THE ZECKENDORF EXPANSION OF POLYNOMIAL
SEQUENCES

MICHAEL DRMOTA AND WOLFGANG STEINER*

ABSTRACT. In the first part of the paper we prove that the Zeckendorf sum-of-
digits function sz(n) and similarly defined functions evaluated on polynomial
sequences of positive integers or primes satisfy a central limit theorem. We
also prove that the Zeckendorf expansion and the g-ary expansions of integers
are asymptotically independent.

1. INTRODUCTION

Let ¢ > 2 be an integer. Then a real-valued function f defined on the non-
negative integers is called g-additive if f satisfies

F0)=0 and f(n) =" flegu(n)d"),

k>0

where ¢, ,(n) € {0,1,...,¢ — 1} are the digits in the g-ary expansion

n= Z eqr(n)g”

k>0

of the integer n > 0. For example, the sum-of-digits function

sq(n) = eqn(n)

Jj=0

is a g-additive function. The distribution behaviour of g-additive functions has been
discussed by several authors (starting most probably with M. Mendes France [18]
and H. Delange [3], see also Coquet [2], Dumont and Thomas [10, 11], Manstavi¢ius
[16], and [6] for a list of further references). Most papers deal with the average
value or the distribution of g-additive function. There are, however, also laws of
the iterated logarithm and more generally a Strassen law for the sum of digits
function due to Manstavi¢ius [17]. (It seems to be difficult to generalize such a
law to the Zeckendorf sum-of-digits function since a corresponding Fundamental
Lemma seems to be out of reach at the moment, even the generalization to a joint
law of two g-ary sum-of-digits function is not obvious, see [8].)

The most general central limit theorem for g-additive functions f is due to
Manstavi¢ius [16], where the distribution of the values f(n) (0 < n < N) is consid-
ered. In this paper we are interested in the distribution of f(P(n)) (0 < n < N),
where P(z) is an integer polynomial. Here the best known result is due to Bassily
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and Kétai [1].! (Here and in the sequel ®(x) denotes the distribution function of
the standard normal law.)

Theorem 1. Let f be a g-additive function such that f(bg*) = O (1) as k — o

and b € {0,...,q — 1}. Assume that (ﬁé(]i,v))n — 00 as N — oo for somen > 0

and let P(n) be a polynomial with integer coefficients, degree v and positive leading
term. Then, as N — oo,

%# {n < N’f(P(”g)q_Mq(NT) < a:} — O(x)

(N7)
e F(P(p) = My(N")
1 P(p)) — M,(N"
#{pEP,p<N‘ 1 <x}—>@x,
(V) D, (V") @)
where
[logq N] [logq N]
My(N) = Z Hk,q Dq(N)2 = Z Uz,q
k=0 k=0
and

1 g—1 1 q—1
prai= o D S0, ok, = 3D 0 — ik,
b=0 b=0

This result relies on the fact that suitably modified centralized moments con-
verge.

The main purpose of this paper is to extend this result to certain G-ary digital
expansions. Let @ > 1 be an integer and the sequence G = (Gy)r>0 be defined by
the linear recurrence

Gr =aGr_1+ Gi_o, Go=1, Gy =a+ 1.

Now every integer n > 0 has a unique digital expansion
n=>ear(n)Gx
k>0
with integer digits 0 < e x(n) < a provided that
J
> ear(n)Gr < Gi
k=0
for all j > 0 (which means that egr—1(n) = 0 if egx(n) = a). A special case
of these expansions is the Zeckendorf expansion where a = 1 and the Gy are the

Fibonacci numbers.
A function f is said to be G-additive, if

£(0)=0 and f(n)=>_ flear(n)Gs).
k>0
Alternatively we have
F(n) =" frleak(n)),
)
where fi(b) := f(bG).

IThis theorem was only stated (and proved) for n = % However, a short inspection of the

proof shows that n > 0 is sufficient.
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First we will prove the following theorem concerning the distribution of the
sequence f(n), 0 < n < N. The proof essentially relies on the fact that the possible
G-ary digital expansions can be represented by a Markov chain. Note that the
sequence Gy, is also given by

k

ala+1) . a-1 1

1.1 G, = — ——
(1.1) F a?+1 @ a2+1< a) ’

where « is the positive root of the characteristic polynomial of the linear recurrence

x(z) = 2% —ar — 1.

Theorem 2. Let G be as above, f a G-additive function such that fi(b) = O (1)
as k — oo for b € {0,...,a}. Then, for all n > 0, the expected value of f(n),
0 <n < N, is given by

(1.2) Ey = N Z f(n) = M(N)+ O ((log N)"),
n<N
where
[log,, N] N a1 )
M(N) = M~(N) = ith — b .
()= Ma(N) = 30 e with i = og D I(O) 4 S el
Furthermore, set
[log, N]
D(N)? = Dg(N)? = Z 052]3
3,k=0
with
= 2 1 > o .
@ — oﬂiﬂbzlfk(b) +a27+1fk(a) —pp ifi=k
gk =1
i —F| — .
(_a_12) ! /’[’min(j,k)/’(‘max(j,k) ’Lf] 7& k’,
where

o a—1 az
T = = S fu(b) + o fila).
K a2+1b:1fk( )+a2+1fk(a’)

Assume further that there exists a constant ¢ > 0 such that a,(fll > c for all k > 0.
Then, as N — oo,

(1.3) i#{n<N‘W<x}%@(m)
and
R

n<N

or all positive integers h.
[ p g

(1.3) has been shown by Drmota [5] for strongly G-additive functions f, i.e.

F) = 3 Fer(n)).

k>0
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Furthermore, it should be noted that (1.4) provides an asymptotic relation for the
variance, too, however, without an error term:

(1.5) Vy = % > (f(n) = Ex)* ~ D(N).

n<N

We will use Theorem 2 and a method similar to Bassily and Katai’s to prove
Theorem 3.

Theorem 3. Let G, f be as in Theorem 2 and P(n) a polynomial with integer
coefficients, degree r and positive leading term. Then, as N — oo,

(1.6) %# {n <N f(Pml)))(]_vf‘)ﬂNr) < ac} — ()
and

! FPE) - M) _
(1.7) 71_(N)#{p<N’ DV <x} O(x).
and

Iy <f<P<nl>)>(]—V5)VI<NT>)h . / T ao(a),

n<N >
1 JPE) = MO\ [*
w(N),,;V( b ) e

for all positive integers h, if we set f(P(n)) = —f(—P(n)) for P(n) <0.

Note that definition of f(P(n)) for P(n) < 0 has no influence on the result,
because the number of non-negative integers n with P(n) < 0 is negligible.

Our next results concern the indepence of different digital expansions. For ex-
ample, in [6] the following property is shown. Suppose that q;, g2 are two coprime
integers and f1, fo q1- resp. go-additive functions satisfying the assumptions of The-
orem 1. Then we have, as N — oo,

1 filn) = My, (V)

m#{“ R e

i.e. the distribution of the pairs (f1(n), f2(n)), 0 < n < N, can be considered as
independent.
We will extend this property to our more general situation.

<z (i=1,2) } — @(z1)®@(z2),

Theorem 4. Suppose that f1, fo are two functions satisfying one of the following
conditions.

e (i) q1,q2 > 2 are two positive coprime integers and f1, fa q1- resp. ga-
additive functions satisfying the assumptions of Theorem 1. Furthermore
set M;(N) :== My, (N) and D;(N) := Dy, (N) (i =1,2).

e (ii) ¢ > 2 is an integer and fi1(n) a g-additive function satisfying the as-
sumptions of Theorem 1. a > 1 is an integer and fo(n) is a G-additive func-
tion satisfying the assumptions of Theorem 2. Furthermore set Mq(N) :=
My(N), Di(N) := Dy(N) and Ma(N) := Mg(N), Da(N) := Dg(N).

