Prüfung aus Mathematik (2) für BI

am 7.3.2002

Deckblatt bitte nicht herunterreißen! Bitte für jedes Beispiel ein eigenes Blatt verwenden! Arbeitszeit: 150 Minuten

1.) Wie lautet die allgemeine <u>reelle</u> Lösung der homogenen Differentialgleichung $y^{(4)} + 16y = 0$? (Hinweis zur Kontrolle: $\lambda = \pm (\sqrt{2} \pm i\sqrt{2})$.

Wie lautet der <u>Ansatz</u> für eine Partikulärlösung der inhomogenen DG $y^{(4)} + 16y = \cos \sqrt{2}x + e^{\sqrt{2}x} \cos \sqrt{2}x$?

Welches Problem in Zusammenhang mit der Balkenbiegung wird durch diese inhomogene DG beschrieben?

2.) Geben Sie die (vollständige) Taylorentwicklung der Funktion $f(x,y) = \frac{x+y}{1+xy}$ zum Entwicklungspunkt $(x_0,y_0)=(0,0)$ an

(Anleitung: Die Entwicklung von $\frac{1}{1+xy}$ erhalten Sie leicht, indem sie diesen Ausdruck als Summenfunktion der unendlichen geometrischen Reihe mit q=-xy auffassen.)

Wie lautet speziell die Tangentialebene und das Schmiegparaboloid (maximal) 2. Grades im Punkt (0,0,0)?

- 3.) Berechnen Sie die Oberfläche F der Kugel mit Radius R (Hinweis zur Kontrolle: $F=4\pi R^2$).
- 4.) Die Funktionen $\{\varphi_1, \varphi_2, \dots, \varphi_k, \dots\} = \{\sin x, \sin 2x, \dots, \sin kx, \dots\}$ bilden ein vollständiges Orthogonalsystem auf dem Intervall $I = [0, \pi]$.

Berechnen Sie die Fourierapproximierende $s_2 = c_1\varphi_1 + c_2\varphi_2$ der Funktion f(x) = 1 ($x \in I$) sowie die Abweichung $||f - s_2||$ (im Sinne des Integralmittels).

5.) Eine bei (0,0) und $(\pi,0)$ eingespannte Saite wird in die Anfangsform $f(x) = z(x,0) = \sin x$ gebracht und losgelassen (Anfangsgeschwindigkeit also $g(x) = z_t(x,0) = 0$).

Bestimmen Sie mit Hilfe der d'Alembertschen Formel die Form z(x,t) zu einem allgemeinen Zeitpunkt $t \ge 0$ (Hinweis zur Kontrolle: Es ergibt sich $z(x,t) = \sin x \cos ct$).

Skizzieren Sie die Schwingungsformen zu den Zeitpunkten $t=\frac{T}{8},\,t=\frac{T}{4}$ und $t=\frac{3T}{8}$ $(T=\frac{2\pi}{c}$ ist dabei die Schwingungsdauer).