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Abstract

A vertex in a mesh surface with planar faces may have the property
that offsetting all the face planes incident with the vertex by a con-
stant distance leads to planes which intersect again in a common
point. This is equivalent to the property that the planes, consis-
tently oriented via the connectivity of the mesh, are tangent to an
oriented cone of revolution. We show that for vertices of valence
4, this conical property is characterized in terms of the interior an-
gles of the faces adjacent to the vertex: The two sums of opposite
angles are equal. For a convex vertex this angle criterion follows
directly from known results in spherical geometry concerning con-
vex spherical quadrilaterals. For other types of vertices, however,
the occurrence of non-convex spherical quadrilaterals makes it nec-
essary to exhaustively enumerate and study a number of cases. The
present short note resolves this combinatorial difficulty and proves
that all conical vertices are characterized by this same angle crite-
rion. This result is especially relevant in the context of modeling
with conical meshes [Liu et al. 2006].

1 Conical vertices

In a mesh with planar faces, each face is equipped with a unit nor-
mal vector. These normal vectors can be consistently oriented only
if the mesh surface is orientable, but anyway a consistent orienta-
tion is possible for the faces adjacent to a fixed vertex v. A mesh
vertex is said to be conical if the oriented planes adjacent to v are
tangent to a common oriented cone of revolution. The axis of this
cone can be regarded as a discrete surface normal at the vertex v.
For geometry and applications of meshes all of whose vertices are
conical, see [Liu et al. 2006].

Consider a vertex v of valence 4 as shown in Fig. 1. Let Li be
the edges incident with v, i = 1,2,3,4. Let ωi denote the unsigned
angle formed by Li and Li+1 (indices mod 4), i = 1,2,3,4. We
assume that no face is degenerate, i.e., any two consecutive edges
are not parallel, and ωi > 0. The main result of this note is the
following geometric fact.

Theorem 1 A vertex v of valence 4 is conical if and only if the
sums of opposite angles are equal, i.e., ω1 +ω3 = ω2 +ω4.

Before giving the proof of Theorem 1 at the end of the paper, as
preparation, we shall first present several results concerning the
conical property, the existence of offset meshes of a mesh, and
spherical quadrilaterals which have an incircle.
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Figure 1: Conical vertex of valence four. The faces touch the com-
mon cone Γ with axis G along rulings R1,R2,R3,R4, and have inte-
rior angles ω1,ω2,ω3,ω4.

A mesh with planar faces usually does not have an offset mesh con-
sisting of planar faces which are at constance distance from the
original ones. That is because planes intersecting in a common
point in general lose this property when each of them is moved by
a fixed distance. The following result shows that the existence of
an offset mesh is equivalent to the property that all vertices of the
mesh are conical.

Theorem 2 Suppose that planes ε1, . . . ,εk, k ≥ 4, with unit normal
vectors n1, . . . ,nk contain the faces of a mesh which are incident
with a common vertex v. Translating each plane εi in the direction
of ni by a fixed distance d 6= 0 yields its offset plane εd

i . Then the
following statements are equivalent:

1. The offset planes εd
i have a point in common for some d 6= 0;

2. The offset planes εd
i have a point in common for all d;

3. The planes ε1, . . . ,εk are tangent to a common cone of revo-
lution, including the plane as limit case (the limit case of a
straight line does not occur).

4. The normal vectors n1, . . . ,nk, regarded as points on the unit
sphere S2, satisfy a linear equation 〈ni,x0〉= d, for some x0 6= 0
(the case d = 0 does not occur).

Proof: We first show the equivalence of statements 3 and 4. Note
that the oriented planes εi are tangent to a common oriented cone of
revolution (including the limit cases of line and plane) if and only if
the unit normal vectors ni lie on a circle contained in the unit sphere
S2, including the limit case of zero radius. This happens if and only
if they satisfy a linear equation 〈ni,x0〉= d for some x0 6= 0.

The case d = 0 is a limit case where the cone degenerates into a line,
and the circle in question is a great circle. This would imply that all
the edges of the mesh emanating from the vertex are parallel, which
cannot happen. Therefore, the case of d = 0 does not occur.

