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Abstract

By its dual representation, a developable surface can be viewed as a curve

of dual projective 3-space. After introducing an appropriate metric in the

dual space and restricting ourselves to special parametrizations of the sur-

faces involved, we derive linear approximation algorithms for developable

NURBS surfaces, including multiscale approximations. Special attention

is paid to controlling the curve of regression.
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1 Introduction

A developable surface is a surface which can be unfolded (developed) into a plane
without stretching or tearing. Mathematically speaking, there is a mapping of
the surface into the Euclidean plane which is isometric, at least locally. Because
of this property, developable surfaces possess a variety of applications in man-
ufacturing with materials that are not amenable to stretching. These include
the formation of aircraft skins, ship hulls, ducts and automobile parts such as
upholstery, body panels and windshields (see e.g. [8]).

Since current CAD/CAM systems are using rational B-splines (NURBS) as
standard for curve and surface representations [7, 18], there is a demand for
efficient computing with developable NURBS surfaces. There are basically two
approaches to dealing with rational developable surfaces. On the one hand, one
can express such a surface as a tensor product surface of degree (1, n) and solve
the nonlinear side conditions expressing the developability [1, 2, 5, 14]. On the
other hand, we can view the surface as envelope of its one parameter set of tangent
planes and thus treat it as a curve in dual projective space [3, 4, 11, 12, 19, 20].
Based on the latter approach, some interpolation and approximation algorithms

1



as well as initial solutions to special applications have been presented recently
[11, 12, 13, 20, 22, 24]

In the present paper we develop further the use of the dual representation for
the solution of fundamental approximation problems with developable surfaces.
The new algorithms are based on appropriate metrics in dual space as well as on
limitation to special surface classes. Thus most of them are of a linear nature.
Only pushing out the line of regression from the area of interest requires the
solution of convex programming problem.

2 The dual representation of developable sur-

faces

Developable surfaces can be isometrically mapped (developed) into the plane, at
least locally. When sufficient differentiability is assumed, they are characterized
by the vanishing of their Gaussian curvature. A non-flat developable surface is
the envelope of its one parameter family of tangent planes. Such a developable
surface locally is either a conical surface, a cylindrical surface, or the tangent
surface of a twisted curve. Globally, of course, it can be a rather complicated
composition of these three surface types. Thus, developable surfaces are ruled
surfaces, but with the special property that they possess the same tangent plane
at all points of the same generator (=ruling).

We will do our calculations in the projective extension P 3 of real Euclidean
3-space E3 and use homogeneous Cartesian coordinates (x0, x1, x2, x3) for points.
For points not at infinity, i.e., x0 6= 0, the corresponding inhomogeneous Cartesian
coordinates will be denoted by

x =
x1

x0

, y =
x2

x0

, z =
x3

x0

;

we write X = (x, y, z).
A plane with equation u0x0 + u1x1 + u2x2 + u3x3 = 0, or, equivalently, u0 +

u1x + u2y + u3z = 0 can be represented by its homogeneous plane coordinates
U = (u0, u1, u2, u3).

Because in all points of a generator line the tangent plane is the same, we
can identify a developable surface with the one-parameter family of its tangent
planes U(t), or in other words, with a certain curve in dual projective space. If
this curve is a NURBS curve

U(t) =
n∑

i=0

UiN
k
i (t), (1)

we call the original surface a developable NURBS surface. Here the N k
i denote

normalized B-spline basis functions of degree k over a given knot vector. The
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word ‘normalized’ means that the sum of the basis functions is the constant
function 1. The symbol Ui denotes a coordinate quadruple of the i-th control
plane Ui. Of course the coordinate quadruple contains more information than
just the plane as a point set, but for simplicity we just speak of the coordinates
of the plane.

There is no mathematical reason why we restrict ourselves to the B-splines.
They have, however, a lot of properties which make them easy to deal with. A
theorem is easily verified to hold for developable surfaces which are modeled by
a different spline space as well, if this spline space enjoys all properties of the
B-spline space which are used in the proof of this theorem.

