, . . . , qs). Then we have for all integers L1, . . . , Ls ≥ 1

(2.2) D∗N (Φq(n))�
s∑
j=1

1

q
Lj

j

+
1

N

∑
1≤k1≤L1

· · ·
∑

1≤ks≤Ls

δk1,...ks

with

δk1,...,ks = max
0≤u<qk1

1 ···q
ks
s

∣∣∣∣∣#{n < N : n ≡ u mod qk11 · · · qkss } −
N

qk11 · · · q
ks
s

∣∣∣∣∣
Finally we mention that it is easy to we extend Lemma 4 to subsequences of

Halton sequences. Suppose (again) that q1, q2, . . . , qs ≥ 2 are pairwise coprime
integers. If c(n) a sequence of non-negative integers then we obtain

D∗N (Φq(c(n)))�
s∑
j=1

1

q
Lj

j

+
1

N

∑
1≤k1≤L1

· · ·
∑

1≤ks≤Ls

δk1,...ks

with

δk1,...,ks = max
0≤u<qk1

1 ···q
ks
s

∣∣∣∣∣#{n < N : c(n) ≡ u mod qk11 · · · qkss } −
N

qk11 · · · q
ks
s

∣∣∣∣∣
Similar observations have been already made in [5]. And actually we can re-
prove them with the above estimates. We just recall the obervation from [5] that
(Φq(c(n)))n≥0 is uniformly distributed modulo 1 if and only if c(n) is uniformly
distributed in the residue classes modulo (q1 · · · qs)k for all k ≥ 0. (Of course if
c(n) is uniformly distributed in the residue classes modulo (q1 · · · qs)k then it is also

uniformly distributed in the residue classes modulo qk11 · · · qkss for all kj ≤ k.)
It is also of interest to start with a sequence r(n) of non-negative real numbers

and to consider the sequence (Φq(br(n)c)n≥0. Here it follows that if the sequence

r(n)/(qk11 · · · qkss ) is uniformly distributed modulo 1 for all integers k1, . . . ks ≥ 0
then (Φq(br(n)c)n≥0 is uniformly distributed modulo 1, too. Furthermore

D∗N (Φq(br(n)c)�
s∑
j=1

1

q
Lj

j

+
∑

1≤k1≤L1

· · ·
∑

1≤ks≤Ls

DN (r(n)/(qk11 · · · qkss )).
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3. Discrepancy Bounds for the Zeckendorf Van-der-Corput Sequence

Next we provide a quantitive appraoch to the Zeckendorf Van-der-Corput Se-
quence (φZ(n))n≥0 that has strong similarities to the q-ary case from the previous
section.

We recall that the Fibonacci number (Fn)n≥0 are given by F0 = 0, F1 = 1, and
Fk = Fk−1 + Fk−2 (for k ≥ 2) and that every non-negative integer n ≥ 0 has a
unique representation

n =
∑
j≥2

εZ,j(n)Fj ,

where εZ,j(n) ∈ {0, 1} and εZ,j(n)εZ,j+1(n) = 0. The Zeckendorf Van-der-Corput
Sequence φZ(n) is then given by

φZ(n) =
∑
j≥2

εZ,j(n)ϕ−j+1,

where ϕ = (1 +
√

5)/2 is the golden mean.
There is an interesting analogue to Lemma 2. Actually we get slightly more

information than in the q-adic case.

Lemma 5. Suppose that k ≥ 3 and that the first digits εZ,2(n), . . . , εZ,k−1(n) are
fixed. Then we equivalently have

(3.1) φZ(n) ∈


[

µ
ϕk−2 ,

µ+1
ϕk−2

)
if εZ,k−1(n) = 0,[

µ
ϕk−2 ,

µ+ϕ
ϕk−2

)
if εZ,k−1(n) = 1,

where

µ =

k−3∑
`=0

εZ,k−1−`(n)ϕ`.

