
On Surface Approximation using Developable

Surfaces

H.-Y. Chen, I.-K. Lee, S. Leopoldseder,

H. Pottmann, T. Randrup∗), J. Wallner

Institut für Geometrie, Technische Universität Wien

Wiedner Hauptstraße 8–10, A-1040 Wien, Austria

∗Odense Steel Shipyard Ltd., P.O. Box 176,

DK-5100 Odense C, Denmark

March 26, 2004

1

Abstract

We introduce a method for approximating a given surface by a developable

surface. It will be either a G1 surface consisting of pieces of cones or cylinders

of revolution or a Gr NURBS developable surface. Our algorithm will also deal

properly with the problems of reverse engineering and produce robust approx-

imation of given scattered data. The presented technique can be applied in

computer aided manufacturing, e.g. in shipbuilding.

Keywords: computer aided design, computer aided manufacturing, surface ap-

proximation, reverse engineering, surface of revolution, developable surface,

shipbuilding.

2

1 Introduction

A developable surface is a surface which can be unfolded (developed) into a plane

without stretching or tearing. Therefore, developable surfaces possess a wide range

of applications, for example in sheet-metal and plate-metal based industries (see e.g.

[1, 2]).

It is well known in elementary differential geometry [3] that under the assumption

of sufficient differentiability, a developable surface is either a plane, conical surface,

cylindrical surface or tangent surface of a curve or a composition of these types.

Thus a developable surface is a ruled surface, where all points of the same generator

line share a common tangent plane. The rulings are principal curvature lines with

vanishing normal curvature and the Gaussian curvature vanishes at all surface points.

Therefore developable surfaces are also called single-curved surfaces, as opposed to

double-curved surfaces.

One motivation for our work comes from the design and engineering of the double-

curved ship surfaces project, launched by Odense Steel Shipyard Ltd. and the De-

partment of Mathematics at the Technical University of Denmark [4]. A ship surface

is designed by segmenting it into parts in each a single steel plate will be placed.

These steel plates are shaped in two processes, rolling and heating. Rolling produces

a developable surface, mostly of cylindrical shape. Most of the ship’s steel plates are

located in a single-curved area, where rolling is sufficient. In double-curved areas,

e.g. at the bow, however, the surface is far away from being developable. To obtain

the desired double-curved shape, after the process of rolling the plate is shrunk along

its longer edges using pattern-heating. The parameters of the heating process are

determined merely on the basis of experience and heuristics. Thus heating is much

more difficult to control than rolling, resulting in the problem that inaccurately man-

ufactured plates do not fit well together [5]. Our approach to improve this situation is

the following. In order to minimize the use of heating, we perform an appropriate de-

composition of the ship surface into patches each of which may be well approximated

by a cone or cylinder surface [6].

Some shipyards have been using developable surfaces only for design. Both for

the strategy above and the design with developable surfaces only, the solution of the

following problem plays an important role: Given a surface or a set of data points of

a surface, e.g. coming from a double-curved area of a ship surface, approximate the

data by a developable surface.

Most CAGD research on developable surfaces has been focused on the construc-

tion of developable surfaces to be used in CAD-systems (see [7] and the references

therein). Surface approximation by developable surfaces is addressed in several con-

3

tributions [9, 10, 11, 12, 13, 14], but all these papers either do not allow our input

data or the methods they describe could not perform very well due to limitations.

In this paper we introduce a new technique for the approximation problem stated

above. It is guided by a well known result: A developable surface possesses for each

generator line a cone of revolution (right circular cone) which has second order con-

tact with the surface at all points of the generator [3]. This so-called osculating cone

is a counterpart to the osculating circle of a curve. It may degenerate to a cylinder

of revolution or to a plane, which are limit cases that shall be tacitly admitted in the

following. The osculating cone approximates the surface well in some region neigh-

boring the chosen generator, a fact which gives us the idea of segmenting the given

data points into regions which can be well approximated by cones or cylinders of

revolution. Afterwards our algorithm will connect these elements by patches of cones

or cylinders of revolution with G1 join or calculate an approximating developable

Gr (r ≥ 2) NURBS surface from these shaping elements. This is done by employ-

ing the methods developed by Leopoldseder and Pottmann [15] and Pottmann and

Wallner [12], respectively.

