Prüfun	g a	us Mathemati	ik (2)	ALT	für	\mathbf{BI}
am 26.	6.	2003				

Deckblatt bitte nicht herunterreißen! Bitte für jedes Beispiel ein eigenes Blatt verwenden! Arbeitszeit: 150 Minuten

Zuname:
Vorname:
Kennzahl:
Mat Nr ·

1.) a) Lösen Sie das homogene Differentialgleichungssystem $\mathbf{y}' = A\mathbf{y}$ mit $A = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

<u>Hinweis</u>: Die Matrix A ist symmetrisch und daher diagonalisierbar; sie hat die Eigenwerte 1, 1, -1, -1 (nicht nachrechnen).

- b) Wie lautet der <u>Ansatz</u> für eine Partikulärlösung des inhomogenen Systems $y' = Ay + r e^{-t} + s \cos t$, wobei $r, s \in \mathbb{R}^3$ konstante Spaltenvektoren sind.
- 2.) a) Bestimmen Sie die Menge aller parabolischen Punkte (x, y, z) der Fläche $z = z(x, y) = \cos x \cos y$. Hinweis zur Kontrolle: die Stellen (x, y) bilden eine Schar paarweise senkrechter Geraden (Skizze); bei der Berechnung von D(x,y) empfiehlt sich die Heranziehung des Cosinus-Summensatzes.
 - b) Weisen Sie nach, dass der Punkt $(\frac{\pi}{2}, \frac{\pi}{2}, 0)$ ein Sattelpunkt ist und dass bei (0, 0, 1) ein relatives (und sogar absolutes) Maximum vorliegt.
- 3.) Es sei $U = \binom{f}{g} = \operatorname{grad} u$ das Gradientenfeld mit der Potentialfunktion $u(x,y) = \ln \sqrt{x^2 + y^2}$ $((x,y) \in G = \mathbb{R}^2 \setminus \{(0,0)\}.$
 - a) Bestätigen Sie, dass U (als Geschwindigkeitsfeld aufgefasst) die Strömung einer inkompressiblen Substanz beschreibt. Wie hängt das mit der Tatsache zusammen, dass u der Realteil einer (auf $\mathbb{C}\setminus\{(0,0)\}$) analytischen Funktion $w=u(x,y)+\mathrm{i}\,v(x,y)$ ist? Wie lautet diese Funktion und wie die zu u konjugierte harmonische Funktion v?
 - b) Berechnen Sie die Menge der Substanz, die pro Zeiteinheit durch einen Ursprungskreis C mit Radius R (von innen nach außen) tritt, also das Kurvenintegral $\int_C f \, dy - g \, dx$. Was fällt auf?
- 4.) Bestimmen Sie die stationäre Temperaturverteilung $u(r,\varphi)$, die sich in einer an Ober- und Unterseite isolierten kreisförmigen Platte vom Radius 1 einstellt, wenn man die Randtemperatur

$$u(1,\varphi) = f(\varphi) = \begin{cases} \varphi & \dots & \frac{-\pi}{2} < \varphi < \frac{\pi}{2} \\ 0 & \dots & -\pi \le \varphi \le -\frac{\pi}{2}, & \frac{\pi}{2} \le \varphi \le \pi \end{cases}$$

5.) Bestimmen Sie die Hauptträgheitsachse des starren Systems, das aus drei gleichen Massen besteht, die in den Punkten $(x_1, y_1) = (0, 0), (x_2, y_2) = (1, 0), (x_3, y_3) = (0, 1)$ angebracht sind. Anleitung: Die Hauptträgheitsachse ist die Gerade $x \cos \alpha + y \sin \alpha - c = 0$, bezüglich derer das

Gesamtträgheitsmoment J der Massenpunkte minimal ist. Sie haben also diejenigen Werte α und czu bestimmen, für welche die Funktion $J(\alpha,c) = \sum_{k=1}^{3} (x_k \cos \alpha + y_k \sin \alpha - c)^2$ minimal wird. Skizzieren Sie die erhaltene Gerade.