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1 Introduction

We review classical and some latest results concerning Turán type hypergraph problems in the

range where Razborov’s method is not applicable. A sample of our new results (achieved with

Jiang, Kostochka, Mubayi, and Verstaëte [8]) is as follows.

An (a, b)-path P of length 2t−1 consists of 2t−1 sets of size r = a+ b as follows (here a, b, t, and n

are positive integers). Take t pairwise disjoint a-element sets U1, U2, . . . , Ut and another t pairwise

disjoint b-element sets V1, . . . , Vt and define the (hyper)edges of P2t−1(a, b) as the sets of the form

Ui ∪ Vi and Vi ∪ Ui+1. If the at + bt elements are ordered linearly, then the members of P can

be represented as intervals of length r. By adding one more set Ut+1 together with the hyperedge

Vt ∪ Ut+1 we obtain the (a, b)-path of even length, P2t(a, b).

Let Ψt(n, r) be the r-graph on n vertices in which there is a fixed vertex subset C of size t− 1 and

all possible edges intersecting C are present. Since τ(Ψ) = t − 1, no r-graph F with τ(F ) ≥ t is

contained in Ψ. Esp., Ψ is P2t−1-free, it yields the lower bound in the following asymptotic (r, t are

fixed n → ∞)

exr(n, P2t−1(a, b)) = (t− 1)

(
n

r − 1

)
+ o(nr−1).

This generalizes the Erdős–Gallai theorem for graphs, i.e., the case a = b = 1. We have asympotics

for (a, b)-path of even length only if a > b, and exact results when r − 2 > a > b ≥ 2. The other

cases are still open.

These are instances of a more general result concerning Turán numbers of (a, b)-blow ups of trees.

2 Paths

2.1 Definitions concerning r-uniform hypergraphs

An r-uniform hypergraph, or simply r-graph, is a family of r-element subsets of a finite set. We

associate an r-graph F with its edge set and call its vertex set V (F ). Usually we take V (F ) = [n],

where [n] := {1, 2, 3, . . . , n}. We also use the notation F ⊆
(
[n]
r

)
. For a hypergraph H, a vertex
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subset C of H that intersects all edges of H is called a vertex cover of H. With other notations

H ⊆
((

[n]
r

)
\
(
[n]\C

r

))
. Let τ(H) be the minimum size of a vertex cover of H. Let Ψt(n, r) be the

largest r-graph Ψ on n vertices with τ(Ψ) < t. As r, t are fixed and n → ∞

|Ψt(n, r)| =
(
n

r

)
−

(
n− t+ 1

r

)
= (t− 1)

(
n

r − 1

)
+ o(nr−1).

Given an r-graph F , let exr(n, F ) denote the maximum number of edges in an r-graph on n vertices

that does not contain a copy of F .

2.2 Paths in graphs

A fundamental result in extremal graph theory is the Erdős-Gallai Theorem [2], which states

ex2(n, Pℓ) ≤
1

2
(ℓ− 1)n, (1)

where Pℓ is the ℓ-edge path. (Warning! This is a non-standard notation.) Equality holds if and only

if ℓ divides n and all connected components of G are complete graphs on ℓ vertices. The Turán

function ex(n, Pℓ) was determined for every n and ℓ by Faudree and Schelp [3] and independently

by Kopylov [11]. Let n ≡ r (mod ℓ), 0 ≤ r < ℓ. Then ex(n, Pℓ) = 1
2(ℓ − 1)n − 1

2r(ℓ − r). They

described the extremal graphs which are either

— vertex disjoint unions of ⌊n/ℓ⌋ complete graphs Kℓ and a Kr, or

— ℓ is odd, ℓ = 2t− 1, and r = t or t− 1. Then another extremal graphs with completely different

structures can be obtained by taking a vertex disjoint union of m copies of Kℓ (0 ≤ m < ⌊n/ℓ⌋)
and a copy of Ψt(n−mℓ, 2).

The variety of extremal graphs makes the solution difficult.

We generalize these theorems for some hypergraph paths.

2.3 Paths in hypergraphs

Paths of length 2. Two r-sets with intersection size b can be considered to a hypergraph path

P2(a, b) of length two, where a+ b = r, and 1 ≤ a, b ≤ r − 1. If H ⊂
(
[n]
r

)
is P2(1, r − 1)-free then

every (r − 1)-set is covered by at most one member of H. The inequality r|H| = |∂(H)| ≤
(

n
r−1

)
yields the upper bound in the following result

1

r

(
n

r − 1

)
−O(nr−2) < exr(n, P2(1, r − 1)) ≤ 1

r

(
n

r − 1

)
. (2)

Here for any given r equality holds if n is sufficiently large (n > n0(r)) and certain divisibility

conditions are satisfied (see, Keevash [10]).

The case b = 1 was solved asymptotically by Frankl and the general case was handled in [5]. For
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1 ≤ b ≤ r − 2 and n > n1(r) one has

exr(n, P2(a, b)) = Θ

(
max

{(
n− b− 1

a− 1

)
, nb

})
. (3)

Note that the right hand side of (3) is o(nr−1).