We also consider that the given data may have been scanned from a real exist-

ing object so that the input is a point cloud subject to measurement errors. The

method proposed will be robust to noise and will handle outliers. Thus our surface

approximation technique can also be used for reconstructing geometric models. The

procedure of creating a CAD model of a real object as input for CAD/CAM systems

is called reverse engineering. For an introduction into the basic concepts of reverse

engineering and a survey of the state of the art we refer the reader to Varady et al.

[16].

The paper is organized as follows. We first briefly describe some basic algorithms

for approximation by surfaces of revolution introduced by Pottmann and Randrup

[17] and Pottmann, Chen and Lee [18]. Then we refine these algorithms to an approx-

imation method for cones and cylinders of revolution. This procedure will find a good

fitting cone or cylinder in an appropriate region. We then describe a type of region

growing procedure for the computation of a good segmentation of the given data into

regions which are well approximated by one cone or cylinder of revolution. After this,

we shortly describe how to smoothly join these geometric elements to a G1 [15] or

Gr (r ≥ 2) surface [12]. We conclude the paper with some examples illustrating our

method.

4

2 Approximation by surfaces of revolution

First let us discuss how to compute the axis of a cone of revolution well approximating

a given data set. Following the approach proposed by Pottmann and Randrup [17]

and Pottmann, Chen and Lee [18] we consider the cones of revolution as a subclass

of the surfaces of revolution and these as a subclass of the helical surfaces. So we will

deal with approximation by helical surfaces and specialize to surfaces of revolution

and cones of revolution later. This might seem as an unnecessary complication, but

it not only gives theoretical background information, but is in fact only a simpler

version of the approximation by a surface of revolution with one constraint less. We

now give a short outline of the algorithm.

A continuous motion in 3–dimensional Euclidean space R
3, composed of a rota-

tion around an axis A and a proportional translation parallel to A is called a helical

motion or screw motion. A surface generated by sweeping a curve along a helical

motion is called a helical surface. The proportionality factor p of the velocities of

the rotational and translational part is called the pitch of the helical motion. In the

special case of a pure rotation where the pitch p vanishes, we obtain a surface of

revolution.

As is well known (cf. [19]), a helical motion can be characterized by a pair C =

(c, c̄) ∈ R
6. The velocity vector of the point x is given by:

v(x) = c̄ + c × x.

We consider a given set of data points di and we assume that for each di we have

already found a surface normal ni, either by numerical estimation or by other means.

For the estimation of normal vectors, see e.g. [8]. To find a well approximating helical

surface, we are looking for a motion such that the velocity vectors v(di) at data points

di form an angle γi close to π/2 with the normals ni. Because of

cos γi =
ni · v(di)

‖v(di)‖
=

c̄ · ni + c · n̄i

‖c̄ + c × di‖
,

with n̄i := di × ni, the minimization of

G :=
k

∑

i=1

cos2 γi (1)

is a nonlinear problem.

Thus in [17] we proposed to minimize the positive semidefinite quadratic form

F (C) :=
k

∑

i=1

(c̄ · ni + c · n̄i)
2 =: CT · N · C (2)

5

under the normalization condition

1 = ‖c‖2 =: CT · D · C, (3)

where D = diag(1, 1, 1, 0, 0, 0). Equation (3) normalizes the rotational part of the

motion to 1. This excludes pure translations and thus approximation with cylinders.

The solution of F → min is a well known general eigenvalue problem. Using a

Lagrangian multiplier λ, we have to solve the system of equations

(N − λD) · C = 0, CT · D · C = 1. (4)

Hence, λ must be a root of the equation

det(N − λD) = 0, (5)

which is cubic in λ. For any root λ and the corresponding normalized general eigenvec-

tor C, we have F (C) = λ. Therefore, all roots λ are nonnegative and the solution C

is a general eigenvector to the smallest general eigenvalue λ ≥ 0. The axis A = (a, ā)

and the pitch p now are computed as follows:

a =
c

‖c‖
, ā =

c̄ − pc

‖c‖
, p =

c · c̄

c2
. (6)

The vector a gives the direction of the axis and ā is the cross product of a point on

the axis with a (cf. [18]).