It is well known that the plane U(t) touches the envelope of the family U(t)
along the generator line

U(t) ∩ U̇(t).

In particular, the rulings which correspond to parameter values which are (k+1)-
fold knots (usually t0 and tn), can easily be expressed in terms of the control
planes.

The cuspoidal edge or line of regression of the surface is obtained as the
intersection

U(t) ∩ U̇(t) ∩ Ü(t).

In general it is a rational B-spline curve of degree 3k − 6.
Recently, algorithms for the computation with the dual representation, the

conversion to the standard tensor product representation and the solution of in-
terpolation and some approximation algorithms have been developed [11, 12, 20].
In this paper we explore further approximation of and with developable surfaces.
This is not a straightforward application of duality, as might be expected, since
duality does not extend to the Euclidean metric and, moreover, Euclidean geom-
etry does not contain deviation measures between planes that would be useful in
the present context.

3 A special class of developable NURBS sur-

faces

3.1 Definitions and elementary properties

For the approximation algorithms discussed in this paper, we will restrict the
class of developable surfaces we are working with: We only consider surfaces
whose family of tangent planes is of the form

U(t) = (u0(t), u1(t), u2(t),−1). (2)

For NURBS surfaces this is equivalent to the choice of control planes Ui = (u0,i,
u1,i, u2,i, u3,i) such that always u3,i = −1. This means that for all possible planes
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U we no longer allow to choose an arbitrary coordinate quadruple describing U ,
but we restrict ourselves to the unique one whose last coordinate equals −1. This
is not possible if the last coordinate is zero, so we have to exclude all surfaces
with tangent planes parallel to the z-axis. In most cases this requirement is easily
fulfilled by choosing an appropriate coordinate system.

We can also use other basis functions (instead of the normalized B-splines),
which do not sum up to 1. The only difference is that we have to set u3(t) to −1
and to ignore the third coordinate of planes when computing ui(t). This makes
the formulae more clumsy, but is no essential restriction.

Dual projective space with the bundle of planes (u0, u1, u2, 0) removed is an
affine space and (u0, u1, u2), describing the plane (u0, u1, u2,−1), are affine coor-
dinates in it. The surfaces (2) become ordinary piecewise polynomial B-spline
curves.

For most applications it is convenient to restrict the class of surfaces even
further by prescribing the parametrization:

U(t) = (u0(t), u1(t), t,−1). (3)

Its generators g(t) lie in the first derivative planes, which now have the form

U̇(t) = (u̇0, u̇1, 1, 0) (4)

As it was with the surfaces of type (2), it does not matter whether or not the
spline space contains the identity function t 7→ t. The set of parametrizations
(u0(t), u1(t), t,−1) with u0 and u1 from our spline space still is a well-defined set
of functions whose properties can be studied, and which metrics of an ambient
space can be restricted to (see later).

The next lemma shows some limitations of the class (3):

Lemma 1 The surfaces (3) do not possess inflection generators and generators
parallel to the plane x = 0.

Proof: The generator g(t0) is an inflection generator if and only if U(t) has a
singularity as a curve in projective space. For surfaces of type (2) this happens
if and only if U̇(t) = 0, and it never happens for surfaces of type (3).

Further, direct calculation gives the intersection point of the three planes
U(t), U̇(t) and x = 0, which never is situated at infinity. 2

Because inflection generators are singularities in dual space, they need a spe-
cial treatment anyway. In approximation problems we will have to cut the surface
which we want to approximate into pieces which do not contain inflection gen-
erators. For a detailed study of inflection generators of developable surfaces in
connection with applications in manufacturing, we refer the reader to [6].

For more insight into the geometry of the special developable surfaces of type
(3), let us intersect the surface with the plane x = c.
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Lemma 2 The intersection curve Cc of a NURBS surface (3) with the plane
x = c is a polynomial B-spline curve of degree k and knot multiplicities one
greater than the knot multiplicities of (3).

