THE NUMBER OF B_{h}-SETS AND AN ASSOCIATED EXTREMAL PROBLEM FOR RANDOM SETS OF INTEGERS

Y. KOHAYAKAWA (U. OF SÃO PAULO)

Let A be a set of integers. For any integer $h \geq 2$, we say that A is a B_{h}-set if the h-wise sums

$$
a_{1}+\cdots+a_{h} \quad\left(a_{1}, \ldots, a_{h} \in A, a_{1} \leq \cdots \leq a_{h}\right)
$$

are all distinct. Let $[n]=\{1, \ldots, n\}$. It is natural to investigate the extremal function

$$
F_{h}(n)=\max \left\{|A|: A \subset[n] \text { is a } B_{h} \text {-set }\right\} .
$$

The particular case of this problem in which $h=2$ was raised by Simon Sidon in the 1930s and B_{2}-sets are known as Sidon sets. An immediate argument shows that $F_{h}(n)=o(n)$ and, therefore, this is a so called 'degenerate' extremal problem. As it is often the case with degenerate problems, the structure of the extremal, that is, largest, B_{h}-sets $A \subset[n]$ is not well understood.

We address the simpler problem of estimating the number of B_{h}-sets $A \subset[n]$ of a given cardinality, and obtain good bounds. We also discuss a related extremal problem: we consider random sets of integers $R \subset[n]$ of a given cardinality $m=m(n)$ and study $F_{h}(R)$, the maximum cardinality of a B_{h}-set contained in R. The behaviour of $F_{h}(R)$ as $m=m(n)$ varies is somewhat unexpected, presenting two points of 'phase transition'.

This is joint work with D. Dellamonica Jr, S. J. Lee, V. Rödl and W. Samotij.