If p is small compared to the size of the object, we better approximate with a

surface of revolution. Let us, as is done in [18], impose p = 0 as a further constraint.

This amounts to the minimization of (2) under the conditions (3) and

0 = c · c̄ =: CT · K · C. (7)

With two Lagrangian multipliers λ, µ, we have to solve the system of equations

(N − λD − µK) · C = 0, CT · D · C = 1, CT · K · C = 0. (8)

Hence, λ, µ are restricted to the algebraic curve S of order 6 given by

det(N − λD − µK) = 0. (9)

Since the polynomial degree of this equation is too high as shown in [18], we compute

the solution numerically by a Newton–type iteration. A good starting point for the

iteration is a solution C for µ = 0, i.e., a solution of the system (4).

For more details the reader is referred to [17] and [18].

6

3 A refined algorithm for approximation by cones

of revolution

Suppose the given data points to be approximated are close to a cone of revolution.

We expect that the data normals will have a nearly constant angle with the unknown

axis, since the angle between the surface normals of a cone of revolution and its axis

is constant.

Thus instead of minimizing the positive semidefinite quadratic form F (C) we

consider the quadratic form

Fq(C, g) :=
k

∑

i=1

(c̄ · ni + c · n̄i)
2 + q

k
∑

i=1

(c · ni − g)2 =: XT · Nq · X, (10)

where g is the cosine of the unknown angle and X is the pair (C, g). The parameter

q > 0 determines the influence of the modifying term and has to be chosen prior to

minimization. If the data normals are close to the surface normals of a cone one gets

good results by choosing a higher value of q (e.g. q = 2), otherwise one better takes

a smaller q. In general q = 0.5 will cover most cases. Analogously to the previous

section we have to solve a system of equations with two Lagrangian multipliers λ, µ:

(Nq − λD′ − µK ′) · X = 0, XT · D′ · X = 1, XT · K ′ · X = 0. (11)

Here D′ = diag(1, 1, 1, 0, 0, 0, 0) and

K ′ =

1

2

1

2

1

2

1

2

1

2

1

2

0

.

To compute the solution we can use the methods of the previous section.

We can easily calculate a generator line of the approximating cone. First we

choose a plane through the axis, rotate the data points into it and fit a line to the

rotated points. This line will be a generator l. Further we want to measure how well

the calculated cone is fitting the given data. This is done by calculating the sum of

the squares of distances of the rotated points to l. The distance of a rotated point

to l equals the distance of the original point to the cone and shows how well it is

approximated by the cone. Note that this error measure does not involve the surface

normals.

7

4 Handling outliers

So far we have dealt with the approximation by a single cone of revolution. Our

intention now is to divide the given data into regions in each of which a good fit by

a single cone of revolution can be found. Imagine a region R with such a good fit.

Data points from other regions will be classified as outliers with respect to R. Since a

proper segmentation is unknown at the beginning we will now refine our cone fitting

algorithm to recognize outliers. This will help us to distinguish different regions later.

The previous algorithm serves as the base of a weight iteration. Here, instead of

Fq in (10), we minimize

Fq,w :=
k

∑

i=1

wi

(

(c̄ · ni + c · n̄i)
2 + q · (c · ni − g)2

)

=: XT · Nq,w · X. (12)

Initially, all weights wi are set to 1. Later following the robust regression method of

Rousseeuw [20] we make use of the following weights:

wi =

1 if |ri/σ̂| ≤ 2.5

0 if |ri/σ̂| > 2.5,

where the residual ri is the distance of the data point di to the generator line and

σ̂ =
√

med r2

i ,

the robust estimate of the error scale; ‘med r2

i ’ denotes the median of the values r2

i .

With this weighting scheme the solution is recomputed. Iterating this process will

finally yield a good axis, where points with vanishing weight are classified as outliers.

5 Recomputing the axis if the vertex lies in the

region of interest

In some cases the vertex of the computed cone will lie inside the given data set. This

situation for instance will occur if the data points come from a part of a tangent

surface close to its regression curve. Since we do not wish to have any singularities of

our approximating cone in the region of interest we have to recompute our solution.