(12

asx

G = (G))j>0 and H = (Hj);>0 the corresponding linear recurrent se-

quences, and f1, fo G- resp. H-additive functions satisfying the assumptions

e (iii) aj,as > 1 are two different integers such that 1s rrational,
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of Theorem 2. Furthermore set M1(N) := Mg(N), D1(N) := Dg(N) and
M(N) := My(N), Do(N) := Dy (N).

Let Py(x), Po(x) be two polynomials with integer coefficients, degrees 1,12 and pos-
itive leading term. Then, as N — o0,

fi(Pi(n)) — My(N™)

(1.8) ;]#{n <N

and
(1.9) ﬁ# {p <N fi(Pi(’z;?(]_vf‘f(Nw <a; (i= 1,2)} — O(21)D(22).

The paper is organized in the following way. Section 2 is devoted to the proof
of Theorem 2. Section 3 provides a plan of the proof of Theorem 3. Sections 46
collect some preliminaries which are needed for the proof of Theorem 3 in Section 7.
Finally, the proof of Theorem 4 is presented in Section 8.

2. PROOF OF THEOREM 2
Our aim is to study the distribution behaviour of f(n), 0 < n < N, i.e. the
random variable Yy defined by

Pr[Yy < z]:= %#{n <N : f(n) <z}

If we define (i, n by

PrGiy < o] = A0 < N - filer(n) < 7}

and gk,N by

1
Pr(¢, v =b] == N#{n<N:ek(n):b} (be{0,...,a}),
then we obviously have

Y= G =2 fulén)

k>0 k>0

ie. Yy is a (weighted) sum of & . Therefore, we will first have a detailed look
at & n. It turns out that § ¢, constitutes an almost stationary Markov chain, as
the next lemma shows. We want to mention that this fact is also a consequence
of results from Dumont and Thomas [10, 11]. In our case this is a quite simple
observation. Therefore we decided to present a short proof of this fact, too. This
procedure is simpler and shorter than introducing the notation of [10, 11] and to
specialize afterwards.

Lemma 1. For fized j, the random variables ({x,c; )o<k<j—1 form a Markov chain

with
(2.1) Pr[fkgj = 1] = Pr[§;€7gj = 2] == Pr[fkgj =a— 1],
(2.2) Pr(éii1,c; = Uk, =b = =Pr[éi1.6, = a— 1k,c, = b],

(2.3) Pr(éii1.6, = bk, =1 = = Prlékt1.6, = blékc, = a— 1],



6 MICHAEL DRMOTA AND WOLFGANG STEINER

(for all j,k,b) and

Pri{ki1,q, = 0] Pr(é,q, = 0]
(2.4) Pr[lpi1,a, =1] | = Prj | Priére, =1 |,
Pr$t1,6, = d Pri,c, = a
where
L0 () S 0 (L) w0 ()
Pha = oft +0?—a2q—w) o+ 0 (Gzoo) 2 +0 (=) |-
a1 O (gw) 0 0
with initial states
Gi_1 1 1
P =0=—2—=—+0(—
rin, =0 = % = £+ 0 ()
and
Prio.q, = 1] = Prltoc, =2 Priso.c, =al = ——+0 (=
Ir .= = r L= —_ ... = r L= _ J— .
0,G; 0,G, 0G; = a] == T

Remark. The matrices Py, ; are no transition matrices of a Markov process, but they
describe transition matrices in view of the relations (2.1)—(2.3). However, it turned
out to be easier to work with 3 x 3-matrices instead of (a + 1) x (a + 1)-matrices.

Proof. A sequence (¢;);>0 of non-negative integers is a G-ary digital expansion of

an integer n, if and only if ¢; < a for all ¢ > 0, ¢,_1 = 0 if ¢, = a and ¢; # 0 only
for a finite number of i (cf. e.g. Grabner and Tichy [13]). Let

Bj = {(60,...,6]‘_1) L€ S a, €1 = 0 lfGZ = a}
be the set of G-ary digital expansions for n < G;. Then

Pl‘[fk,Gj = b] = é#{(EO,. . .,Ejfl) e Bj D€ = b}
J

and it can be easily seen that (2.1) holds. For k = 0, even Pr[y g, = a] is equal to

Pr[fo,cj =1].
We have
#{(60, . ,6]‘,1) S Bj €)= 0} = #{(60, .. .,6]‘,1) S Bj €1 = 0},
because we can take a block (0,€1,...,€;_1) of the set on the left side of the equa-

tion, shift it to the left, set €;_; = 0 and get a one-one correspondence to the blocks
on the right side. Therefore

G oatl i-1 _ —a~ 41 =i+l 4 1
Prl$o,q, =0] = C]; - = Da+1 ; —aP1+1( ) —=_+0 <_21> )
i ol — T(—Q)_] e} Q

Since the other probabilities Pr[y.c, = b], 1 < b < a, are equal, we have

Pr(og, =1 = =Pr[{o g, =a] = 2(1 —Prlog, =0]) = %—&-1 +0 <a121) .
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Now we show that we have a Markov chain.

Pr(éi1.6, = brv1lék.c; = bky - -, 60,65 = bo)

_ Pr(&ii6, = b1, 6k6; = ks -+ 0,65 = o
Priék.c; = bk, .-, &0,c; = bo]
_ #{(eo,. .. €65-1) €Bj:(eo,. .., ext1) = (bo, .-, bxr1)}
 #(eo,.--,€j-1) € Bj: (€0y---r€e5) = (bo, ..., b))}
B #{(%4—1, ceey €j—1) EBj_j—1:€py1 = bk+1}
B #{(ek,...,€j—1) € Bj_k : € = by}
_ Prléoc, . =bkt1] Gj_k—1
Pr(éoc, . =bk] Gj—r
where the third equation is valid only if (bo,...,bk4+1) € Brto. Otherwise the

probability is 0 (for by11 = a, b # 0, (bo,...,br) € Bgy1) or undefined (for
(bo,...,bk) & Bit1). If the probability is defined, we thus have

Pri¢ii1,c; = bev1léh,c; = bk, -, &0.q; = bo] = Prl&ry1,6;, = ber1lér,a, = bil

with the probabilities

1 1
Pr$ei1.¢, = 0lék,q, = 0] = a +0 <a2(jk)> 7

a+1 1
Pr(éii1,6; = 0lék,g; =] = +0 (OéQ(j_k)> (1<ec<a),

1 1
Pr[§k+17(;j = b|§k,Gj = 0] =—+40 <a2(j—k‘)> (1 <b< CL),

Pr(éii1,q; = blékg, = =
Pr[€k+1,Gj = a|£k,Gj = C] =

Similarly to (2.1), (2.2) and (2.3) are easy to see. Hence

Pr[§k+1,GJ‘ = b] = ZPr[§k+1,Gj = b‘é-k,Gj = C]Pr[gk,Gj = C]
c=0

= Prl{r11.6; = blék.c; = 0|Pr[r ., = 0]+ Prlrr1.6;, = blék.c; = a|Pr[§k.; = a
+ (CL - 1)Pr[£k+1,G]‘ = b|£k,G]‘ = 1]Pr[£k,Gj = 1]

and the transition from & g, to {ry1,¢; is entirely determined by (2.4). O

Corollary 1. The probability distribution of &, is given by

1
Prigrc, =0l =py + O (m)

with
e =0
=14 &y fl<b<a-—1
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Proof. Let P denote the matrix obtained by neglecting the O (—g—) terms in

the matrix P ;. The eigenvalues of P are 1, 0 and —é and the eigenvector to the

t
eigenvalue 1 with po + (a — 1)p; + p, = 1 is (;2—111, e a%_H) . O

Lemma 1 suggests to approximate the digital distribution by a stationary Markov
chain (X, k > 0), with (stationary) probability distribution Pr[X; = b] = ps,
0 < b < a, and transition matrix P, i.e.

