THE NUMBER OF B_h -SETS AND AN ASSOCIATED EXTREMAL PROBLEM FOR RANDOM SETS OF INTEGERS

Y. KOHAYAKAWA (U. OF SÃO PAULO)

Let A be a set of integers. For any integer $h \ge 2$, we say that A is a B_h -set if the h-wise sums

$$a_1 + \dots + a_h$$
 $(a_1, \dots, a_h \in A, a_1 \leq \dots \leq a_h)$

are all distinct. Let $[n] = \{1, \ldots, n\}$. It is natural to investigate the extremal function

$$F_h(n) = \max\{|A| \colon A \subset [n] \text{ is a } B_h\text{-set}\}.$$

The particular case of this problem in which h = 2 was raised by Simon Sidon in the 1930s and B_2 -sets are known as *Sidon sets*. An immediate argument shows that $F_h(n) = o(n)$ and, therefore, this is a so called 'degenerate' extremal problem. As it is often the case with degenerate problems, the structure of the *extremal*, that is, largest, B_h -sets $A \subset [n]$ is not well understood.

We address the simpler problem of estimating the number of B_h -sets $A \subset [n]$ of a given cardinality, and obtain good bounds. We also discuss a related extremal problem: we consider random sets of integers $R \subset [n]$ of a given cardinality m = m(n) and study $F_h(R)$, the maximum cardinality of a B_h -set contained in R. The behaviour of $F_h(R)$ as m = m(n) varies is somewhat unexpected, presenting two points of 'phase transition'.

This is joint work with D. Dellamonica Jr, S. J. Lee, V. Rödl and W. Samotij.