5.1 Computing the position of the vertex

First we introduce a method how to recognize that the vertex lies inside the region

of interest (Fig. 1(a)). Choose a half-plane through the axis and rotate the points

into it. The points will lie on one side of the axis. We introduce a local cartesian

8

���������
	���
��� � ����� ���������������	��
��� ����� �!� �����	�
��� �#"$��%���������&� �����
	�'��(� �

)
*

+
,

-�.

-�/

-�0
-�1
2 12 .�3 2 /�3 2 0

Figure 1: Computing the position of the vertex

coordinate system with the axis of the cone as y-axis. Then the x-coordinates of the

points are their distance to the axis (Fig. 1(b)). To find the position of the vertex

we construct a series of nested intervals (ci, di). The first interval is (c0, d0), where c0

equals the minimum of the y-coordinates of the rotated data points and d0 is their

maximum. Now we divide the interval into halves and decide which half possibly

contains the vertex. We compute the average x-coordinate in each part and take the

one with the lower value as the next interval. Iterating this procedure yields series of

nested intervals.

Two cases can occur: If the vertex lies outside (c0, d0), the series of nested intervals

will move towards the boundary. One of the bounds of the nested intervals will stay

constant, i.e., either ci ≡ c0 or di ≡ d0. In this case the computed axis does not

intersect the region of interest and there is no need for further improvements.

However if the vertex lies inside (c0, d0), there exists an index where the intervals

will leave the initial boundary (see (c3, d3) in Fig. 1(b)). The coordinates of the vertex

can be computed approximately by the series of nested intervals (Fig. 1(b)).

Note that the series of nested intervals is finite due to the finite number of given

data points.

5.2 Recomputing the axis by a least square fit

If our algorithm recognizes that the vertex lies inside the region of interest, we re-

compute the axis by a least square fit. Lukacs [21] and Katrycz [22] formulated and

solved the problem of least square fitting by quadrics. To compute the solution both

authors use Newton iteration.

Here we follow Katrycz [22]. He uses the axis, opening angle and the coordinates

9

of the vertex as unknown surfaces parameters. In our case we will include a side

condition which ensures that the solution cone’s vertex lies outside the region of

interest. Consider the planes perpendicular to the computed axis which have the

property that all data points are on one side of the plane and among those choose

the one with minimal distance to the vertex (see plane p in Fig. 1(b)). Restricting

the position of the new vertex to this plane gives us the desired side condition. We

compute the solution of this least square fit with side condition according to Wolf [23].

Since this fitting algorithm works iteratively, we use our axis and vertex coordinates

as starting values. For further details we refer to [22] and [23].

6 Developable surface approximation

When we assume sufficient differentiability, a developable surface is either a plane,

conical surface, cylindrical surface or tangent surface of a curve or a composition of

these types. Thus a developable surface is a ruled surface, where all points of the same

generator line share a common tangent plane. Furthermore, along each generator line

a developable surface possesses an osculating cone of revolution which may degenerate

into a cylinder of revolution or a plane. A generator which has an osculating plane is

called an inflection generator. Maekawa and Chalfant [24] introduced a method for

computing inflection lines on developable surfaces. At these lines a segmentation has

to be performed.

We will concentrate on modelling a developable surface by smoothly joined cones

and cylinders of revolution, called cone spline surfaces [15]. In the previous sections

we only treated the special case of approximation with cones of revolution. If the data

points can be approximated well by a plane or a cylinder of revolution, our algorithm

will get unstable. So let us deal with these two cases first. Points lying close to a

plane will correspond to a small region in the Gaussian image. In this case one can

compute a good fitting plane. Approximation with cylinders of revolution has already

been treated by T. Randrup [13]. So before running our algorithm, we better check

for a plane or cylinder fit.

Further a local conical or cylindrical approximant can be refined by a nonlinear

least squares approach such as developed by Lukacs et al. [21].

We will now present an algorithm for approximation by a cone spline surface.