Proof: The curve Cc is the envelope of the lines z = u0 + cu1 + ty. Thus the
geometric meaning of the parameter t is the tangent slope of the intersection
curves Cc. An elementary calculation gives the parametric representation of Cc:

x = c, y = −ḣc(t), z = hc(t) − tḣc(t), with hc(t) := u0(t) + cu1(t). (5)

We see that these are polynomial B-spline curves. The function tḣc is of polyno-
mial degree less or equal k and its differentiability class at the knot values is one
less then the differentiability class of the ui. This implies the statement about
the multiplicities. 2

Corollary 3 A developable NURBS surface (3) can also be written as a polyno-
mial tensor product B-spline surface of degree (1, k),

S = (1 − u)Ca(t) + uCb(t),

where Ca and Cb are the intersection curves in planes x = a and x = b.

Developable tensor product B-spline surfaces with boundary curves in parallel
planes have been investigated in several papers [1, 2, 5], but the computational
simplicity of our special subclass (3) remained unobserved so far.

4 Approximation algorithms

Our treatment of approximation problems is based on two ingredients. First, we
are limiting our candidate surfaces which we would like to use for approximation
to special subclasses discussed in the previous section. Second, we are using
appropriate error measures, which will be discussed now.

4.1 Distance functions between planes

In order to approximate a given set of planes by another one, it is necessary
to introduce an appropriate distance between two planes. Euclidean geometry
does not directly provide such a distance function. All invariants are expressed
in terms of the angle between planes and are inappropriate for our purposes,
because we are only interested in the distances of points of the two planes which
are near some region of interest, and this distance can become arbitrarily large
with the angle getting arbitrarily close to zero at the same time.

In order to keep certain algorithms linear, we approach the problem in the
following way. When designing a developable surface, we do it in pieces for which
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there exists a vector e ∈ R
3 such that the angle between the surface normals and

e does not exceed some angle γ0 < π/2. Then, e is taken as third unit vector
of a Cartesian coordinate system. Now all tangent planes of the surface can be
written as graph of a linear function in x and y as z = u0 + u1x + u2y.

For a positive measure µ in R
2 we define the distance dµ between planes

Ui = (u0,i, u1,i, u2,i,−1) as

dµ(U1, U2) = ‖(u0,1 − u0,2) + (u1,1 − u1,2)x + (u2,1 − u2,2)y‖L2(µ), (6)

i.e., the L2(µ)-distance of the linear functions whose graphs are U1 and U2. This,
of course, makes sense only if the linear function which represents the difference
between the two planes is in L2(µ). We will always assume that the measure µ
is such that all linear and quadratic functions possess finite integral.

A useful choice for µ is Lebesgue measure dxdy times the characteristic func-
tion of a region of interest. If µ = dxdyχD, we have

dµ(U1, U2)
2 =

∫

D

((u0,1 − u0,2) + (u1,1 − u1,2)x + (u2,1 − u2,2)y)2dxdy. (7)

We write dD(U1, U2) instead of dµ(U1, U2).
Another possibility is that µ equals the sum of several point masses at points

(xi, yi), see [11]. In this case we have

dµ(U1, U2)
2 =

∑

j

((u0,1 − u0,2) + (u1,1 − u1,2)xj + (u2,1 − u2,2)yj)
2. (8)

Lemma 4 The distance dµ defines a Euclidean metric in the set of planes of type
(2), if and only if µ is not concentrated in a straight line.

Proof: The coefficients of the planes enter (7) in a bilinear way. Symmetry and
positive semi-definiteness follow from the respective properties of the L2 scalar
product. The positive definiteness is also seen easily:

Suppose the zero set of the nonzero linear function f(x, y) the line g. µ is
not concentrated on g, so there is a measurable set E with µ(E \ g) > 0. Let
An = {P ∈ R

2|2−(n+1) ≤ Pg < 2−n}. Then µ(E \ g) =
∑

n∈Z
µ(E ∩An), so there

is an i such that µ(E ∩Ai) > 0. In Ai the function f 2 is bounded from below by
c > 0, so ‖f‖2

L2(µ) ≥ µ(Ai ∩ E) · c > 0 and the metric is positive definite. The
converse is obvious. 2

Because the space of symmetric bilinear forms in R
3 is six-dimensional, the

variety of distance functions between planes is not as great as it may seem. For
example, the problem, given a metric, to determine three points such that (8)
reproduces this metric up to a scalar factor, is quadratic in the six unknown
coordinates.