We are now going to show 1⇐⇒ 4. We choose a coordinate system
such that v = 0. The equation of the plane εi is x∈ εi ⇐⇒ 〈ni,x〉=
0, where ni is the oriented unit normal vector. The offset plane
εd

i has the equation 〈ni,x〉 = d. Clearly, the k planes εd
i have a

common point x0 if and only if the k normal vectors ni satisfies
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Figure 2: (a) A convex spherical quad having an incircle. This schematic illustration shows great circles as straight lines. (b) A convex
spherical quad satisfying the angle criterion.

the equation 〈n,x0〉 = d. Assuming 1, d 6= 0 implies x 6= 0, so
4 follows. Conversely, 4 implies that x0 ∈ εd

i for all i. For all
λ 6= 0, the equations 〈ni,λx0〉 = λd are equivalent. This shows
that 1 ⇐⇒ 2. �

2 Convex spherical quadrilaterals

Let S be a sphere centered at a mesh vertex v of valence 4. Then
the four faces incident with v cut out four circular arcs on S which
form a spherical quadrilateral Q(v). We choose units such that S is
the unit sphere. Clearly, the vertex v is convex if and only if Q(v) is
a convex spherical quadrilateral. In this connection, the next result
relates to the special case of Theorem 1 where the vertex under
consideration is convex.

Theorem 3 Suppose that a spherical convex quadrilateral with
consecutive sides e1, . . . ,e4 has an incircle. Let αi be the length of
the side ei. Then α1 +α3 = α2 +α4. Conversely, a convex spherical
quadrilateral with the property α1 +α3 = α2 +α4 has an incircle.

According to p. 1038 of [Zacharias 1914ff], the first part of Theo-
rem 3 together with its dual version (i.e., a convex spherical quadri-
lateral has a circumcircle if and only if the two sums of opposite
angles are equal) is due to Anders Johan Lexell [1781], and the
converse is due to M. J. B. Durrande [1815]. However, we found it
difficult to locate recent references, and so for the sake of complete-
ness we give a proof below. As the proof of Theorem 3 does not
refer to properties of the sphere which are different from those of
the Euclidean plane, this result is also true in Euclidean geometry,
as well known. For brevity, we will often use quad for quadrilat-
eral.

Proof: We begin with a convex quad that has an incircle. Suppose
that the incircle touches the four sides ei at the points pi ∈ ei, as
shown in Fig. 2a. Let ui denote the vertex which is the intersection
of the sides ei and ei+1 (mod 4). Let ab denote the spherical dis-
tance between two points a and b, which is the angle of the smallest
arc of a great circle on S2 connecting a and b.

Because the two sides incident with a vertex are tangents of the
same incircle, we have

u1p1 = u1p2, u2p2 = u2p3, u3p3 = u3p4, u4p4 = u4p1.

It follows that

α1 +α3 = u1p1 +u4p1 +u2p3 +u3p3

= u1p2 +u4p4 +u2p2 +u3p4 = α2 +α4.

Conversely, suppose that

α1 +α2 = α3 +α4. (1)

We shall prove by contradiction that the quad Q : u1u2u3u4 under
consideration has an incircle. Assume that Q does not have an in-
circle. Consider the family of the circles that are contained in the
convex quad Q and tangent to e2 and e3. Obviously this family ei-
ther contains a circle, denoted by C, which is tangent to e1 but not
e4, or a circle tangent to e4 but not e1. Without loss of generality,
suppose that the former case occurs (see Fig. 2b).

Let u′4 be the unique point on e1 between p1 and u4 such that the
side e′4 = u3u′4 is tangent to the circle C at p4. Then, by the first
part of the proof, the convex quad Q′ : u1u2u3u′4 satisfies the angle
criterion, i.e.,

α
′
1 +α2 = α3 +α

′
4, (2)

where α ′
1 = u1u′4 and α ′

4 = u3u′4. Subtracting Eqn. (2) from Eqn.
(1) yields

α1−α
′
1 = α4 −α

′
4.

It follows that

α4 = α
′
4 +α1 −α

′
1 = α

′
4 +u4u′4.

On the other hand, by the triangle inequality, we have

α4 < α
′
4 +u4u′4.

This is a contradiction, implying that the quadrilateral Q has an
incircle. This completes the proof. �

3 General spherical quadrilaterals

We consider in this section general conical vertices of valence 4,
i.e., vertices incident with four planar faces. There are three types
of mesh vertices of valence 4, as defined below.
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Figure 3: From left: elliptic, parabolic, and hyperbolic vertices, and their associated spherical quadrilaterals Q(v). The vertex v is the center
of the sphere.

Definition 1 Consider a mesh vertex v of valence 4 and its associ-
ated quadrilateral Q(v).

1. v is an elliptic vertex if the vertices of Q(v) are contained in a
hemisphere, and no vertex is contained in the spherical trian-
gle formed by the other three vertices (note that the interior of
a spherical triangle is naturally defined once we restrict our-
selves to a hemisphere).

2. v is a parabolic vertex if it is not elliptic but the vertices of Q(v)
are still contained in a hemisphere.

3. v is a hyperbolic vertex if the four vertices of Q(v) are not con-
tained in any hemisphere.

