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Abstract. Recently a curvature theory for polyhedral surfaces has been estab-
lished which associates with each face a mean curvature value computed from
areas and mixed areas of that face and its corresponding Gauss image face.
Therefore a study of minimal surfaces requires studying pairs of polygons with
vanishing mixed area. We show that the mixed area of two edgewise parallel
polygons equals the mixed area of a derived polygon pair which has only the half
number of vertices. Thus we are able to recursively characterize vanishing mixed
area for hexagons and other n-gons in an incidence-geometric way. We use these
geometric results for the construction of discrete minimal surfaces and a study
of equilibrium forces in their edges, especially those with the combinatorics of a
hexagonal mesh.
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1. Introduction

Minimal surfaces represent a prominent topic which has attracted great interest for
a long time and which several times has been the object of significant new devel-
opments. They combine differential geometry with other fields, notably complex
analysis. Also the recent field of discrete differential geometry has not neglected
them, and indeed the present paper represents a contribution to this area. Before
entering into details we want to say a few general words on the analogies and
differences between the smooth and discrete categories.

The appeal of smooth minimal surface theory is to a large extent due to the fact
that the same class of surfaces is characterized by different properties which are
unrelated a priori, such as vanishing mean curvature, local surface minimization,
or analyticity of isothermic parametrizations. Accordingly there is a variety of
constructions of minimal surfaces: as solutions of Plateau’s problem, as real part
of Lie’s sum of curves surfaces, or by Christoffel duality.

Transferring all these properties to the discrete category at the same time is not
easy. Obviously we can pick a class of discrete surfaces (for instance, triangle
meshes) and consider those discrete surfaces which enjoy a certain property analo-
gous to one of the known properties of smooth minimal surfaces. However it is not
guaranteed that these discrete minimal surfaces have any of the other properties
which make their smooth counterparts such an interesting object of study. Never-
theless, for some appropriate discretizations this is exactly what happens, and it
is a major aim in discrete differential geometry to find them.

The following constructions stand out: U. Pinkall and K. Polthier [5] considered
the class of triangle meshes and defined minimality by surface minimization. The
resulting discrete minimal surfaces are, among others, minimizers of Dirichlet en-
ergy, capable of discrete conjugate surfaces, and allow for the solution of a discrete
Plateau’s problem. A. Bobenko and U. Pinkall [2] studied discrete isothermic sur-
face parametrizations (this means quadrilateral meshes with planar faces and a
cross ratio condition for the vertices). This approach led to a discrete Christoffel
duality for isothermic parametrizations, where minimal surfaces and spheres cor-
respond to each other, just as in the smooth case. This viewpoint is assumed by
several papers based on [2], e.g. [10]. A. Bobenko, T. Hoffmann, and B. Springborn
[1] took the idea of Christoffel duality further and applied it to Koebe polyhedra.
They constructed a circle-based class of discrete minimal surfaces which exhibits
convergence to the smooth case and makes it possible to find minimal surfaces
from the combinatorics of the network of principal curvature lines.

It turned out that the discrete curvature theory for polyhedral surfaces introduced
by H. Pottmann et al. [6], which is based on the variation of surface area in offset
surfaces, contains both [2] and [1] as special cases. Minimality of a polyhedral



ORIENTED MIXED AREA AND DISCRETE MINIMAL SURFACES 3

surface with respect to an edgewise parallel Gauss image is in that context defined
by vanishing mixed area of corresponding faces.

This brings us to the topic of the present paper, which systematically studies the
vanishing mixed area property for polygons, having in mind as a main application
the discrete minimal surfaces in the class of hexagonal meshes. After setting up
the necessary definitions in the rest of this section, we continue with a geometric
recursion for the computation of oriented mixed areas in Section 2. In Section 3 this
leads to ways of characterizing pairs of parallel polygons whose mixed area is zero.
Section 4 considers hexagonal meshes which are minimal and uses the incidence-
geometric characterizations of vanishing mixed area which were obtained earlier
for the construction of equilibrium forces in the edges of a minimal mesh.

1.1. Convex polygons and parallelity. For two convex subsets K, L ⊆ R2, the
area of nonnegative Minkowski combinations λK + µL obeys the law

(1) area(λK + µL) = λ2 area(K) + 2λµ area(K, L) + µ2 area(L),

where the symbol area(K, L) means the mixed area of K and L (see for example
[9]). If the boundary ∂K is a polygon P with vertices p0, . . . , pN−1, then the
oriented area of K is given by Leibniz’ sector formula

(2) area(P ) := area(K) =
1

2

∑
0≤i<N

det(pi, pi+1).