6



4.2 Approximation of tangent planes

Consider the following approximation problem. Given m planes V1, . . . , Vm and
corresponding parameter values vi, approximate these planes by a developable
surface U(t), such that U(vi) is close to the given plane Vi within an associated
area of interest, where i ranges from 1 to m.

The meaning of ‘close’ is the following: There is a Cartesian coordinate system
fixed in space such that all planes are graphs of linear functions of the xy-plane.
Its third unit vector may be found as solution of a regression problem to the
given plane normals. For all i there is a region of interest Di, or, more generally,
a measure µi, in the xy-plane. We want to minimize

F1 :=
m∑

i=1

dµi
(Vi, U(vi))

2, (9)

for an unknown developable surface U(t). If U(t) is a NURBS surface of type
(2), F1 is a quadratic function in the unknown coordinates of the control planes
Ui. These can then be found by solving a linear system of equations.

Figure 1: Approximation of a set of planes by a developable surface

A good choice for µi would be wiχDi
dxdy. An example of this can be seen in

Fig. 1. The positive weights wi can be used to assign more or less importance
to the single parameter values vi. It would also be possible to choose different
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Figure 2: Approximation of a developable surface by a spline torse. Left: original
parameter values. Right: Result after a parameter correction. Number of basis
functions: 5

coordinate systems for different planes Vi, but this is not necessary, because
it is equivalent to multiplying the weights wi with appropriate factors. With
wi = sin2 γi, where γi is the Euclidean angle, which is enclosed between Vi and
the z-axis, we can correct the influence of measuring distances in the z-direction
of a fixed coordinate system for all i.

One may fix some boundary control planes in order to ensure a smooth join
of subsequent surface segments. Note that the computation of the surface U(t) is
equivalent to a polynomial B-spline curve approximation problem using different
Euclidean metrics at different points to be approximated. Working with the
same µ or D for all planes, we get an ordinary curve approximation problem in
Euclidean 3-space [7, 10, 18].

Since the parameters vi have to be fixed in advance and another choice could
have given better results, one will start with an initial guess and then improve
it by parameter correction. With the Euclidean norms defined above, we can
directly apply the known computational schemes [10]. An example is shown in
Fig. 2.

If a given developable surface V (t) has to be approximated, we may either
work with discrete tangent planes as above, or approximate the parameterized
surface V (t), t ∈ [v0, v1], by minimizing the quadratic function

F2 :=

∫ v1

v0

dµ(t)(V (t), U(t))2dt. (10)

An application of this is approximate degree reduction of developable NURBS
surfaces.

4.3 Including data points and generators

Let us now discuss the introduction of generators and surface points into the
approximation. We assume that a coordinate system has been defined and a
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Figure 3: Approximation of a developable surface (light grey) by a developable
spline surface. Left: Approximation (result is shown black) using only tangent
planes (not shown, cf. Fig. 1). Right: Approximation of planes plus two genera-
tors (grey).

segmentation has been performed, such that the surface segment we are dealing
with does not possess a generator parallel to the yz-plane or an inflection gen-
erator. Then, the deviation δ(g(t), h) of a given line h and the generator g(t) of
the NURBS surface U(t) is measured, in analogy to subsection 4.1, with the help
of a positive measure on the real line R. For simplicity, we will formulate the
definition only for the case that this measure is Lebesgue measure in an interval
I.