(a, b)-paths of length 3. In the case ℓ = 3 an (a, b)-path has three r-sets, two of them are

disjoint and they cover the third in a prescribed way. Füredi, and Özkahya [9] showed that given

1 ≤ a, b < r, r = a+ b and for n > n2(r) one has

exr(n, P3(a, b)) =

(
n− 1

r − 1

)
. (4)

Longer paths. Our goal is to prove an extension of the Erdős-Gallai Theorem for r-graphs. Here

we collect what we can prove about an (a, b)-blow up of Pℓ. Since the case ℓ = 2 behaves differently,

see (2), (3), and also the case ℓ = 3 was presented above (4), we only discuss the case ℓ ≥ 4.

Theorem 1. Suppose that a+b = r, a, b ≥ 1, r ≥ 3 and suppose that ℓ ∈ {2t−1, 2t}, ℓ ≥ 4. Suppose

that these values are fixed and n → ∞ or n > n3(r, t). We have |Ψt(n, r)| ≤ exr(n, Pℓ(a, b)).

If ℓ is odd, ℓ = 2t− 1 ≥ 5, a ̸= b, a, b ≥ 2 then for sufficiently large n we have

exr(n, P2t−1(a, b)) =

(
n

r

)
−

(
n− t+ 1

r

)
.

In addition, the only example achieving this bound is Ψt(n, r).

If ℓ is odd, ℓ = 2t− 1 ≥ 5, then as n → ∞ we have

exr(n, P2t−1(1, r − 1)) = exr(n, P2t−1(r − 1, 1)) = (t− 1)

(
n

r − 1

)
+ o(nr−1).

If ℓ is odd, ℓ = 2t− 1 ≥ 5, and a = b = r/2 then(
n

r

)
−

(
n− t+ 1

r

)
≤ exr

(
n, P2t−1

(r
2
,
r

2

))
≤ (t− 1)

(
n

r − 1

)
. (5)

If ℓ is even, ℓ = 2t ≥ 4 and a > b then as n → ∞ we have

exr(n, P2t(a, b)) = (t− 1)

(
n

r − 1

)
+ o(nr−1).

If ℓ is even, and a = b = r/2 then we have

(t− 1)

(
n

r − 1

)
+ o(nr−1) ≤

(
n

r

)
−

(
n− t+ 1

r

)
≤ exr

(
n, P2t

(r
2
,
r

2

))
≤

(
t− 1

2

)(
n

r − 1

)
. (6)
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If ℓ is even, ℓ = 2t ≥ 4 and a < b then as n → ∞ we have

(t− 1)

(
n

r − 1

)
+ o(nr−1) ≤ exr(n, P2t(a, b)) ≤ t

(
n

r − 1

)
+ o(nr−1).

We conjecture that Ψt(n, r) gives the correct order of magnitude of the Turán number in all the

above cases, although there are larger constructions for some special values. There is only one

further case we can prove an asymptotic; in a forthcoming work we show that(
n− 1

2

)
+ ⌊n− 2

2
⌋ ≤ ex3(P4(1, 2)) ≤

(
n

2

)
+ Cn

holds for some absolute constant C. The triple system giving the lower bound can be defined as{
F : 1 ∈ F ∈

(
[n]

3

)}
∪ {{2, 2i− 1, 2i} : 1 < i ≤ n/2}.

The cases a ̸= b are immediate consequences of our main Theorem 3, the proofs of the upper bounds

of the cases (5) and (6) concerning a = b = r/2 are proved by the method of [4].

3 Trees, our main result

Ajtai, Komlós, Simonovits and Szemerédi [1] claimed a proof of the Erdős-Sós Conjecture, showing

that if T is any tree with ℓ edges, where ℓ is large enough, then for all n,

ex2(n, T ) ≤
1

2
(ℓ− 1)n.

To define hypergraph trees we make the following more general definition:

Definition 2. Let r, s, t, a, b > 0 be integers with b ≤ a < r, a+ b = r, and let G = G(U, V ) denote

a bipartite graph with parts U = {u1, u2, . . . , us} and V = {v1, v2, . . . , vt}. Then the (a, b)-blowup

of G, denoted G(a, b) is the r-uniform hypergraph with edge set {Ui ∪ Vj : uivj ∈ E(G)} where

1) |Ui| = a and |Vj | = b for all 1 ≤ i ≤ s and 1 ≤ j ≤ t, and

2) for all i ̸= j, Ui ∩ Uj = ∅ = Vi ∩ Vj and for all i, j, Ui ∩ Vj = ∅.

We investigate the problem of determining when the construction Ψt(n, r) is asymptotically ex-

tremal for (a, b)-blowups of trees. For other instances of hypergraph trees for which the crosscut

constructions are asymptotically extremal, see [6, 7, 12]. Let Ts,t(a, b) denote the family of (a, b)-

blowups of trees T with parts U and V where a > b and |U | = s and |V | = t. A crosscut leaf in

T ∈ Ts,t(a, b) is a b-set Vj in the part of size t whose degree in T is one. Our main result is the

following theorem.
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Theorem 3. If T ∈ Ts,t(a, b) where a+ b = r and b < a < r, then

ex(n, T ) ≤ (t− 1)

(
n

r − 1

)
+ o(nr−1).

This is asymptotically sharp whenever t ≤ s. If t ≤ s, a < r − 1, and T has a crosscut leaf, then

for large enough n,

ex(n, T ) =

(
n

r

)
−
(
n− t+ 1

r

)
.

In addition, the only example achieving the bound is Ψt(n, r).
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