Here indices are taken modulo N . Obviously, there is a vector space of polygons
with N vertices, and the area functional (2) is a quadratic form in this space. For
us, the most interesting case is that K and L are bounded by parallel polygons
P and Q, with vertices p0, . . . , pN−1 and q0, . . . , qN−1, respectively. This concept,
which is not restricted to convex polygons, was introduced by [6] and means that

pi+1 − pi, qi+1 − qi are linearly dependent, for i = 0, . . . , N − 1.

We assume for a moment that both P, Q have only nonzero edges (i.e., no coinciding
vertices). Then the boundary ∂(λK+µL) has the vertices (λpi+µqi)0≤i<N , whence
area(λK + µL) = 1

2

∑
0≤i<N det(λpi + µqi, λpi+1 + µqi+1) and consequently

(3) area(P, Q) =
1

4

∑
0≤i<N

(det(pi, qi+1) + det(qi, pi+1)).

This formula describes the symmetric bilinear form induced by the area functional
in any vector space of polygons with N vertices.

If either P or Q has zero edges (i.e., multiple vertices), the vertices of ∂(λK +µL)
need not equal λpi + µqi, but if they do, (3) is valid.

Note that arbitrary polygons ∂K, ∂L can be seen as parallel polygons, as illustrated
by Figure 1: We are labeling the vertices r0, . . . , rN−1 of ∂(K + L) consecutively,
and subsequently give (possibly multiple) indices p0, . . . , pN−1 and q0, . . . , qN−1 to
the vertices of ∂K and ∂L such that pi + qi = ri. Then all three boundaries of K,
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Figure 1. Labeling vertices of ∂K and ∂L with aid of ∂(K +L) such that they become
parallel.

L, K +L and in fact λK +µL for λ, µ ≥ 0 are described by parallel polygons, and
(3) can be used for computing the mixed area in the sense of (1).

1.2. The oriented mixed area. The polygons parallel to a given polygon P =
(p0, . . . , pN−1), not necessarily convex, constitute a vector space under vertex-wise
addition and scalar multiplication. Its dimension equals N + #{i | pi = pi+1}. If
there are no zero edges, we use the symbol

(4) P(P ) = {(q0, . . . , qN−1) | qi+1 − qi = λi(pi+1 − pi), 0 ≤ i < N}/R2

for the vector space of polygons parallel to P , modulo parallel translations. Then
dimP(P ) = N − 2. If both P and Q have zero edges, still P + Q might not have,
and consequently P, Q, P + Q ∈ P(P + Q). The expression defined by formula (3)
is translation invariant. Following [6] we define:

Definition 1. For parallel polygons P = (p0, . . . , pN−1) and Q = (q0, . . . , qN−1),
the oriented mixed area is given by the bilinear form (3).

Apparently the oriented mixed area, which extends the concept of mixed area for
convex domains, is the bilinear form associated with the quadratic form measuring
oriented area by Leibniz’ sector formula.

1.3. Discrete minimal surfaces. The curvature theory presented in [6] deals
with parallel meshes, which means a pair (Σ, Φ) of polyhedral surfaces having the
same combinatorics, such that corresponding edges are parallel. Σ is viewed as
Gauss image of Φ. The definition of parallelity of polygons extends to polygons
which lie in parallel planes; in order to employ (3) for the computation of mixed
area they have to be moved to a common plane by parallel translation. If P is
a face and Q the corresponding face in the Gauss image, then P is assigned the
mean and Gaussian curvatures

HP = −area(P, Q)

area(P )
, KP =

area(Q)

area(P )
.
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p0 p1
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p3

q0 q1

q2

q3

Figure 2. For nondegenerate parallel quads p0, . . . , p3 and q0, . . . , q3, parallel of one
nonzero diagonal characterizes vanishing mixed area (q0q2 ‖ q1q3, or (q1q3 ‖ q0q2).

For this reason, vanishing mixed area of parallel polygons is characteristic for dis-
crete minimal surfaces. The following result of [6], illustrated in Figure 2, is basic
for the construction of minimal surfaces with regular quad mesh combinatorics:

Proposition 2. Parallel quadrilaterals P = (p0, p1, p2, p3) and Q = (q0, q1, q2, q3)
have vanishing mixed area if and only if diagonals p0p2 and q1q3 are parallel, which
is equivalent to diagonals p1p3 and q0q2 being parallel.

This condition actually discretizes the Christoffel duality between a minimal sur-
face and its spherical Gauss image [6]. We therefore call a polyhedral surface and
its parallel Gauss image where all mixed areas vanish, a Christoffel dual pair. It is
an interesting fact that Proposition 2 applies to several constructions of discrete
minimal surfaces based on quadrilaterals, namely the ones of [2, 1]. The present
paper, which deals with vanishing mixed area in general, is focused on hexagonal
meshes.