Because the generator g(t) is contained in the plane U̇(t) = (u̇0, u̇1, 1, 0), the
projection of g(t) into the plane z = 0 is the line u̇0 + u̇1x + y = 0. Thus, we
define

δI(h, g(t))2 :=

∫

I

(h0 − u̇0(t) + (h1 − u̇1(t)) x)2 dx. (11)

Here, 0 = h0 + h1x + y is the projection of h into the plane z = 0. As remarked
above, we could use here also discrete unit masses or other measures µ such that
the linear and quadratic functions are in L2(µ). An Example of approximation
including generators is shown in Fig. 3

The function δ alone does not lead a positive definite metric, but when added
to the distance measured between planes, it will serve as a correction term which
accounts for the generator lines. In a similar way the distance of a point P =
(p1, p2, p3) to a generator g(t) is given by

∆(P, g(t)) := |u̇0(t) + u̇1(t)p1 + p2| (12)

together with the corresponding tangent plane deviation.
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Given m tangent planes Vi plus generators gi, we can approximate these data
by a NURBS surface of the form (3) as follows. After an appropriate segmen-
tation (see the discussion above) and the choice of local coordinate systems, the
plane coordinates Vi = (. . . , vi,−1) with vi 6= vj if i 6= j, already determine
the parameters vi which have to be used in formulas like (9). Then, with the
measures µi from (9) and intervals Ii from (11), we define the quadratic function

F3 :=
m∑

i=1

(
dµi

(Vi, U(vi))
2 + αiδIi

(gi, g(vi))
2
)
. (13)

Again, weights αi can be used to correct error measurement directions or give
more importance to certain indices i. The surface U(t) then is found as the linear
combination of the basis functions which minimizes F3.

Analogously, we can incorporate data points into the approximation. If data
points or generators are given without tangent planes, the latter must be esti-
mated before this method can be applied. There is no problem in setting up the
counterpart to (10) for the approximation of a given developable surface.

4.4 Controlling the curve of regression

Since its line of regression is a singularity of a developable surface, it is desirable
that it should lie outside some pre-defined area of interest. To achieve this when
approximating tangent planes and generators like in the previous subsection, we
can do the following:

For a surface of type (3), the point of regression at the parameter t lies in the
plane Ü(t), which is given by (ü0, ü1, 0, 0). Its x-coordinate is easily found to be
−ü0/ü1. Thus, we have the following

x   0

x   1

forbidden

-x  / x   = b     0       1

-x  / x   = a     0       1

Figure 4: Forbidden region (white) for ü0 = x0, ü1 = x1
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Lemma 5 In order to keep the point of regression outside the area a ≤ x ≤ b,
the surface U(t) of type (3) must satisfy −ü0/ü1 6∈ [a, b], or, equivalently,

∣∣∣∣
ü0(t)

ü1(t)
+ c

∣∣∣∣ > r, (14)

with c = (b + a)/2 and r = (b − a)/2.

The forbidden area can be seen in Fig. 4.
If the spline space which contains the functions u0(t) and u1(t) has the prop-

erty that the second derivatives of its members are contained in the spline space
which enjoys the two-dimensional convex hull property, it is easy to formulate a
condition on the control points of the curve (ü0, ü1):

Lemma 6 In the situation mentioned above, if all control points of the curve
(ü0(t), ü1(t)), are situated in one of the two connected components of the grey
area indicated in Fig. 4, then the line of regression is outside the area a ≤ x ≤ b.

Proof: This follows immediately from the convex hull property of the spline space,
because then the curve (ü0, ü1) is entirely contained in one of the two grey regions
above. 2

Note that ‘outside the area a ≤ x ≤ b’ does not mean ‘on one of the two sides
of the area a ≤ x ≤ b’. The curve of regression can have points at infinity and
change from one side to the other. The two regions in Fig. 4 do not correspond
to the two sides of the region a ≤ x ≤ b.

We should also remark that we tacitly also excluded the case (ü0, ü1) = (0, 0)
as ‘forbidden’, because the corresponding point of regression is a point at infinity
which is contained in the projective extension of all regions of the form a ≤ x ≤ b.
This however does not matter very much because it does not occur in the generic
case anyway, and if it does, we could apply a coordinate transformation.

It is well known that the second derivatives of B-spline functions are B-spline
functions of a lower degree, so the lemma is applicable in this case.

Example: If ui(t) are B-spline functions of order two, their second derivatives are
piecewise constant and it is very easy to test whether or not the line of regression
meets the region a ≤ x ≤ b.