Here is an outline of the algorithm.

i. Rough segmentation of the data points. Presuming that the given data set has

no special order we first apply a systematizing procedure. Using the Gaussian

images we pre-order the data points and perform a rough segmentation. This

10

465�7 498:7 46;<7

=?>

@ >

Figure 2: Gaussian image of data points

procedure will help the region growing algorithm used in the two next steps by

roughly showing the direction where to grow.

ii. Initial cone of revolution. After choosing a seed point (or region) in the data

set, we grow and modify a region around it as long as there exists a single cone

of revolution Σ0 which approximates the data in the region well. We choose

two oriented planes through the axis A0 of Σ0 such that all data points within

the wedge, which is defined by the intersection of the positive halfspaces with

respect to the planes, are sufficiently close to Σ0. Let us call these two planes

boundary planes.

iii. Marching step. Find an appropriate region adjacent to one boundary plane and

compute the next cone of revolution Σi. Enclose the approximated data points

with two boundary planes through its axis Ai as in the initial step. Repeat

this marching step on both sides of the initial wedge until the entire set of data

points has been treated this way.

iv. Smoothly joining the cones of revolution. Using an algorithm created by Leo-

poldseder and Pottmann [15], we construct a smoothly joining approximating

cone or cylinder between consecutive approximants. Moreover, a Gr (r ≥ 2)

surface can be obtained by using the approximants Σi just for local estimates

of the behaviour up to second order and then working with an algorithm for

approximation with developable NURBS surfaces [10, 12].

11

6.1 Rough segmentation of the data points

If the input surface is nearly developable, the Gaussian image of the set of data points

can be used as an auxiliary data structure for the algorithm described above. That

is, we can use region segmentation/growing on the Gaussian image to help the region

segmentation/growing of data points. If two data points are close enough, there is a

fair chance that the Gaussian images of these two points are close enough, too. This

will help constructing the seed region — the first guess of a point set by which we

expect an initial cone of revolution is constructed —, and so we collect a better set

of candidate points (see R0 in Fig. 2(b)) using the region in the Gaussian image (see

G0 in Fig. 2(a)).

A curve approximating the cloud of Gaussian images of data points on the unit

sphere is also useful. The normal directions of this curve can be used to compute

a rough segmentation of data points (see Fig. 2(c)) as well as to grow and shrink

a region. In order to determine an approximating curve for a cloud of (disordered)

points, Randrup [13] used an algorithm similar to ‘thinning’ in image processing,

and Lee [25] suggested an algorithm to give an order to the thin cloud of points for

computing an approximating curve. Because the data points can be distributed very

unevenly, this type of algorithms works better here than e.g. a least squares spline

fitting.

6.2 Initial cone of revolution

First we choose at random a seed point d from the given data set, but take care that

d is not too close to the boundary of the given data set. The seed region R0 can be

defined as a set including all points with distance to d less than a previously chosen

constant. Furthermore, we can exploit the Gaussian image to collect a more correct

seed region, as described in the previous subsection. Now we compute a fitting cone of

revolution Σ0. For every point of R0 we can compute the error as described in section

3. Points having an error exceeding a preset tolerance are considered as outliers for

Σ0 and excluded from R0.

R0 is now going to be enclosed into a wedge W0 as follows. We choose two oriented

planes α0, ᾱ0 through the axis of Σ0, whose positive halfspaces intersect in W0. The

planes are chosen such that each data point of R0 lies in W0 and such that the angle

between the planes is minimal. For that choose a local cylindrical coordinate system

(r, φ, z) with axis A0. We choose the coordinate system so that there is a data point

having the coordinate φ = 0. Then we compute the interval [a, b] ⊂ (−π, π), which

the polar angles φ of data points are lying in. We also determine the neighboring

data points to R0 and compute their polar angles φ. Within [a, b] we take the largest

12

interval [e, f] not covered by any polar angle to a neighbor point; the wedge then is

the set of points with polar angle φ ∈ [e, f].

Now we incorporate all points enclosed by the wedge into R0, if they fit well to

Σ0. With the newly grown region R0 go back right to the start and iterate the whole

process until it comes to a halt, i.e., R0 has not changed after an iteration step. This

however is the ideal case, which need not occur, so we will stop if ‘not too many’

points are moved in or out R0 or if a maximum number of iteration have been done.

