Prüfung aus Mathematik	2	f.	WI
am 2. März 2007			

ZUNAME:
Vorname:
Kennzahl:
Mat No.

Deckblatt bitte nicht herunterreißen! Arbeitszeit: 90 Minuten!

1. (a) Berechnen Sie das Oberflächenintegral

$$\int \int_{F} vdO,$$

wobei F das im 1. Oktanten (= $\{(x,y,z): x>0,y>0,z>0\}$) liegende Stück der Kugelfläche $x^2+y^2+z^2=1$ sei und $v=\left(\begin{smallmatrix}z\\0\\0\end{smallmatrix}\right)$.

- (b) Weisen Sie nach, dass $v=\left(\begin{smallmatrix}y\\x\end{smallmatrix}\right)$ ein Potentialfeld ist und bestimmen Sie das Potential. Geben Sie eine Eigenschaft von Kurvenintegralen über Potentialfeldern an.
- 2. Lösen Sie das Anfangswertproblem y''' y = 0, y(0) = 1, y'(0) = 0, y''(0) = 0, mittels
 - (a) Laplacetransformation.
 - (b) Potenzreihenansatz (die ersten 5 Koeffizienten der Potenzreihe (d.h. bis x^4) sind zu berechnen).
- 3. (a) Pirat Paul entwickelt eine neue Augenklappe für seine Kollegen. Er hat insgesamt 11 Goldmünzen zur Verfügung und weiß, dass er $f(x,y)=50x^{1/3}y^{3/2}$ einnimmt, wenn er x>0 Goldmünzen in die Entwicklung und y>0 Goldmünzen in die Werbung investiert. Ermitteln Sie, unter Verwendung der Lagrangeschen Multiplikatoren, x und y so, dass Paul's Gewinn maximal wird.
 - (b) Bestimmen Sie eine Lösung der autonomen Differentialgleichung

$$\ddot{x} = (\dot{x})^3.$$

Hinweis: Integrationskonstanten nicht vergessen.