Example: If ui(t) are B-spline functions of order three, their second derivatives
are piecewise linear and lemma 6 is sharp, which means, that the line of regression
avoids the region a ≤ x ≤ b if and only if the control points of the curve (ü0, ü1)
are contained in one of the two convex regions of Fig. 4.

We are going to describe an algorithm how to find the developable surface
contained in a given spline space which is closest to a given developable surface
in some sense which was previously defined.
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Choose one of the two grey convex unbounded polytopes of Fig. 4 and call
it K. The spline space which contains u0 and u1 shall have basis functions
f1, . . . , fn. The second derivatives f̈0, . . . , f̈n are contained in a spline space with
basis functions g1, . . . , gm and can therefore be written as

f̈i(t) =
∑

j

rijgj(t).

The rij are either well known or can be found numerically by differentiating the
fi twice and then approximating this function by a linear combination of the gj .

Thus there is a linear mapping L which maps the sequence of control points of
the curve (u0(t), u1(t)) to the sequence of control points of (ü0(t), ü1(t)). Now the
sequence of control points of the second derivative curve is contained in K×. . .×K
if and only if the sequence of control points of the curve (u0, u1) is contained in
the convex polytope

K̃ = L−1(K × . . . × K).

The equations of K are very simple, therefore so are the equations of the m-fold
product of K with itself. The equations of its L-preimage are easily found by
solving a linear system.

Now we are able to reformulate the problem as follows: Given a convex poly-
hedron K̃ in R

r together with a scalar product and a point o. Find the point
p ∈ K̃ which is closest to o in the sense of the metric which is defined by the
scalar product. This problem is well known and there is an extensive literature
about it.

forbidden

Figure 5: Left: Top view of developable surface with line of regression. Right:
Approximation such that line of regression avoids forbidden area

In the case of B-spline functions the linear mapping L is onto. Therefore
the structure of K̃ is that of a product of K × . . . × K with an R

s, s being
the difference in dimensions of the spline space which contains the ui and the
spline space which contains their second derivatives. So it is easy to find linear
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x

y

Figure 6: The (piecewise linear) curves (ü0, ü1) before (black) and after (grey)
pushing out the line of regression from the forbidden area.

equalities for K̃ none of which is redundant, and such that exactly d of them
define a d-codimensional face of K̃. Thus it is not very difficult to see that to
determine the point of K̃ which is closest to o we have to follow the following
Algorithm:

1. Choose an interior point p0 of K̃. An obvious choice is a point of L−1((±1, 0)×
. . .× (±1, 0)). The sign in the definition of p0 depends on which one of the
two possible K’s we have chosen.

2. If o ∈ K̃, let s = o and go to 6. If not, intersect the line segment [p0, o]

with ∂K̃. This gives the point p1.

3. Initialize the value of the current face F with the perhaps not uniquely
defined 1-codimensional boundary face of K̃ which contains p1, and let the
current codimension d = 1. Let p = p1. In the following, the symbol [F ]
denotes the affine hull of F , and n(o, F ) denotes the point of [F ] which is
closest to o.

4. Let q = n(o, F ). If q ∈ F , let s = q and go to 6. If not, follow the line
segment [p, q] until it leaves F at the point r.

5. For all d-codimensional faces G of K̃ which contain the (d+1)-codimensional
face H of ∂F defined by r follow the oriented line segment [r, n(o,G)]. If
there is a G such that this line segment points from r towards the interior
of G, let F = G and p = r, and go to 4. If there is none, let F = H, p = r,
increase d by one, and go to 4.
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Figure 7: Perspective View of an approximation of a developable surface by
another devolopable surface such that the line of regression is contained in the
half-space right of the vertical plane.

6. Repeat the whole process for the other choice of K also. Among the two
values of s choose the one with smaller distance to o.

Proof: (Sketch) If K is a smooth convex surface in R
n, we consider the region K ′

of K which is illuminated if we think of o as of a light source. The distance to the
point o is a smooth function defined in K with a nowhere vanishing gradient field.
In K ′ the flow lines of this field never increase their distance. When following
the gradient flow we arrive at the solution in finite time.