Having fixed R0, Σ0 and α0, ᾱ0, we include points outside the wedge into R0,

which fit well to Σ0 and are not too far away from the boundary planes. We designed

this region growing algorithm such that points of other parts of the surface which fit by

coincidence well to Σ0, are not considered. This is achieved by restricting our search

with respect to the distances of the data points to each other and by recomputing

the wedge.

6.3 Marching step

Let us consider a boundary plane αi of an approximation wedge Wi with axis Ai

(i = 0, . . .), which has data points on its negative side not already contained in one

of our regions. This means that one has to compute an adjacent wedge there. We

take the points which have a distance less than d1 on the positive side of αi inside

the previous wedge and points which have a distance less than d2 on the negative

side of αi as the initial set Ri for region growing. The parameters d1 and d2 are

previously chosen positive reals, where d1 must be less than d2 since the points chosen

on the positive side are only for establishing a connection between consecutive cones

of revolution. Now region growing and the computation of Σi and αi, ᾱi are done

analogously to the previous section.

Repeating this marching step on both sides of the initial wedge until the entire

data point set has been treated gives us a sequence Σi of surfaces of revolution.

6.4 Smoothly joining the surfaces of revolution

6.4.1 Calculating a G1 cone spline surface

By the region growing process we have obtained a sequence of cones of revolution Σi

which is a good approximation of the set of osculating cones of a developable surface.

It is now our aim to close the gap between two consecutive surfaces, say Σ1 and Σ2,

with a cone or cylinder of revolution Σ which touches Σ1 along a generator e1 and

Σ2 along e2. Repetition of this step for all input cones gives a G1 cone spline surface,

i.e., a surface consisting of segments of cones of revolution joined with G1 continuity.

13

Leopoldseder and Pottmann [15] describe an algorithm to find appropriate gen-

erators e1 of Σ1 and e2 of Σ2 so that a joining cone of revolution can be fitted in

between. In general there are two complex solution cones to this problem and it has

been verified that those solutions will be both real and appropriate to the interpola-

tion problem if the input cones are osculating cones to two generators of a developable

surface that are sufficiently close to each other.

6.4.2 Calculating a Gr developable NURBS surface

In order to approximate a developable surface U by a developable NURBS surface V ,

we do the following: We write the family of tangent planes in the form

U(t) = (u0(t), u1(t), u2(t),−1).

Here the statement that the plane U has coordinate vector (u0, u1, u2,−1) means that

its equation is z = u0 + u1x + u1y.

This parametrization is possible if no tangent plane is parallel to the z-axis. If

this is not the case, we either have to perform a coordinate transformation or a seg-

mentation of the surface. U is a developable NURBS surface if the functions u0, u1, u2

are B-spline functions. To achieve Gr continuity, we choose B-splines of degree r + 1.

The restriction to B-splines is not essential, we could use any other finite dimensional

linear space of functions. We introduce a distance between developable surfaces,

which is induced by a scalar product in the vector space of vector-valued differen-

tiable functions (u0(t), u1(t), u2(t)). This could be simply the L2 scalar product:

‖U‖2 =
2

∑

i=0

∫

I
ui(t)

2dt,

or for example

‖U‖2 =
∑

t∈T

‖U(t)‖2

e,

where T = (t1, . . . , tn) is a list of parameter values and ‖U(t)‖e is a norm defined

on the set of planes. This norm can for example be derived as follows: Two planes

α = (a0, a1, a2,−1) and β = (b0, b1, b2,−1) define two function graphs over the plane.

After choosing a region of interest, which will be called D, we can compute the square

integral of the difference

d2(α, β) =
∫

D
((a0 − b0) + (a1 − b1)x + (a2 − b2)y)2dxdy,

which defines the norm ‖α‖e = d(α, 0). Now the approximation problem amounts to

finding the surface V in the subspace of NURBS surfaces which is closest to the given

U , where ‘close’ is in the sense of a scalar product. The solution is easy.