1
Pr[Xy41 = 0]X5 = 0] = —,
1
Pr[Xk+1=O|Xk:c]:aO; (1<c¢<a),
1
2.5 Pr[X =blX, =0]= 1<b<
(25) HXen =HX =0 = —~  (1<b<a)
1
Pr(Xpp1 =bXr === (1<b<a-1,1<c<a),
a

PriXyt1 =a|Xr=¢ =0 (I1<c<a).

The next lemma shows how we can quantify this approximation for finite dimen-
sional distributions.

Lemma 2. For every h > 1 and integers 0 < k1 < kg < --- < kp < j we have

Pr[éi,.a, = b1, &ka; = On)l = Gy b byt + O (W)

for all by, ... by, € {0,...,a}, where
kv, in by by = P Xk = b1,..., Xk, = bp].
Proof. For 0 < k <l < j we have
PijPey1j- Py =P 7" +0 (072071))
and consequently
(2.6) Prl&c, = bolér,c; = b1] = Pr[X; = by| X = by] + O (of?(ﬂ’*l)) ,
Since
Priék, .q, = b1, &ka, = ba
= Prlée,.c;, = bnlrn_r.c; = bn-1]Pr(&,_1.c; = bn-1l€k,_n.c, = bu—2] -
< Prlép, q; = 028k 6, = bi]Pré, ¢, = b1,

we just have to apply (2.6) and Corollary 1 and the lemma follows. (]

The case of general N is very similar.

Lemma 3. The probability distribution of £, n for G; < N < Gj11 with j >k is
given by

(2.7) Pri¢n = b = Pri¢eg, =8 + O <aj1_k>

for allb e {0,...,a}.
Furthermore, the joint distribution for 0 < kj < ko < --- < kp < j is given by

1
Priée, v =b1,..., &k, N = bn] = Prlé, g, = b1, .., &pyq;, = bu] +O <)

ad—kn
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for all by,..., by, €{0,...,a}.

J
Proof. For N = > €,G;, we have
i=0

J
{n < N} = {n < EjGj}U({TL < €j1Gj1}+6jGj> U-- U({?’L < eoGo}—‘rZ EZ'GZ).
=1
Therefore

1
Pr[kav = b] :N (#{TL < €jGj ‘ € = b} + #{n < 6]‘_1Gj_1 | € = b} + -

k—1

Gy e =0
+#{n < ex11Gry1 | e = b} + zg@ ‘ o )
0 otherwise
1
:N <6jGjPr[€k,Gj = b] + -4 E[k%]G[k%]Pr[gk:,G[k%] = b])
1
+0 (NG[%)
1
:Pr[fk,Gj =b+0 PR
where we have used
1 .
Pr[fk’,G]’ = b] = Pr[fk’cjfl = b] + 0O <aj—l—k> for k < Jj—L

A similar reasoning can be done for the joint distribution, e.g. we have for
l<k<y:

L J
(28) Prl6ny=b&N=c =+ Y «GiPrlég, =b&a, =

i=k+1
- -1
= G, ifeg = .
L L)Y aGPrge = d + ;0 Gbna=c if e, = b
N ) =1 0 otherwise
0 otherwise
Thus, we can proceed in the same way. ([

We now turn to the derivation of Ey = EYy , i.e. to the proof of (1.2), the first
part of Theorem 2. Since

J
Yv = G
k=0
for N < Gj4+1, the expected value of Yy is given by
J B
EYy=)Y EGn=)Y En+0((logN)"),
k=0 k=A

where

(2.9) A =[(log N)"] and B = [log, N]— [(log N)"]
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and 1 > 0 is a sufficiently small number (to be chosen in the sequel). Furthermore,
we have

. 1
E(n = ZPF[&@,N =0 fx(b) = px + O ((W) ;
b=0

which implies
1
EYy =+ Z;Vf(n) = M(N)+ O ((log N)").
It seems that the variance Var Yy cannot be treated in a similar (easy) way. There-

fore, we use some additional assumptions and present a proof of (1.4) together with
the distributional result (1.3).

The above calculation indicates that we just have to concentrate on digits € (n)
with A <k < B (defined in (2.9)). The reason is that we obtain uniform estimates
for this range. The following lemma is a direct consequence of Lemmata 2 and 3.
Note that it is not necessary to assume that kq,...,k, are ordered and that they
are distinct.

Lemma 4. For every h > 1 and for every A > 0 we have

%#{’I’L <N | €k, (n) = bl, cees €k (n) = bh} = Qky,....kn,b1,....bn T O (m)

uniformly for all integers

A<k, kay....,kn <B
(where A,B are defined in (2.9) with an arbitrary n > 0) and
by,ba,...,bp €4{0,1,...,a}, where

Qhor,.ohinbr,by = P Xk, = b1,..., Xk, = bpl.

This observation causes that we have to truncate the given function f(n) and
have to consider

B
Fm) =" filer) = f(n) + O ((log N)").
k=A

In order to finish the proof of Theorem 2 it is (luckily) enough to prove

1 Fln) = M(N)
where
B B
M(N)=Y m, DWNP= Y o).
k=A jk=A

This is due to the following lemma and (2.11).

Lemma 5. Suppose that D(N)/(log N)7 — oo for some 1] > n/2. Then we have
1 — M(N

for all x € R if and only if
1 f(n) — M(N)
N#{n<N‘W <$} — O(x)

for all x € R.
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Furthermore, if for all h > 0
Ly (T gy
N D(N) o
then we also have
L fn) = M(N\" <
=5 ( o H/_mx )
n<N
and conversely.

Proof. We consider the three (sequences of) random variables
FO-M®) o JO-ME) ,F0 - M)

Suppose first that the limiting distribution of X is Gaussian and that all moments
converge. Since

Xy =

. D(N)

1Im —— =
and Yy = XN% the same is true for Yy .

Further, we know that
lim HYN - ZN”oo =0.
N—oo

Thus, it immediately follows that the limiting distribution of Zy is the same as
that of Yy and that all moments of Zx converge to the same limits as the moments
of YN.

It is also clear that the converse implications are valid. This completes the proof
of Lemma 5. O

Therefore it is sufficient to show that the moments

1 f(n) — M(N
wn =5 3 (P55

n<N

h

converge to the corresponding moments of the normal law. We will do this in two
steps. First we prove a central limit theorem (with convergence of moments) for
the exact Markov process and then we compare these moments to those of f(n),
i.e. (1.4). Obviously the proof (1.3) of Theorem 2 is completed then.

The next lemma provides a central limit theorem for Y f(X}), where X}, is the
stationary Markov process defined by (2.5).

Lemma 6. Suppose that there exists a constant ¢ > 0 such that Ufj) > ¢ for all
j > 0. Then we have

(2.11) D(N)?*>1logN,  D(N)?>>logN

and the sums of the random variables fi.(Xy) satisfy a central limit theorem. More
precisely

D(N) ’
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and for all h > 0 we have, as N — oo,

— h
> hea J1(Xk) = M(N) =
( k=A ﬁ(N) ) —»/700 :L'hd(p(iﬂ).

