Prüfung aus Mathematik 2 für MB + VT am 6. März 2003

Deckblatt bitte nicht herunterreißen! Bitte für jedes Beispiel ein eigenes Blatt verwenden! Arbeitszeit: 150 Minuten!

- 1. Berechnen Sie
 - (a) $\int_1^3 \int_1^{x^2} \frac{2x}{y^2} dy dx$ durch Vertauschung der Integrationsreihenfolge.
 - (b) den Flächeninhalt der Ellipse $16x^2 + y^2 = 16$ durch geeignete Transformation auf Polarko-ordinaten.
- 2. Bestimmen Sie eine Lösung des folgenden Anfangswertproblems durch Variation der Konstanten

$$y'' + 4y = 2e^x$$
 , $y(0) = 2$, $y'(0) = 0$

3. Bestimmen Sie die allgemeine Lösung der partiellen Differentialgleichung

$$u_x + xu_y - u^2 = 0$$

- 4. Gegeben sei das Vektorfeld $v(x, y, z) = \begin{pmatrix} xy^2 \\ x^2y \\ y \end{pmatrix}$
 - (a) Berechnen Sie rot(v) und div(v).
 - (b) Berechnen Sie

$$\iint\limits_{F}vdO,$$

wobei F die Oberfläche (Mantel, Boden und Deckel) des Zylinderabschnitts $B=\{(x,y,z):x^2+y^2\leq 1,-1\leq z\leq 1\}$ sei.

- 5. Es sei $f(x,y) = \sin(x)\sin(y)\sin(x+y)$ mit $x,y \ge 0$ und $x+y \le \pi$.
 - (a) Bestimmen Sie die Maximalstellen von f. Hinweis: Beachten Sie, dass $f(x,y) \ge 0$ gilt und vereinfachen Sie Ihre Ergebnisse mittels der Identität $\sin(a+b)\cos(a) + \cos(a+b)\sin(a) = \sin(2a+b)$.
 - (b) Bestimmen Sie mittels der Lagrangeschen Regel ein Gleichungssystem zur Lösung des obigen Optimierungsproblems unter der Nebenbedingung $x+y=\frac{\pi}{2}$.