14

A#B(C�D�E�F�G(HJI�K�L�M N�OPLQ�ERB�STM UWV�XJY E�BZU�L�U�[K�BZ\�E�]^L A_V�C�`�BZL�BPI�G(M NTL�U�\�G(L�BaL�E�bcM N�L�GJBPI�YdBaN�EeL�Q�\�G K�O(Q

A#F6C�f�I�I�\�GZSTM HgBaL�M N�OPF�G(N�E�Gahi\E9j G(Y K�L�M G(N

k�l k�m k�n k�n

k�n

o

k�n

Figure 3: Pushing the vertex out of the region of interest

By restricting ourselves to the special parametrization

U(t) = (u0(t), u1(t), t,−1),

which is possible after an appropriate segmentation and coordinate transformations,

we can further use all techniques developed in [12] in order to control the line of re-

gression, which will eventually lead to the problem of minimizing a quadratic function

on the union of two convex polytopes.

7 Examples

7.1 Approximation with a cone of revolution

This example illustrates how our algorithm for approximation by a cone of revolution

works. As input data we take 300 points of a piece of a tangent surface close to its

regression curve, Fig. 3(a). The axis a0 is computed by the refined algorithm for

approximation by a cone of revolution introduced in section 3. One can observe the

approximation error in Fig. 1(b). As one can see, the error is small because the data

15

p

q

r

s
t&u s�v�u

Figure 4: Input data of example

w
x�y w9z:y w6{<y

Figure 5: Approximation cones for various error tolerances: (a) 6 cones with tolerance

= 0.08, (b) 7 cones with tolerance = 0.05, and (c) 8 cones with tolerance = 0.03.

points lie close to the generator g. But the vertex lies inside the given data set so

that the approximating cone would have a singularity (see Fig. 3(a)).

So we use a0 as starting value for the least square fit algorithm introduced in

section 5.2 and perform a Gauss-Newton iteration including the side condition as

described. After two steps we get axis a2, Fig. 3(a), where the vertex lies outside.

Fig. 3(b) shows that the approximation error has increased due to our side condition.

However it is still low, so that we are satisfied with the axis a2 and compute the final

cone of revolution (see Fig. 3(c)).

7.2 Approximating a surface

Fig. 4(a) shows an input surface. The tangent surface S(u, v) = C(u) + C ′(u)v,

u ∈ [u0, u1], v ∈ [v0, v1], is computed from a line of regression C(u), u ∈ [u0, u1].

To the original input surface S(u, v) a smooth deviation ε(u, v) is added such

that ‖ε(u, v)‖ ≤ δ, u ∈ [u0, u1], v ∈ [v0, v1] for some small constant real value δ.

16

Figure 6: Cone spline surface computed from eight approximation cones

The resulting surface T (u, v) := S(u, v) + ε(u, v) is no longer a developable surface.

Finally, we take 1000 random sample points from T (u, v) (see Fig. 4(b)).

Fig. 5 illustrates various results computed from different tolerance values of ap-

proximation error. As one may expect, smaller approximation tolerance enforces the

algorithm to generate a larger number of approximation cones (thus segmented re-

gions). In Fig. 6, the final cone spline surface is shown, which is computed by the

algorithm of Leopoldseder and Pottmann [15], using 8 cones shown in Fig. 5(c). The

cone spline surface consists of 15 cones, i.e., 8 original approximation cones and 7

inbetween cones connecting the original cones.

Figure 7: Surface consisting of cones

17

Figure 8: Smooth developable surface of differentiability class C2

7.3 Computing a Gr NURBS surface

Fig. 7 shows the part of the surface of Fig. 6 which lies between two horizontal planes.

These planes are chosen such that some vertices of cones lie in the part of the surface

which is shown in the figure.

The algorithms of [12] give an approximation to this surface by a developable

Gr NURBS surface (see Fig. 8, left). After pushing the line of regression out of our

regions of interest the surface looks like Fig. 8, right. The deviation from the original

surface can be seen clearly. But this is only to be expected if we start with a surface

with a singularity and approximate with the side-condition that a singularity must

not occur.

Acknowledgements

This work has been supported by grant No. P11357-MAT and No. P12252-MAT of

the Austrian Science Foundation, by grant No. P00401 of the Systems Engineering

Research Institute, Republic of Korea and No. EF586/CAGD of the Danish Academy

of Technical Sciences.

18

References

[1] J. Boersma and J. Molenaar, Geometry of the shoulder of a packaging machine, SIAM Review.

37 (3), 1995, 406–422.