Proof. Let
P(a:,A) = PI‘[X]H_l S A|Xk = .23}
(which does not depend on k) denote the transition function of the Markov chain
(X, k >0) and
Bi=1- sup [P(z1,A)— P(x2,A)
z1,r2,A
its ergodicity coefficient. If the fy are injective on {0, ..., a}, then (fi(X%),k > 0) is
a Markov chain with ergodicity coefficient 5 and we get, by Lemma 2 of Dobrusin [4]
and with Var fi(Xy) = 0']5 ,)f > ¢,

S
Vargmxk > o5l — s D8
If some of the f; are not injective, we get the same result by considering injec-
tive functions f, which tend to f. Since D(N)?> = Var [log“ N] fx(Xg) and
D(N)? = Var Zf:A fx(Xk), this proves (2.11) if 3 is positive.

Suppose 3 = 0. Then there exist x1,z2 € {0,...,a} and a set A such that
P(z1,A) =0 and P(z9, A) = 1, because P(x, A) attains just finitely many values.
We have P(x,{0}) > 0 for all . Hence, if 0 € A, we get a contradiction to
P(z1,A) =0 and, if 0 ¢ A, we get a contradiction to P(zz2, A) = 1. Therefore we
have 5 > 0.

For each h > 2, the moments E|fy(Xy)|" are jointly bounded because of
Jr(d) = O (1). Hence, if the fj, are injective, all conditions of Theorem 4 of LifSic [15]
are satisfied and we have convergence of (absolute) moments to those of the normal
distribution. An inspection of LifSic’ proof shows that, as above, this is valid for
non-injective fi too. O

Now we are able to compare the moments of f(n) and > f(X%).
Lemma 7. For every h > 1 and every A > 0 we have

Ly (T M00)' g (LA M0 o ()

n<N

Proof. We have

1 SE L Felerm) — i) 1 s & Fid (e (1) — s,
Nn<N< = D(N) > _NZZ ZH D(N)

n<N k;1=A kp=Ai=1

h
:ukz

Z Z —#{n<N|Ek1( )_b17' ~7Ekh(n):bh}Hu

A<ky,...kn<B0<bi,..., bh,<a i=1 (V)

oS
S~—"
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h

_ _ _ S (bi) —
= Z Z PI‘[_Xk1 —bl,...,th —bh]];[l E(N)

A<ki,....,kp <B 0<by,...,bp<a

By Lemmata 4 and 6, these expressions are equal up to an error term
@) ((log N)h/2’>‘). Since A can be chosen arbitrarily, the lemma is proved. |

3. PLAN OF THE PROOF OF THEOREM 3

We set M, D and f as in Theorem 2 with the only difference B := [rlog, N] — A
(A = [(log N)"]). Then an argument similar to Lemma 5 shows that it is enough

to prove
—#{n<N’f ]\)4(N)<x}—>¢)(x)
and _ .
gy PRI )
In fact, we prove that the centralized moments
m - 3 3 (1 M(N’"))h
n<N )
and

(7<P<p>> - M(NT))”

1
Cn(N) = 7(N) 2 D(N7)

p<N

converge (for N — o0) by comparing them to Ap(N"). By proceeding as in the
proof of Lemma 7 and by using the following lemma, it follows that for each fixed
integer h > 0, Bp(N) — Ap(N") — 0 and Cp(N) — Ap(N") - 0 as N — oco. (Of
course, this proves Theorem 3. We just have to replace Lemma 4 by the following
property.)

Lemma 8 (Main Lemma). Let P(n) be an integer polynomial of degree r > 1 and
positive leading term. Then for every h > 1 and for every A > 0 we have

1 1
FE <N [ (P) =1, (P) = 0] = i, +O (ot

(log N)*
and
1 1
m#{p < N eg(P(p)=0b1,.--, €, (P(®) =bn} = Qiy.... knbrs,bn +O (m)

uniformly for all integers
(log N)" < ky,ka, ..., kp <log, N" — (log N)"
and by, ba, ..., by € {0,1,...,a}. (The Qr,.... ky.by,..b, 0T€ aS in Lemma 4. )

.....
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It turns out that this lemma can be proved similarly to that of Bassily and
Katai [1], i.e. with help of exponential sums. The only difficulty is to get a nice
condition for extracting the digits ex(n) without using greedy algorithms. This
problem is solved in the next section with help of a proper tiling of the unit square.
Section 5 provides proper estimates for exponential sums. These are the two main
ingredients of the proof which is then completed in Sections 6 and 7.

4. TILINGS

The aim of this section is to provide proper tilings of the plane corresponding
to our digital expansions in order to get an analogue to g-ary expansions where we
have

n b b+1
(41) quk(’n,) =b <— <F> S |:5, T) s
if (z) denotes the fractional part of x.

For our expansions, we will have to take into account the values of <m>

and <m> By taking just one value into account, there are overlaps and we
cannot get something like (4.1) or (4.2).

Proposition 1. Let Ay, 0 < b < a, denote rectangles in the plane R? defined as
the convex hull of the following corners:

o a? a+1 a—1 1 o
Ap:(——2 ) o), (XL ey (@
0 ( a2+1’a2+1)’(’ ) <a2—|—1’ a2+1)’ (az—i—l’ a2—|—1>’
(b—1a+1 a?—a+b ba+1 a2 —a+b+1
Ab: 3 ) ’ ’
a?+1 a?+1 a?+1 a?+1
b+Da+1 a-0b-1 bao+1 a—-b
— — b 1,...,a—1
( a?2+1 7 241 )7 \a2+1 a?+1 forbe{l, . a =1},

A, - ozz—a’ ac ’ a2—a+1’ a? (1,0, a? - 1 _
a?2+1"a2+1 a?2+1 "a?+1 a?+1" a3+ a?

Then these rectangles induce a periodic tiling of the plane with periods Z X 7, i.e.

they constitute a partition of the unit square modulo 1. Their slopes are (a,1),

(—=1,a) and their areas are Xo(Ap) = pp, b = 0,...,a, with py as in Corollary 1.
Furthermore, if €x(n) = b then

(4.2) (<ak(:+ 1)> : <ak+1(7; =y >> € (A, mod 1) + O (a™%).

Essentially, this proposition says that there is an analogue to (4.1) for G-ary
expansions with a small error of order O (a’k) for the k-th digit. We want to
remark that Farinole [12] considered a very similar question.

Remark. The rectangles A, modulo 1 constitute a Markov partition of the toral
automorphism with matrix
a 1
(i o)

Example. Before proving the proposition, we illustrate the example a = 3:
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(0,1 (1,1)

(0,0) (1,0)

which looks like follows in R?/Z?:

(0,1) (1,1)

Proof of Proposition 1. Suppose that n is given by n = ) €;G;. Then we have

n a? le} 1 1
<ak(a+1)><~~~+6k+1a2+1+eka2+1+6k_1a2+1+~~~>+0<ak>
(—a) ta ! 1 1
:<m+€k“ a?+1 +6’€a2+1+6’”a2—+1+m>+0<3>

() o ()
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with the abbreviations
@ =+ eppa(—) P+ eppa(—a) 7,
y=ep10 "t epoa 4,

where we have used (1.1) and that QZLHaj = OKQLH(—oz)*j is an integer for all j > 0
(see (5.2)). Similarly we get

—a? 1
_n \_[/=fateadty\ (1)
oF T (o + 1) a2+ 1 ok
By Rényi [19], we know that (ex_1,€x—2,...) < (€,_1,€;_o,---) (lexicographically)
implies
€1 Fep a4 < e%,la_l + 6;%204_2 4.
Hence, if €, < a, then y is bounded by
0<y<axl4aa3+aa+---=1
and by
0<y<ao?4aa*+aa 0+ ... =at

if €5 = a. Similarly, x is bounded by

r<aa ?+act+aa b+ =a!
for all €, by
r>—aa ' —aa P —aa? - = —1
for ¢, = 0 and by
r>—(a—1at—aa®—aa® - =at -1

for ¢, > 0.