Furthermore we have

(3.2) (−1)knϕ ∈ (−1)kuϕ+

{
A

(0)
k + Z if εZ,k−1(n) = 0,

A
(1)
k + Z if εZ,k−1(n) = 1,

where

u =

k−1∑
j=2

εZ,j(n)F`

and

A
(0)
k =

[
− 1

ϕk−1
,

1

ϕk

)
and A

(1)
k =

[
− 1

ϕk+1
,

1

ϕk

)
.

Proof. Both properties, (3.1) and (3.2), are completely elementary. We just mention
that (3.2) is a general property related to the Ostrowski expansion, compare with
[3, Section 3.2]. (For a proof in the present case we refer to [10].) �

We first note that the intervals
[

µ
ϕk−2 ,

µ+1
ϕk−2

)
(or
[

µ
ϕk−2 ,

µ+ϕ
ϕk−2

)
, respectively) par-

tition the unit interval [0, 1) if the digits εZ,2(n), . . . , εZ,k−1(n) vary over all valid

0-1-sequences. Similarly the sets (−1)uϕ + A
(0)
k mod 1 (or (−1)uϕ + A

(1)
k mod 1,

respectively) partition the unit interval. This implies that the distribution of the
Zeckendorf Van-der-Corput sequence φZ(n) can be directly related to the distibution
of the sequence nϕ mod 1. This leads us to a corresponding variant of Lemma 3.

Lemma 6. For every integer L ≥ 1 we have

D∗N (φZ(n))� 1

ϕL
+

1

N

∑
1≤k≤L

δk,
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where

δk = sup
0≤β<1

∣∣∣∣∣
N−1∑
n=0

1[β,β+ϕ−k)(ϕn mod 1)− N

ϕk

∣∣∣∣∣ .
Proof. The proof is very close to the proof of Lemma 3. First, for every α ∈ (0, 1]
there exists µ of the form

µ =

L−3∑
`=0

εL−1−`ϕ
`.

with ε2, . . . , εL−1 ∈ {0, 1} and εjεj+1 = 0 (that is, there are no consecutive 1’s)
such that µϕ−L+2 ≤ α < (µ+1)ϕ−L+2 if εL−1 = 0 or µϕ−L+2 ≤ α < (µ+ϕ)ϕ−L+2

if εL−1 = 1. For notational convenience we only take into account non-zero digits
and write

µ =

L′∑
j=1

ϕL−2−`j ,

where L′ ≤ L/2 and 1 ≤ `1 < `2 < · · · < `L′ ≤ L− 2. Now we partition the interval
[0, α) into L′ + 1 intervals of the form[

0,
1

ϕ`1

)
∪
[

1

ϕ`1
,

1

ϕ`1
+

1

ϕ`2

)
∪ · · · ∪

L′−1∑
j=1

1

ϕ`j
,

L′∑
j=1

1

ϕ`j

 ∪
 L′∑
j=1

1

ϕ`j
, α


The first L′ intervals can be seen as intervals of the form given in (3.1). Let I
denote one of these intervals. We now apply Lemma 5 and by (3.2) there is another
interval J (mod 1) of the same length ϕ−`j such that

N−1∑
n=0

1I(φZ(n)) =

N−1∑
n=0

1J(ϕn mod 1).

Thus the local discrepancy of the sequence φZ(n) with respect to the interval I can
be replaced by the local discrepancy of the sequence ϕn mod 1 with respect to the
interval J . And the second one can be estimated by δ`j .

Finally the remaining interval can be handled in the same was in the proof of
Lemma 3. Summing up this leads to proposed discrepancy bound. �

We should add that the sets [β, β + ϕ−k) are bounded remainder sets for the
sequence ϕn mod 1 since ϕ−k ∈ Z + ϕZ and we also have δk = O(1). This leads
to another proof of the upper bound

D∗N (φZ(n))� logN

N
.