Examples of these three types are shown in Fig. 3. Note that Q(v)
is convex if and only if v is elliptic.

The four planar faces incident with v have consistent normal vec-
tors, which give rise to four oriented planes with the same normal
vectors. These planes intersect the sphere S in four oriented great
circles, denoted by Ci, i = 1,2,3,4. These four circles cut each
other into a number of oriented circular arcs. The two sides of each
arc are distinguished as the outside and the inside, as indicated by
the orientation of the plane containing the arc.

Definition 2 A quadrilateral with sides e1, . . . ,e4 contained in the
oriented great circles C1, . . . ,C4 is admissible if the orientations
of the four sides are consistent. This means the following: The
quadrilateral decomposes the unit sphere into two connected com-
ponents. Then it is required that the normal vectors of the four ori-
ented planes containing to C1, . . . ,C4, when positioned along the
sides e1, . . . ,e4, point consistently towards one of these two compo-
nents.

Figure 4 shows some of admissible spherical quads. Here the
sphere S is mapped onto the plane via stereographic projection,
which maps the four oriented great circles on S to four oriented
circles in the plane, indicated by hatched boundaries. The center of
projection is chosen not to be on any of the four great circles.

By saying that an admissible spherical quad has an incircle, we
mean that the four oriented planes containing the four sides of the
quad are tangent to a common oriented cone. Then the following
is obvious: The vertex in question is conical ⇐⇒ the four ori-
ented face planes are tangent to an oriented cone ⇐⇒ the oriented
great circles are tangent to an oriented circle ⇐⇒ the convex ones
among the admissible quads have an incircle ⇐⇒ the convex ad-

missible quads satisfy the angle criterion. The last equivalence in
this statement follows from Theorem 3.

The next theorem states that any admissible spherical quad has an
incircle if and only if it satisfies the angle criterion.

Theorem 4 For four oriented great circles C1,C2,C3,C4, in the
unit sphere there are in total 12 admissible quadrilaterals, includ-
ing reflections in the center of the unit sphere. If the four oriented
planes which carry C1, . . . ,C4 are tangent to a common oriented
cone, then all these 12 quads satisfy the angle criterion, i.e.,

ω1 +ω3 = ω2 +ω4,

where ωi is the unsigned length of the i-th side of an admissible
quad. Also the reverse implication is true: If any of the 12 admissi-
ble quads satisfies the angle criterion, the four oriented planes are
tangent to a common oriented cone.

Proof: The four circles Ci have in total 12 pairwise intersection
points, since 2 ·

(4
2
)

= 2 · 6 = 12. Pick one of these 12 intersec-
tion points. Without loss of generality, suppose that this point is
u4 ∈C1∩C4. Now we count how many admissible quad contain u4.
In view of the assumption of consistent orientations, there are two
ways to choose the arcs of C1 and C4 which start at u4 and are part
of an admissible quad. For each of these choices, we have either
a quad with sides traversing the four circles in the order C1C2C3C4
or in the order C1C3C2C4 (see Fig. 4). Thus, there are in total 4
quads passing through u4. Since there are 12 pairwise intersec-
tion points among the four circles, we have counted 12 · 4 = 48
admissible quads. Since each quad has four vertices, it is counted
4 times. So the number of distinct admissible quads is 48/4 = 12.
This proves the first part of the theorem.

Obviously, there is a convex quad among the 12 admissible ones;
in fact, there are two, which are reflections of each other. We are
going to show that all admissible quads can be obtained from a
convex admissible quad Qe by operations which preserve the angle
balance in both directions.

Let Qe be a convex admissible quad with vertices ui, i = 1,2,3,4.
Suppose that the sides ei of Qe are on the circles C1,C2,C3,C4
(in this order) and that ui ∈ Ci ∩Ci+1 (indices modulo 4). Then
a parabolic admissible quad Q1,p : u1u6u3u5 can be derived from
Qe by traversing the circles in the order C1,C3,C4,C2, thereby mak-
ing u1 a concave vertex (see Fig. 5). Similarly, we can derive three
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Figure 4: Stereographic images of four oriented great circles on the
unit sphere. These four oriented circles correspond to four oriented
planes incident with a vertex v. The four figures show 4 of the total
12 admissible quads. Circle orientations are indicated by hatched
boundaries.
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Figure 5: Converting an elliptic configuration Qe : u1u2u3u4 into a
parabolic configuration Q1,p : u1u6u3u5.

other admissible parabolic quads Q2,p, Q3,p, and Q4,p. By reflect-
ing the Qi,p in the center of the sphere, i = 1,2,3,4, we obtain in
total 8 parabolic quads.