If we put these limits into ((m“”y)a —o’atety

az+1 aZ+1
for Ap. It is now an easy exercise that (the interiors of) these rectangles are pair-
wisely disjoint (and situated as in the example) and that they induce a periodic
tiling in R? with periods Z?2. O

), we obtain the given corners

5. EXPONENTIAL SUMS

In order to prove the Main Lemma we have to study exponential sums of the

form

1 S

Nn;ve <a+ 1P(”))
and

1 S

—P
z Pk (:2:P0).

where

mi mi,2
akl ak1+1

Mhp,1 Mh,2
akh akthl

with integers m; ; (1 <i < h,1<j <2)ande(z):= €™ ag usual.

S:
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Lemma 9. Let m;;, i € {1,...,h},j € {1,2} be integers with |m; ;| < (log N)°
for all i,7 and
(logN)" < ky <ky <+ <kp<log, N"— (logN)"
for arbitrary constants § >0, n > 0. Then, if S # 0,

(log )"’ ,
QT < || < a=UeeN)"
for all ' <.
Proof. Clearly we have
5 6 !
S < (log N) < (IOg N) < af(logN)” ]
ak1 a(log N)n

For the lower bound, we first remark that o is given by
(5.1) o = Gha+ Gy,

where the sequence (G7);> is defined by G = 0, G} = 1 and G} = aG’;_; + G’;_,
for j > 2. Therefore we have

5 mypofr TR oy ok R 4y a4+ my s Ao+ B

akn+1 akn+1
with
A=m1 Gy, o1 +m12Gh, g+
and
B = ml,lG;ch_kl + ml,QG;gh_kl_l + o+ Mmp2
We have

|(Aa + B)(Aa™! — B)| = |A* —aAB — B?| > 1
if A# 0 or B # 0 and
Aa~' — B < (logN)°
because G'; is given by
e , !

5.2 G = J _ )
(5:2) iT a1 a2+1< @)

(cf. (1.1)). Hence
1 a/log Ny

(log N)dakn > TN

|S] >
O

The next two lemmata are adapted from Lemma 6.2 and Theorem 10 of Hua [14].
Lemma 10. Let P(n) be a polynomial of degree r with leading coefficient 8. For
every 1o > 0, we have a 7 > 0 such that

N7(logN)" < 8 < (logN)™"
implies
1 —T
& D e(P(m) =0 ((log N)™™)
n<N
as N — oo.
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Lemma 11. Let P(n) be as in Lemma 10. For every 7o > 0, we have a 7 > 0 such
that

N7"(logN)" < B < (logN)™"

implies

7 2 eP) = O (o N) 7).

as N — oo.
Note that we can apply these two lemmas for § = S/(a + 1) with S # 0 for any
choice of 7 > 0 since
a—(logN)"’ < (IOg N)—T
Lemma 10 can be deduced for » > 12 from Theorem I in Chapter VI of Vino-
gradov [20] because of

1 0
g: R with § <1, (logN)™ < ¢ < N"(log N)™"

if g e [ ' g +1] For general 7, the two lemmata can be proved by replacing ¢ by 3 in
the proofs of Lemma 6.2 and Theorem 10 of Hua and using the following lemma.?
Lemma 12.

F+[3]
Z min (U #) < U-i-llogl
R ST 585
where ||z|| = min({z), 1 — (z)).

Proof. In each of the intervals [ ,(m 4+ 1)p ) and (1 - (m+ 1)p,1 - mﬁ},
0<m< i 5] we have at most one {nf3}. Therefore

-

F+[3] 315

2 mi“( 2] BII)<2

n=F+1 m=0

1 1 1
min (U, — | < U+ —log -
( 2mﬁ) 555

6. THE BOUNDARY OF THE TILINGS

Lemma 13. Let P(x) be an arbitrary polynomial of degree r and A > 0. Set

Bty = {n < V| (G ) araemy ) <0 -

AR S A FS

1 1
Up(A) = {(xl + Y1 — —Y2,T2 + —Y1 +y2>
a «

(DA, denotes the boundary of Ay.) Let (log N)" < k < log, N" — (log N)" for some
(fized) n > 0 and A an arbitrary positive constant. Then, uniformly in k, we have

Eiry(A) < AN + N(log N)~*, Frp(A) < An(N) 4+ N(log N)=*

A
(m1,22) € 0l < G = 1,2}

2Unfortunately we could not find a direct reference for Lemmata 10 and 11.
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Proof. We use discrepancies to prove this lemma. The isotropic discrepancy Jy of

the points (z1,1,21,2),...,(ZN1,2ZN,2) in R? is defined by
| N
JN = s T n 5 n - X(C ;
N = sup N;Xc({x b {zn2}) — A2(C)

where the supremum is taken over all convex subsets C' of T? = R?/Z2. It can be
estimated by the normal discrepancy Dy which is defined by

Dy = sup
ICT?

¥ o wtlen ) fanal) = (0|

where the supremum is taken over all 2-dimensional intervals I of T?:
Dy < Jy < (8V2+1)y/Dy

(see Theorem 1.12 of Drmota and Tichy [9]).
To get an estimate for Dy we use the following version of Erdés-Turan-Koksma’s
inequality:

1 11 1 1
D <L — i 9 9 AT n n )
N M+ Z min <|m1| ] |m1m2|> I nz::le(mlrc 1+ maxy2)

(m1,m2) € 2%\ (0,0) :
|mal, Ima| < M

where M is an arbitrary positive integer (and § = +00) (cf. Theorem 1.21 of [9]).

We set (Tn,1,%n2) = (afzgﬁl), aHl?((Z)Jrl)) and M = (log N)?*. Then we have,

since Up(A) is the union of 4 convex subsets and the conditions of Lemmata 9 and
10 hold,

N 2 o
W+ (log(log N)**)” N(log N) °o/2L AN.

Similarly we get, with Lemma 11,

Erp(A) < 4InN+X2(Up(A))N <

N 2 s
(log N + (log(log N)**)” N(log N) /2 4 Am(N).

We can choose 19 > 2\ and the inequalities are proved. (I

Frp(A) <

7. PROOF OF MAIN LEMMA
For b € {0,...,a} let vp(x,y) be a function periodic mod 1, defined explicitly in
[0,1] x [0, 1] by

if (xl,(tg) € Ay \ 0Ay
if (Cﬂl,xg) € 0A,
otherwise

op(z1,22) ==

ON= =

Its Fourier expansion ) Y ¢, m, (b)e(miz1 + maxs) is given by
c0,0(b) = A2(Ap),

Z |det(('r1 —Y1,T2 — y2))(y17y2)61“(w1,12)|

(21,22) H _27”'(777‘1(«771 - y1) + mg(al‘z — y2))

€V(As) 61(“%}’11/,3)2)

Cmy,my (b) = 6(*m1$1*m2f£2),
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where V' (Ap) denotes the set of vertices of the rectangle A, and T'(z1,x2) the set
of vertices adjacent to (x1,z2) € V(4p) (cf. Drmota [7], Lemma 1). This can be
bounded by (cf. Lemma 2 of Drmota [7])

1
|Cm17m2 (b)‘2 < Z H 2
(z1,22)EV (Ap) (y1,y2)EN(z1,22) (1 * ‘ml(xl N yl) * mQ(mQ B y2)‘)
1
(7.1) <

(U Jma + ma])” (14 [z = ma)”

1 1
< min (17 ~—2) min (17 ~_2)
my ma

uniformly for all (mq,ms), where the constants implied by < only depend on A4,
and my :=my + émg,ﬁzg =1y — éml.
For (small) A > 0 we consider the function

>
>

1

U(ar,22) = 15

1 1
op(1 + 21 — azg,mg + azl + 23)dz1dzs.