[2] W. H. Frey and M. J. Mancewicz, Developable Surfaces: Properties, Representations and

Methods of Design, Technical Report, GM Research Publication GMR-7637, 1992.

[3] E. Kruppa, Analytische und konstruktive Differentialgeometrie, Springer Verlag, Wien, 1957.

[4] T. Randrup, Design and engineering of double-curved ship surfaces, ECMI Newsletter. 20, 1996,

18–20.

[5] T. Lamb, Shell Development Computer Aided Lofting — Is There a Problem or Not?,

Journal of Ship Production. 11 (1), 1995, 34–46.

[6] T. Randrup and N. Basu, Design of shell plates minimizing the heat input, in Proceedings of

the 27th Israel Conference on Mechanical Engineering, Technion, Israel, 1998.

[7] H. Pottmann and G. E. Farin, Developable rational Bézier B-spline surfaces, Computer Aided

Geometric Design. 12, 1995, 513–531.

[8] J. Hoschek and D. Lasser, Grundlagen der geometrischen Datenverarbeitung, Teubner,

Stuttgart, 1989.

[9] J. Hoschek and H. Pottmann, Interpolation and approximation with developable B-spline sur-

faces, in Mathematical Methods for Curves and Surfaces (M. Dæhlen, T. Lyche and L. L.

Schumaker, Eds.), pp. 255–264, Vanderbilt University Press, Nashville, 1995.

[10] J. Hoschek and M. Schneider, Interpolation and approximation with developable surfaces, in:

Mathematical Methods for Curves and Surfaces (M. Dæhlen, T. Lyche and L. L. Schumaker,

Eds.), pp. 185–202, Vanderbilt University Press, Nashville, 1997.

[11] J. Hoschek and U. Schwanecke, Interpolation and approximation with ruled surfaces, in: The

Mathematics of Surfaces VIII (R. Cripps, Ed.), pp. 213–231, Information Geometers, Birming-

ham, 1998.

[12] H. Pottmann and J. Wallner, Approximation Algorithms for Developable Surfaces to appear in:

Computer Aided Geometric Design,1999.

[13] T. Randrup, Approximation of surfaces by cylinders, Computer Aided Design, 30, 1998, 807–

812

[14] P. Redont, Representation and deformation of developable surfaces, Computer-Aided Design.

21 (1), 1989, 13–20.

[15] S. Leopoldseder and H. Pottmann, Approximation of developable surfaces with cone spline

surfaces, Computer Aided Design. 30, 1998, 571–582

[16] T. Varady, R. R. Martin and J. Cox, Reverse engineering of geometric models – an introduction,

Computer Aided Design. 29, 1997, 255–268.

[17] H. Pottmann and T. Randrup, Rotational and helical surface approximation for reverse engi-

neering, Computing. 60, 1998, 307–323.

[18] H. Pottmann, H.-Y. Chen and I.-K. Lee, Approximation by Profile Surfaces, in The Mathematics

of Surfaces VIII (A. Ball et al., Eds.), pp. 17–36, Information Geometers, 1998.

19

[19] H. Pottmann, I.-K. Lee and T. Randrup, Reconstruction of kinematic surfaces from scattered

data, Technical Report No. 48, Institut für Geometrie, February 1998. also in: Proceedings,

Symposium on Geodesy for Geotechnical and Structural Engineering, Eisenstadt, Austria, 1998,

pp. 483–488.

[20] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection, Wiley, New York,

1987.

[21] G. Lukács, A. D. Marshall and R. R. Martin, Geometric least squares fitting of spheres, cylin-

ders, cones and tori. Preprint, 1997.

[22] W. Katrycz, Least Squares Treatment of Conical Surfaces, Symposium on Geodesy for Geotech-

nical and Structural Engineering, Eisenstadt/Austria, 1998, pp. 518–523.

[23] H. Wolf, Ausgleichsrechnung II, Dümmler Verlag, Bonn, 1979, pp. 163.

[24] J. Chalfant and T. Maekawa, Computation of inflection lines and geodesics on developable

surfaces, preprint, MIT, 1997.

[25] I.-K. Lee, Curve approximation for unorganized data points, Technical Report No. 55, Institut

für Geometrie, February 1998.

20