If K is a polyhedron, the flow lines are straight lines. We consider the smooth
surface K + εD, D being the unit ball of R

n. It contains 1-codimensional planar
parts Fε which are translates of the 1-codimensional faces F of K. Obviously, for
ε → 0 the flow lines of the gradient field in Fε converge to the lines in F which
pass through n(o, F ).

Let G be a d-dimensional face of K, and consider the (d+1)-dimensional faces
G1, . . . , Gk which contain G. Because the distance of flow lines cannot increase,
it is not possible that flow lines are emanating from G into more than one of
the Gi. If no flow line leaves G, we say that the flow lines of G are trapped in
dimension d. The same argument about the distance of flow lines shows that
once flow lines are trapped in dimension d, they stay in faces of dimension ≤ d.

To find the solution, we have therefore to do the following: Check if o ∈ K.
If not, go to a point of K ′. and follow the flow lines. The algorithm above does
just this. Because there are a finite number of faces and each face occurs at most
once in the algorithm (because following the flow lines decreases the distance to
o), it converges to the solution in a finite time. 2
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Figures 5, 6 and 7 show examples. Of course other standard methods of con-
vex programming can be employed also, for instance a barrier-generated path-
following method. Such a method is more recommended when the structure of
the polyhedron is not completely known [17]. We chose this algorithm, and we de-
scribed it at length despited the fact that many algorithms for quadratic/convex
optimatization problems can be found in the literature, because our polyhedron
has such a simple structure that the most simple and obvious geometric algorithm,
i.e., following the gradient lines on the polyhedron, does not lead to numerical
difficulties.

4.5 Approximation via multiresolution analysis

There are several ways to apply the concept of multiresolution analysis to devel-
opable surfaces. One is, of course, to treat the surface of type (2) or type (3)
as a curve in affine R

3 or R
2, respectively. This is nothing but multiresolution

analysis for curves, and leads likewise to efficient filter bank decomposition and
storage of developable surfaces.

A different problem is the following. Just like a planar curve can be approxi-
mated by an arc spline, i.e., a curve which consists of circular arcs, we may ask
for an approximation of a developable surface by a surface consisting of certain
quadratic cones. We could use cones of revolution, or we could use cones all of
whose intersection curves with horizontal planes are circles. The latter will turn
out to lead to the planar arc spline approximation problem.

In [25] the support functions of (locally) convex curves have been approxi-
mated by trigonometric spline functions and analyzed by a generalized multires-
olution analysis which was introduced in [15]. Here we are interested only in the
part of the developable surface which lies between two parallel planes. Without
loss of generality we assume that these planes are z = 0 and z = 1. Then the
surface has intersection curves c0 and c1 with these two planes. When we approx-
imate both c0 and c1 by arc splines, the unique developable surface determined
by the arc splines will be an approximant to the original surface. In order to
diminish the number of lines of curvature disconinuity in the approximant even
further, we choose the same spline space for approximation of c0 and c1. An
example can be seen in Fig. 9.

To accomplish this, we have to define a distance between two such surfaces.
First we define a distance between planes whose contour lines are parallel. It will
be a positive definite quadratic form of the oriented distances h0 and h1 of the
contour lines in z = 0 and z = 1, respectively. One obvious possibility is

q(h0, h1) = h2
0 + h2

1. (15)

Another one is

q(h0, h1) =

∫ 1

0

h(z)2dz =
1

3
(h2

0 + h0h1 + h2
1), (16)
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z=0

z=1

h  > 0   0

h  < 0   1

U   0 U  1h(z)