The Fourier expansion Y > dm, m, (b)e(miz1 + mozs) of this function is given
by

(e(™32) —e(="3)) (e(™32) — e(~"42))

7471'2’511 ’ﬁlg AQ

dimy,ms (D) = Cmy ms (D)
if (ml,mg) 75 (0, 0) and
do,o(b) = co,0(b) = A2(As).

Hence
1 1 1 1
2 dm meo b i 1’..777~ i 17~7’7~
12) )] < min (1 Am%>“““( o Amg)
and
(7.3) iy ms (0) = Cmymy (B) (1+ O (MTA?)) (14 O (M3A?))

as m; A — 0.
It is clear that 0 < ¢,(x1,z2) < 1 for every pair (z1,22) and that

ZL‘ " 1 lf {L‘1,$2 EAb\Ub( )
1,72) 0 if (z1,22) & Ay UU(A)

We define
F(($1,1,$1,2)» ce (xh,hxh,z)) =Y, (T1,1,21,2) - - - Vo, (Th,1, Th,2)

and

)= (o vt (e 57
We set

1 1= #{n < N | e, (P(n) = b1, ..., ek, (P(n)) = b}
L2 = #{p < N | e, (P(p)) = by, .-, ex, (P(p)) = bn}
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and get, with (4.2) and Lemma 13,

- 3 HPm))

n<N

< Ekl,bl (A) +eee Ek}ubh (A)7

T — Y H(P(n))

n<N
for A greater than the error terms O (a™%) = O (a8 M)") of (4.2).

< Fkl,bl (A) +o 4+ Fk}ubh (A)v

t
1 1 1 1
<ak1(a+1)7 P (ot 1)’ " aFn (atl)’ akh+1(a+1)> and let
M be the set of vectors M = (mq.1,m1.2,...,mp.1, My 2) with integer entries m;_;.
,1» ,29 9 h,1, h, g 1,7
Then we have

Furthermore, set V :=

t(n) = Z Tve(MVn),

MeM
where
Tv = dm1,1,m1,2 (bl) s dmh,,l,th (bh)

and
(7.4) Y tPn)= > Tm > e(MVP(n)),

n<N MeM n<N

Y HPP) = > Tm Y e(MVP(p)).

p<N MeMm p<N

If |m; ;| < (log N)? for all i, j, Lemmata 9 and 10 provide
> e(MVP(n)) < N(log N)™™,
n<N

if MV # 0. Lemma 11 provides a similar result for primes. Since (m;1,m;2) —
(My,1,M;2) is, up to a constant, an orthogonal transformation, we have

1 1 1 1
min (1, ~—> min (1, ~—> < min (1, —) min (1, —)
|71 |77 2 1] ;2|

and, with (7.2),

h [(log N)*°] 1 1
MeM:|m; ;|<(log N)2$ i=1m; 1,m; 2=—[(log N)29] |mz,1‘ |mz,2‘
[(log N)*] . Y .
< Z min (1, —) min <1, —) < (log(log N)25) .
_ > |ma | |ma|
m1,mo=—|(log N)2%]

For the M with |m; ;| > (log N)? for some i, j, we get similarly

2h—1
> 1 = /1 1
2 Tl < | > mA( mm(mm))
MeM:3i,j with |[m; ;|>(log N)28 m=|(log N)2%] m=1

1 1 =1 (log(log N)?)2h—1
——— [ log — + A
<<<1ogN>zm<°gA+ ) €T gy
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if we set A = (log N)~%. Therefore we have

(75)  Li=N Y Tu+0 (z\f(logN)*To/2 + N(log N)*‘W)
MEM:MV=0
(and a similar expression for 33). Since the main term depends on A, we want to
replace Ty by
TI(/I = Cmy 1,ma 2 (bl) ~ - Cmyp, 1m0 (bh)

Hence we have to estimate the difference Y i vi.niveo(Tm — Tyg)-
By (7.3), we have

(7.6) T = Ty <1 o) (n}gx mng)) .
First assume |m; ;| < (log N)%/2 for all 4, j. Then we obtain from (7.6) and (7.1)

> T — Ta| < ) TRa|(log N)~°
MeM:|m; ;|<(log N)/2 MeM:|m;,;|<(log N)3/2
2h
[(log N)*/?] s5/212h
1 s _ (log(log N)%/2)
— log N)™% <
< Z m (log N)™* < (log N)9

m=1

< (log N)~%/2,

and it remains to estimate the sum of the Ty and T3, with |m; ;| > (log N)%/2 for
some 1, 7 which satisfy MV =0, i.e.

(7.7) m11Gl, py 1+ m12Gh, gk, o Fmpg = 0,

(7.8) m11Gy, g, +M12Gy, k1 Fma2 = 0.

This is done by the following lemma, where only one of the equations is needed.
Lemma 14. We have

(7.9) Z Hmln( ) < (logN) ﬁ7

where S denotes the sum over all integer solutions (my,...,mz) of the linear
equation
(7.10) yymy 4+ yg_1myg_1+myg =0,

(with integers v; # 0) such that |m;| > (log N)°/? for some i. The constant implied
by < does not depend on the ;.

Proof. First we remark that m; = 0 for some ¢ reduces the problem to a smaller
one. For H = 1 (as well as for H = 2), the lemma is trivial. Hence we assume
H > 1 and m; # 0 for all i.

For every choice of (mq,...,mpg_1), let mpg be the corresponding solution of

1/(H-1)?

(7.10). First we sum up over all choices with |mg| > |my...mg_1| and

obtain

>

<2H 1
H|

1
R —

.m
mi=1l  mpg_i=1 H=1(mqy...mpg_1

o H-1
—ormi(y L)
a2

m=1mM



THE ZECKENDORF EXPANSION OF POLYNOMIAL SEQUENCES 23

If we consider only |m;| > (log N)%/? for some i < H — 1, we have thus
1 5
Sl gyt
|m1 e mH\

For |my| > (log N)%/? and |m;| < (log N)%/? for i < H — 1, we get
H-1

5/ _
[(log N) 2] 1 1 (10g(10gN)6/2)H 1

1
< oH —
Z lmy...mpg| — Z m (log N)9/2 (log N)8/2

m=1

It remains to estimate the sum over the choices (mq,...,mpy_1) with
1/(H—-1)? _
Im| < |mi...mg_1|VH-D" Wlo.g., assume |ymi| = maxi<i<pg—1 |vimi|.
Then we have

(7.11) |mp| < |yama .. .VH_lmH_1|ﬁ < |'y1ml|ﬁ
and
[yame + -+ yg—1mu-1| € [|71m1| — lyma |7, Jyrma | + |71m1|ﬁ} -
We split the possible range of |yoms| into
I = (07 [yima| — |71m1\(H_2)/(H_1)] and Jp = (|71m1| — [y |2/ H=D, |71m1|} -