We also want to mention that Lemma 5 extends to subsequences. Suppose that
c(n) is a sequence of non-negative integers. Then we have for every integer L ≥ 1

D∗N (φZ(c(n)))� 1

ϕL
+

1

N

∑
1≤k≤L

δk,

where

δk = sup
0≤β<1

∣∣∣∣∣
N−1∑
n=0

1[β,β+ϕ−k)(ϕc(n) mod 1)− N

ϕk

∣∣∣∣∣ .
In particular we get

D∗N (φZ(c(n)))� logN D∗N (ϕc(n)).

For example it follows from Lemma 6 that φZ(p(n)) or φZ(pn) is uniformly dis-
tributed mod 1, where p(n) is a non-negative integer valued polynomial and pn is
the sequence of primes.
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Finally the method of Lemma 5 can be used to describe the joint distribution of
a Halton sequence and the Zeckendorf Van-der-Corput sequence.

Lemma 7. Suppose that q1, q2, . . . , qs ≥ 2 are pairwise coprime integers and q =
(q1, . . . , qs). Then we have for all integers L,L1, . . . , Ls ≥ 1

D∗N (Φq(n), φZ(n))� 1

ϕL
+

s∑
j=1

1

q
Lj

j

+
1

N

∑
1≤k≤L

∑
1≤k1≤L1

· · ·
∑

1≤ks≤Ls

δk,k1,...ks

with

δk,k1,...,ks = sup
0≤β<1

∣∣∣∣∣∣
N/(q

k1
1 ···q

ks
s )−1∑

n=0

1[β,β+ϕ−k)(ϕq
k1
1 · · · qkss n mod 1)− N

ϕkqk11 · · · q
ks
s

∣∣∣∣∣∣ .
Proof. Suppose that εZ,k−1 = 0. Then

(Φq(n), φZ(n)) ∈

[
m1

qk11
,
m1 + 1

qk11

)
× · · · ×

[
m1

qk11
,
m1 + 1

qk11

)
×
[

µ

ϕk−2
,
µ+ 1

ϕk−2

)
if any only if n contained in a residue class modulo qk11 · · · qkss and ϕn mod 1 is
contained in an interval of length ϕ−k+2. Thus, the number of n < N with this
property minus the expected number N/(ϕkqk11 · · · qkss ) is bounded by δk−2,k1,...,ks .
(Similarly if εZ,k−1 = 1 then the upper bound is δk−1,k1,...,ks .) Hence, by using a
decomposition of a (d + 1)-dimensional interval [0, α1) × · · · × [0, αs) × [0, α) is in
the proofs of Lemma 3 and Lemma 6 we immediately obtain the result. �

4. Proof of Theorem 1

The proof of Theorem 1 is based on Lemma 7. So we have to estimate δk,k1,...,ks .
Clearly we have

δk,k1,...,ks ≤ 2 (N/q)D∗N/q(ϕqn),

where q = qk11 · · · qkss . It is well known that the discrepancy of a sequence xn can be
estimated by the inequality of Erdős-Turán (see [2, 6]) saying that for every integer
H ≥ 1

D∗M (xn)� 1

H
+

H∑
h=1

1

h

∣∣∣∣∣ 1

M

M−1∑
n=0

e2πihxn

∣∣∣∣∣ .
If xn = αn for some irrational number α we have∣∣∣∣∣

M−1∑
n=0

e2πihαn

∣∣∣∣∣� 1

‖hα‖
,

where ‖x‖ = mink∈Z |x− k| denotes the distance to the integers. Consequently we
get (for every integer H ≥ 1)

(4.1) δk,k1,...,ks �
N

qH
+

H∑
h=1

1

h

1

‖hqϕ‖
.

In order to handle this kind of sums we make use of Ridout’s p-adic version of the
Thue-Siegel-Roth theorem [9] which implies the following lemma.