Figure 8: Deviation between planes U1 and U2

0
curvature radii

support functions

Figure 9: Multiresolution analysis of developable surfaces. The figure shows a fine
and a coarse approximation as well as the support functions and the curvature
radii of the contour lines in the planes z = 0 and z = 1. At the bottom right the
support functions and curvature radii of the original surfare are shown.
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where h(z) = zh1 + (1 − z)h0.
Now suppose that fi(ϕ) and gi(ϕ) are the support functions of the intersection

curves of two developable surfaces Φ and Ψ with planes z = i, i = 0, 1. For given
ϕ, the distance between the tangent planes to Φ and Ψ which belong to the angle
ϕ, can be expressed in terms of h0(ϕ) = f0(ϕ)−g0(ϕ) and h1(ϕ) = f1(ϕ)−g1(ϕ).
Thus we define

dµ(Φ, Ψ) =

∫
q(f0(ϕ) − g0(ϕ), f1(ϕ) − g1(ϕ))dµ(ϕ), (17)

with an appropriate positive measure µ. Typically this will be Lebesgue measure
in an interval. We further let

β((u0, u1), (v0, v1)) =
1

2
(q(u0 + v0, u1 + v1) − q(u0, u1) − q(v0, v1)), (18)

which is the unique symmetric bilinear form whose restriction to the diagonal
gives q. Then the distance (17) is induced by the following scalar product on
L2(µ) ⊕ L2(µ):

ιµ((f0, f1), (g0, g1)) =

∫
β((f0(ϕ), f1(ϕ)), (g0(ϕ), g1(ϕ)))dµ(ϕ) (19)

Lemma 7 The scalar product (19) is positive definite in L2(µ) ⊕ L2(µ).

Proof: Clearly
∫

q(f0, f1)dµ(ϕ) = 0 implies q(f0, f1) = 0 almost everywhere (a.e.),
so f0 = 0 a.e. and f1 = 0 a.e., by positive definiteness of β. 2

Suppose we already have a generalized multiresolution analysis in L2(µ), given
by the sequence

V0 ⊆ V1 ⊆ . . .

Vi+1 = Vi ⊕ Wi and Wi ⊥ Vi

L2(µ) =
⋃

Vi = V0 ⊕ W0 ⊕ W1 ⊕ . . .

(20)

Then we have the following

Theorem 8 The scalar product (19) is compatible with the direct sum topology
of L2(µ) ⊕ L2(µ). If we let

Ṽi = Vi ⊕ Vi ⊂ L2(µ) ⊕ L2(µ) and W̃i = Wi ⊕ Wi, (21)

then the following is a generalized multiresolution analysis:

Ṽ0 ⊆ Ṽ1 ⊆ . . .

Ṽi+1 = Ṽi ⊕ W̃i and W̃i ⊥ι Ṽi

L2(µ) ⊕ L2(µ) =
⋃

Ṽi = Ṽ0 ⊕ W̃0 ⊕ W̃1 ⊕ . . .

(22)

17



Proof: Clearly
⋃

Ṽi is dense in L2(µ) ⊕ L2(µ) because
⋃

Vi is dense in L2(µ).
Let (aij) be the coordinate (2 × 2)-matrix of β. If f0, f1 ∈ Wi and g0, g1 ∈ Vi,
then ι((f0, f1), (g0, g1)) =

∫ ∑
aijfi(ϕ)gj(ϕ)dµ(ϕ) = 0 because Vi ⊥ Wi. This

implies Ṽi ⊥ι W̃i and the orthogonal direct sum decomposition L2(µ) ⊕ L2(µ) =

Ṽ0 ⊕ W̃0 ⊕ W̃i . . .
Let πi denote the orthogonal projection L2(µ) → Vi and π̃i denote the ortho-

gonal projection onto Ṽi. It is now clear that π̃i(f0, f1) = (πi(f0), πi(f1)). We
have (f0n, f1n) → (f0, f1) ⇐⇒ f0n → f0 and f1n → f1, so the topology defined
by ι coincides with the topology of the direct sum. 2

Corollary 9 Approximation of a developable surface in the sense that the support
functions of both contour lines are chosen from the spline space Vi of trigonometric
spline functions such that (17) is minimal, is done by approximating each of the
support functions of the contour lines separately in the sense of L2(µ).

Proof: The proof of the previous theorem shows that the ι-orthogonal projection
π̃i onto Ṽi coincides with (πi, πi), where πi is the orthogonal projection onto Vi.
2
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