For J,, we obtain

H-—-2
1 2 H=1 4
(7.12) Z < [y | 72| < .
masbmotens 20T PRl | — [T a7
Summing up over all such (my,...,mg) with [m;| > (log N)?/? for some i, we get
(7.13)
2H71

_ _
W(log |’}/1m1|)H 3 < 2H(10g N) 2H |
my||yima| = -

1
2 52

my:|y1mq|>(log N)8/2

Thus it suffices to consider mqy with |yamsg| € I from now on. This implies

1 1
|ysma+- - +yag—1mp—1| € [|71m1 + yama| — [yima [T, |yimy + yama| + [yima | H*I}

with s
[y1m1 + yema| > |yrma |71,

We split the possible range of |y3ms| into

Jy = (I%ml +yama| — [yama | H 3 ED yimy 4 yams| + |71m1|(H*3)/(H71)}
and I3 = (0,2|yymq|] \ J3. Similarly to (7.12), we obtain

Z 1 < 8

= 1
ms:|ysms|€Js [ms] |y1my | F-T

and the sum over these (mq,...,mpg) can be estimated as in (7.13). For all other
mg, we have
H-3
[yim1 + yama + ysms| > |y1my |71

We can proceed inductively and in the only remaining case we would have

[yima + -+ yg—1imp-1] = [yima |71
which contradicts (7.11). Thus the lemma is proved. O
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We apply Lemma 14 for (7.7) with H = 2h — 1. Multiplying each term of the
sum in (7.9) by min(1, 1/|mp 2|) (where my, o is determined by (7.8)), gives

5 _
) Ty < (log N) 8007
MeM:MV=0,3i,j:|m;_ ;| >(log N)3/2

and the same estimate for Ty.
Hence

s
Z T =Gy by, T O ((log N) 8(’“1)2) )
MeM:MV=0

where

Together with (7.5), we obtain
1=Na, kbt TO (N (log N)i/\) ;

if we choose 79 = 2\ and § = 8(h — 1)2\.
The result does not depend on the choice of the polynomial P(n). If we set
P(n) =n, Lemma 4 implies
q;cl,.‘.,kh,bl,‘..,bh = qkl;nwkh:blv"'ybh'

Similarly we get
22 = W(N)le,...,kh,bh...,bh —+ O (N(lOg N)i)\) .
Remark. In the case h = 1 we have MV = 0 only for (mi,mg2) = (0,0) and
c0,0(0) = A2(Ap) = pb = Qe -
8. PROOF OF THEOREM 4

In order to prove independence of different digital expansions we can proceed es-
sentially along the same lines as for the proof of Theorem 3. We just have to replace
the Main Lemma (Lemma 8) by the following three (main) lemmas (corresponding
to the three parts of Theorem 4) which imply

1y (ToPem) =TTV ON™ P (1 (TulPoln) = T\ ™
NZH( : eE@(NN)e ) _H<NZ< ‘ eﬁg(NW)e > )—)0

n<N ¢=1 {=1 n<N

and the corresponding statement for primes. Therefore the twodimensional mo-
ments converge to those of the twodimensional normal law and Theorem 4 is proved.

Lemma 15. Let q1,q2 be two positive coprime integers and Py(z), Pa(x) two inte-
ger polynomials of degrees r1 resp. ro with positive leading terms. Then for every
hi,ho > 1 and for every A > 0 we have

1
N#{n <N | €q1,k1 (Pl(n)) =b,.. <5 €q1,kn, (Pl(n)) = bh17
6Q2,11(P2(n)) = C1y- .5 €qa,lp, (PQ(n)) = Ch2}

_ ,—hi —hs 1
~" " 40 (g
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and
1
W(N)#{p<N| €QI7k1(Pl(p)):b17~.~,€q17kh1(P1(p)) :bh17

€ga,12 (P2(P)) = €155 €q 00, (P2(P)) = cno }

—hy —ha 1
A (v

uniformly for all integers

(log N)" < ky < kg <--- <kp, <rilog, N — (logN)",

(log N)" <y <lp <--- <lp, <rplog,, N — (log N)",

and by, ba, ... by, € {0,1,...,q1 — 1} resp. c1,¢2,...,¢n, €{0,1,...,q2 — 1}.
Lemma 16. Let ¢ > 2 and a > 1 be two integers and Pi(x), Py(z) two inte-
ger polynomials of degrees r1 resp. ro with positive leading terms. Then for every
hi,he > 1 and for every A > 0 we have
1
N <N | eqr (Pi(n)) = b, eqm, (P1(n) = bn,,
€1, (P2(n)) = c1,.. . €1, (P2(n)) = cn, }

1
—h
=4 g eren, + O (U@gW)

and
—w(i\f)#{p <N | €qp, (Pr(p)) = b1, s gy, (Pr(D)) = bry,

o (Pa(p) = €1, ety (Pa(p)) = cny}

) 1
=q hlqlh---,lhz7C1""’Ch2 +0 <(10g]\7)/\)

uniformly for all integers

(log N)" < k1 < kg <--- <kp, <rilog, N — (log N)7,

(logN)"<1ly <lpg <+ <lp, <r3log, N — (log N)",

and by, by, ..., bp, € {0,1,...,q — 1} resp. c1,¢2,...,cn, € {0,1,...,a}.
a?+4
a§+4
G = (G,) and H = (H;) denote the corresponding second order recurrent sequences.
Furthermore, let Py(z), Pa2(x) be two integer polynomials of degrees vy resp. ro with
positive leading terms. Then for every hy,hy > 1 and for every A > 0 we have

is irrational and let

Lemma 17. Let ay,a2 > 1 be two integers such that

SH# <N | e (P =i, (PL () = b,
emy, (Pa(n)) = ci, ... emy,, (P2(n)) = cn, }

_ (@) (H) 1
- qkl""*khl ib1seesbhy qll """ lhgyc1smsChy O <(10g N))\>
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and
_w(i\f)#{p <N | ear, (Pi(p) =b1,... €an,, (P1(p) = bn,,

€H,ly (P2(p)) =c1,- ..y €H,lp, (P2(p)) = Ch2}

_ (@ (H) 1
- qkl»---7kh17b17---7bh1 qlla-<~7lh27cly-~70h2 +0 <(1Og N)A)

uniformly for all integers
(logN)" <ky <ky<--<kp <1 log,, N — (log N,

(logN)" <l <lp < --- <lp, <rplog,, N — (logN)",
and by, ba, ... bp, € {0,1,...,a1} resp. c1,¢2,...,cp, € {0,1,...,a2}.

The proofs of these lemmas run along the same lines as the previous Main Lemma
(compare also with [1] and [6]). We have to consider sums of the type

Z TMlTMz Z e(M1V1P1(n) + M2V2P2(n))
M, M, n<N

(cf. (7.4), where, in the g-ary case, My, V, and Ty, are defined by
e Z —R1 —Nh J—
M, = (mg),...,mée)),Vg: (q g +1’-"7q k}[H)vTMz _dm(lz),qe(bl)'"dmgfg)v%<bz)

with

_mby _ ¢ m(b+1) mA mA
d,mq(b):e( q) 6( q )6(2).6( 5 )

2mim 2mimA

Especially, if 71 # ro, then the proof is straightforward and very similar to that of
Proposition 1 in [6]. The reason is that there are no cancellations in the leading
coefficient of the polynomial M,V P;(n) + MyVaPe(n) and consequently one can
directly apply Lemmata 10 and 11 in order to estimate the corresponding exponen-
tial sums.