Lemma 8. Suppose that q1, q2, . . . , qs ≥ 2 are pairwise coprime integers. Then for
every ε > 0 there exists a constant C > 0 such that for all integers k1, . . . , ks ≥ 0
and h ≥ 1

‖qk11 · · · qkss hϕ‖ ≥
C

h1+ε(qk11 · · · q
ks
s )ε
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Proof. Set q = qk11 · · · qkss and let D denote the set of primes that appear in the
prime decomposition of q1, . . . , qs. By Ridoux’s theorem for every ε > 0 there exist
a constant C > 0 with

‖qhϕ‖
∏
`∈D

|qh|` ≥
C

(qh)1+ε

for all integers q, h ≥ 1. Since∏
`∈D

|qh|` ≤
∏
`∈D

|q|` =
1

q

we obtain

‖qhϕ‖ ≥ C

h1+εqε

as proposed. �

Lemma 9. Suppose that q1, q2, . . . , qs ≥ 2 are pairwise coprime integers. Then for
every ε > 0 there exists a constant C > 0 such that for all integers k1, . . . , ks ≥ 0
and H ≥ 1

H∑
h=1

1

h

1

‖qk11 · · · q
ks
s hϕ‖

≤ C(qk11 · · · qkss H)ε.

Proof. Let Qk = Qk(α) denote the denominators of the convergents Pk/Qk of an
irrational number α and suppose that Qk−1 < H ≤ Qk. Then it follows from the
approximation

α =
Pk
Qk

+
θ

QKQK+1
, |θ| ≤ 1,

that ∣∣∣∣hα− hPk
Qk

∣∣∣∣ < 1

Qk
, 1 ≤ h ≤ Qk.

Since Pk and Qk are coprime the numbers hPk, 1 ≤ h ≤ Qk, run through all residue
classes modulo Qk. Thus, the numbers ‖hα‖, 1 ≤ h ≤ Qk, can be well approximated
by ‖`/Qk‖ with ` ∈ {0, 1, . . . , Qk − 1} but with at most three exceptions that are
related to ` ∈ {0, 1, Qk − 1}. For these exceptional values we can just say that
‖αh‖ ≥ min

1≤h≤H
‖hα‖ whereas for the other values we have ‖αh‖ ≥ ‖`/Qk‖ − 1/Qk.

Consequently we obtain

H∑
h=1

1

‖hα‖
≤ 3

min
1≤h≤H

‖hα‖
+

Qk−2∑
`=2

1

‖`/Qk‖ − 1/Qk

� 1

min
1≤h≤H

‖hα‖
+Qk logQk

If we apply this procedure for α = qϕ (with q = qk11 · · · qkss ) then we can use the
estimate from Lemma 8 to obtain

1

min
1≤h≤H

‖hqϕ‖
� H1+εqε.

Furthermore, since ‖Qk−1α‖ ≤ 1/Qk we obtain (again from Lemma 8)

1

Qk
≥ ‖Qk−1qϕ‖ ≥

C

Q1+ε
k−1q

ε
� 1

H1+εqε

and consequently

H∑
h=1

1

‖hqϕ‖
� H1+εqε +H1+εqε log(H1+εqε)� H1+2εq2ε.
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Finally by partial summation we obtain

H∑
h=1

1

h

1

‖hqϕ‖
≤ 1

H

H∑
h=1

1

‖hqϕ‖
+

H∑
h=1

1

h2

h∑
`=1

1

‖`qϕ‖

� (qH)2ε.

Since ε > 0 is arbitrary we can replace 2ε by ε and we are done. �

Now it is easy to complete the proof of Theorem 1.

Proof. We use Lemma 7, where we choose L = blogϕNc and Lj = blogqj Nc. As

above we abbreviate qk11 · · · qkss by q.
We distinguish two cases. First suppose that q > N . Then we trivially have

δk,k1,...,ks ≤ 2.

In the other case we set H = bN/qc ≥ 1 and apply (4.1) to obtain

δk,k1,...,ks �
N

qH
+

H∑
h=1

1

h

1

‖hqϕ‖

� 1 +Nε

� Nε.

Summing up this implies

D∗N (Φ(n))� 1

N
+

1

N
Nε(logN)s+1 � 1

N1−2ε .

Again, since ε > 0 is arbitrary we can replace 2ε by ε which completes the proof of
Theorem 1. �
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