Now we derive hyperbolic quads from Qe. We replace the vertices
u1 and u3 of Qe by their diametrically opposite points u∗1 and u∗3 and
arrive at the admissible quad Qh : u∗1u2u∗3u4 of hyperbolic type. If
we flip u2 and u4 instead, we get the quad Q∗

h : u1u∗2u3u∗4, which is
the reflection of Qh. In this way, 2 hyperbolic quads are derived.

Together with Qe and its reflection Q∗
e , we have obtained 12 admis-

sible quads, which, in view of the total number 12 shown earlier,
already exhaust the set of all admissible quads. Hence, we conclude
that any admissible quad can be obtained from a convex admissible
quad with the above operations.

Next we are going to show that, for any of the nonconvex admissi-
ble quads obtained above, the angle criterion characterizes the prop-
erty that C1, . . . ,C4 are tangent to a common oriented circle. First
consider the case of parabolic admissible quads, using the quad
Q1,p : u1u6u3u5 in Fig. 6 for illustration. Denote the lengths of the
sides of Q1,p by ω1 = u5u1, ω2 = u1u6, ω3 = u6u3 and ω4 = u3u5.
First suppose that an incircle exists, which means that the convex
quad Qe : u1u2u3u4 has an incircle. Using the fact that the two
tangents from a vertex to a circle have equal lengths, we have

ω1 +ω3 = u5u1 +u3u6

= p4u5 −p4u1 +u3p3 +p3u6

= p2u5 −p1u1 +u3p2 +p1u6

= p1u6 −p1u1 +u3p2 +p2u5

= u1u6 +u3u5 = ω2 +ω4.

It follows that Q1,p satisfies the angle criterion.

Conversely, suppose that Q1,p satisfies the angle criterion, i.e.,

ω1 +ω3 = ω2 +ω4. (3)

We shall prove by contradiction that Q1,p has an incircle. Assume
otherwise, i.e., Qe has no incircle. Similar to the proof of Theorem
3, consider the family of the circles that are contained in the convex
quad Qe and tangent to e3 = u2u3 and e4 = u3u4. Then, there is
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a circle C in this family that is either tangent to e1 but not e2 or
tangent to e2 but not e1. Without loss of generality, we suppose the
former to be the case, as shown in Fig. 7.

Let u′1 be the unique point on the side u1p1 such that the the great
circle containing the side u′1u5 is tangent to the circle C inside the
convex quad Qe. Then the new convex quad Q′

e : u′1u2u3u4 has
an incircle. By the preceding argument, the new parabolic quad
Q′

1,p : u′1u6u3u5 satisfies the angle criterion, that is,

ω
′
1 +ω3 = ω

′
2 +ω4, (4)

where ω ′
1 = u5u′1 and ω ′

2 = u′1u6. Subtracting Eq. (4) from Eq. (3)
yields

ω1 −ω
′
1 = ω2 −ω

′
2.

It follows that

ω
′
1 = ω1 +ω

′
2−ω2 = ω1 +u′1u1.

On the other hand, by the triangle inequality, we have

ω
′
1 < ω1 +u′1u1.

This is a contradiction, implying that Q1,p has an incircle. It follows
that the angle criterion characterizes the existence of an incircle also
for parabolic quads.

Next we consider the case of hyperbolic quads. We are going to
show that Qh : u∗1u2u∗3u4, which is constructed from Qe, has an
incircle if and only if Qh satisfies the angle criterion. This is easier
than in the parabolic case, because the side lengths of Qh are given
by π − αi, where the αi are the side lengths of Qe. Hence, Qh
satisfies the angle criterion if and only if Qe does, i.e., if and only if
an incircle exists. This completes the proof. �

Remark 1: It is possible that a non-admissible quad also enjoys
the angle balance, because it might be admissible for a different
assignment of orientations, and so the four corresponding planes
are tangent to a different oriented cone. This, however, does not
diminish the value of Theorem 4 for applications if we consider
admissible quads only. This is the case if the quads under consid-
eration come from a consistently oriented quad mesh, like in [Liu
et al. 2006].

Remark 2: In a quad mesh with planar faces which approxi-
mates a smooth surface and where almost all vertices have valence
four, vertices are typically elliptic or hyperbolic, whereas parabolic
vertices occur not as often. This is similar to the distribution of
parabolic points in smooth surfaces. The fact that most of the 12
admissible quads discussed in Theorem 4 are parabolic does not
contradict this behavior.

Proof of Theorem 1

Proof: The planar faces incident with a mesh vertex v of valence 4
are consistently oriented such that the spherical quad Q(v) is admis-
sible in the sense of Definition 2. The side lengths of the spherical
quad Q(v) are equal to the interior angles of the faces mentioned in
the statement of Theorem 1. Hence, the proof follows from Theo-
rem 4. �
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