Therefore we concentrate on the case r; = 5. Here we have to adapt certain
properties.

Lemma 18. Suppose that qi1,q2 > 2 are coprime integers and cy,co,r positive

integers. For arbitrary (but fized) integers hy, ho let mtY (1<j<hg Le{l,2})

J
Q)

be satisfying m;” # 0 mod q and |m§£)| < (logN)°, where § > 0 is any given

constant. Set

(£) ()
S —— m—l cee 4 m—h
L= T O
KO 41 ky)+1
e dp

Then, for

14

(log N)" < kY < k) < - < k) <log, N" — (log N)"

14
we uniformly have
glos )"
Nr
for all given 0 < n' < n, where ¢ = max{q1,q2}-

< |CISI +CQSQ| < q—(logN)n
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This lemma is implicitly contained in the proof of Proposition 2 of [6], the state-
ment of which is that of Lemma 15 for » = 1. However, by using Lemmata 10, 11
(which have not been used in this generality in [6]) and 18, Lemma 15 follows as
Proposition 2 of [6].

Lemma 19. Let ¢ > 2 and a > 1 be two integers and ci,ca,r positive integers.

For arbitrary (but fized) integers hq, ha, let mtY (1 < j < hq) be integers satisfying

J
mg-l) Z 0mod ¢ and |m§-1)\ < (log N)? and let mEQJ) (1 <i<hg, je{1,2}) be

integers satisfying \mgzj)| < (log N)%, where 6 > 0 is any given constant. Let

(1) (1)
m my,
S1:=—my Tt Sy
q q hq
wnd (2) (2)
2 2 2 2
S, — mgi m(uz My, mp, o
27 e RO Tt XE) RO
a1 ™ o P2 o h2
Then, for
(log N)" < k{V < k(Y < -+ < ki) < log, N" — (log N)"
and for

(log N)" < k¥ < kS < -+ < k2 <log, N" — (log N)"
we uniformly have
gUos M)

N €

s.
15, +c2af1‘ < g~ (ogN)

for all given 0 <7’ <n.
Proof. The upper bound is trivial. Thus, we concentrate on the lower bound. We
have, with (5.1) and o (a + 1) = Gra + Gr_1,

S am® e (mPatmd)

=M
a+1 qkh1+1 G oz—&—Gk%)

=151 + ¢

k241

with integers (1), m§2), m§2) and therefore S = 0 if and only if the equations

. (1 A2 kW41
erml )Gkgz;“ + oty g = 0

(1)
N L (2) kD41
clm(l)Gk@) —i—czmé )q mtl —
ho

hold. Since (G, Gi+1) = 1 for all k, we obtain qk;11)+1|clm(1) and hence ¢|m™) (for
sufficiently large k;,(Lll)) which is not possible for mgl) % 0 mod gq.

Hence we may assume S # 0. In order to get a lower bound for S, we use Baker’s
theorem (see [21]) saying that for non-zero algebraic numbers a1, as,...,«, and
integers by, bo, . .., b, we have either

b1 bn _
ot -rayr =1

or
ool — 1| > exp (—U),
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where
U = 20n+32p3n+6gn+2(1 1 log d)(log B + log d) log A; - - -log A,

with d = [Q(aq ..., ap) : Q],
B :max{2a|b1|7|b2|7~‘~7|bn|}'

and real numbers Ay, As,..., A, > e with log A; > h(a;), where h(-) denotes the
absolute logarithmic height.

Set ¢ = n/(h1+ha—1). Then there exists an integer K with 0 < K < hy + hy — 2
such that for all j, ¢

0]

=K ¢ [(10g N)¢, (1og )40

So fix K with this property. First suppose k;?l — kj(-l) < (log N)X¢ for all j,¢. Then

we have log || < (log N)%¢, log |m§2)| < (log N)%¢ and we can apply Baker’s
theorem for r = 6 with a1 = ¢, as = o, ag = m), ay = mf)a + mf), as = —cq,
ag=cp/(a+1)and by = —k{) — 1, by = k\>) + 1, b3 =b5 = 1, by = bg = —1 and
obtain
@)
—eym@ (o + 1)ane

ea (P o+ m)g

_ 1| > ¢ Clos(max(ki) k;2)) log [ | log |y |+ |)

k;11)+1
for a certain constant C' > 0. Of course, this implies
S| > max (q—’f&)’a—kﬁ)) e—cloglog N (log N)™< (log N)™
N?"
for some constant ¢ > 0 and all 7 > 0.
Otherwise we have some s1, so such that k§?1 — ky) < (log N)Xe¢ for all j < sy

and kif)ﬂ — kg) > (log N)(E+D= Here we get by Baker’s theorem, as above,

(1) (1) (2) (2)
el m Mg, c m myg
SZ:Cl +++ (18) + 2 (21;1 ++ (22,>2

gk 1 qksl +1 a+1\ gk +1 kS

D _p@\  _ Ke
> max (q kG a S ) o—cloglog N (log N)

and can estimate S — S by
5~ 5] < (log N)? (g7 ~0ew My =K —Goe Ty

Hence we have
|S| > max <q7k‘<*11),ofk‘g?) (6*“103; log N (log )™= _ ((log N)? e log(min(g.))(log N)(K“)E))

o, (log N)
Z TN
O
Lemma 20. Let aj,a2 > 1 be two integers such that Zzii is irrational, let
2

G = (G;) and H = (H;) denote the corresponding second order recurrent sequences
0)

and ¢y, co,1 be positive integers. For arbitrary (but fized) integers hy, ho let ml(»’j
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(1 <j < hyy j,0 €{1,2}) be integers satisfying |m§?\ < (log N)? (where § > 0 is
any given constant) such that

(1) 1) m® (1)

my 1 my o ha,1 My, 2
Si=—t—m gttt 70
k kM 41 k kM 41
a1 a1 a’“m aht
and
2 2 2 2
m'® m® m® m'?
1,1 1,2 ha,1 hz,2
So 1= —a— + #
g kP41 B k41
a1 a1 o' k2 a'“he
Then, for

(log N)" < k{” < &) < -+ < k) <log,, N" — (log N)"
we uniformly have

o log )"

N'f

S1 Sa

T (log )"
a; +1 20@ +1

< |

’ <o
for all given 0 < n’ < n, where a = max{ay,as}.

Proof. Again we can concentrate on the lower bound and have

S Sl SQ C1 (ﬁl(ll)al + mél)) Co (mg2)a2 + m§2))
=0 + c2 = +
ap+1 as +1 Gk;11)+1a1 + Gkgl) Hkg)Jrlaz + Hk%)

2

The assumption that 4/ Zéii is irrational ensures oo ¢ Q(a1). Hence S is zero if
2

and only if the equations

(1) - (2) _
c1my Hk,(f;Jrl + comy Gk§111>+1 =0
(1) ~(2) _
c1my Hk}(lz) + comy, Gk}(l11)+1 = 0
-~ (1) - (2) _
c1Mmy ka;"‘l + comy Gkéll) = 0
~ (1) - (2)
C1My Hk;f) + comy Gkél) = 0
2 1
hold. Then we must have e.g.
G,a G,a
. (1) . (2)C2 kp) +1 . (1) kp) +1
m = —m — =m
L 1 c1 H, 2 o 2 G,
LHpe KD

and Gk;11)+1|ﬁ1§1) because of (Gk&)ﬂ,Gk&)) = 1. With |mf€)| < (log N)? we get
M =0 and thus mY =m® =mP =8 =8, =0.
Hence S # 0 and the lower bound is obtained similarly to Lemma 19. O
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