2. Properties of the oriented mixed area

The main result of the present paper is the recursion formula of Theorem 6 be-
low, which for parallel polygons P, Q with an even number of vertices shows that
area(P, Q) = area(P ∗, Q∗), where P ∗, Q∗ are derived polygons which have only the
half number of vertices. It is used in Section 3 to derive geometric characterizations
of parallel polygons with vanishing mixed area.

2.1. Formulas for the mixed area. There are equivalent formulae for the ori-
ented mixed area of parallel polygons which take advantage of parallelity:

Lemma 3. The bilinear form of Equation (3) is alternatively expressed as

(5)
∑

i∈{0,1,...,N−1}

(
det(pi, qi+1) + det(qi, pi+1)

)
=

∑
i∈{0,1,...,N−1}

det(pi, qi+1 − qi−1)
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(indices modulo N). For P, Q parallel and an even number of vertices,

(6) 2 area(P, Q) =
∑

i∈{0,2,...,N−2}

det(pi, qi+1 − qi−1) =
∑

i∈{1,3,...,N−1}

det(pi, qi+1 − qi−1).

Proof. The first equality is found by rearranging indices:∑
i
det(pi, qi+1) +

∑
i
det(qi, pi+1) =

∑
i
det(pi, qi+1) +

∑
i
det(qi−1, pi).

In order to show the second equality, we observe that parallelity of P and Q implies
det(pi+1 − pi, qi+1 − qi) = 0. Therefore,∑

i even
det(pi, qi+1 − qi−1) =

∑
i even

(det(pi, qi+1 − qi) + det(pi, qi − qi−1))

=
∑

i even
(det(pi + (pi+1 − pi), qi+1 − qi) + det(pi + (pi−1 − pi), qi − qi−1))

=
∑

i even
(det(pi+1, qi+1 − qi) + det(pi−1, qi − qi−1))

=
∑

i even
(det(pi+1, qi+1 − qi) + det(pi+1, qi+2 − qi+1))

=
∑

i even
det(pi+1, qi+2 − qi) =

∑
i odd

det(pi, qi+1 − qi−1).

It follows that the expression for 4 area(P, Q) according to (3) reads( ∑
i even

+
∑
i odd

)
det(pi, qi+1 − qi−1) =

∑
i even

2 det(pi, qi+1 − qi−1),

which is what we wanted to prove. �

We have now obtained an expression for the mixed area which makes use only of
the vertices p0, p2, . . . and q1, q3, . . . , which however does not have a direct relation
to the areas associated with polygons (p0, p2, . . . ) and (q1, q3, . . . ).

p0 = p∗0

p1

p2 = p∗1 p3

p4 = p∗2

p5

q∗0

q0

q1

q∗2

q2

q3

q∗4
q4

q5

Figure 3. A pair of polygons P,Q and the derived polygons P ∗, Q∗.
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p0 = p∗0

p1 = p∗∗0

p2 = p∗1

p3 = p∗∗1

p4 = p∗2

p5 = p∗∗2

q1

q2

q3 q4

q5

q0

q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2
q∗∗0,1,2q∗∗0,1,2
q∗∗0,1,2q∗∗0,1,2
q∗∗0,1,2q∗∗0,1,2
q∗∗0,1,2q∗∗0,1,2
q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2q∗∗0,1,2

q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2
q∗0,1,2q∗0,1,2
q∗0,1,2q∗0,1,2
q∗0,1,2q∗0,1,2
q∗0,1,2q∗0,1,2
q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2

Figure 4. Illustration of Lemma 5. Polygons P ∗, Q∗ are orthogonal with respect to the
bilinear form defined by the oriented are, if both derived polygons Q∗ and Q∗∗ degenerate
into a point.

2.2. Construction of a derived polygon. For the following construction of
derived polygons, the polygons P, Q must have an even number N of vertices, and
certain diagonals of P are forbidden to be parallel. We used the notation [v] for
the 1-dimensional subspace spanned by the vector v.

Definition 4. Assume a pair of polygons P = (p0, . . . , pN−1) and Q = (q0, . . . ,
qN−1), where N is even, such that

(7) pi − pi−2 and pi+2 − pi are linearly independent for i = 0, 2, 4, . . .

(indices are taken modulo N). Then a pair of derived polygons P ∗, Q∗ is con-
structed such that P ∗ consists of every other vertex of P , while the vertices of Q∗

are found by parallel translating diagonals of P through points of Q:

(8) p∗i = p2i, q∗i = (q2i+1 + [p2i+2 − p2i]) ∩ (q2i−1 + [p2i − p2i−2]).

An index shift of 1 yields an analogous derived pair (P ∗∗, Q∗∗) based on the odd
vertices of P : p∗∗i = p2i+1 and q∗∗i = (q2i+2 + [p2i+3− p2i+1])∩ (q2i + [p2i+1− p2i−1]),
provided the lines employed in this intersection are not parallel.

This construction is illustrated by Figures 3 and 4. Note that if Q∗ cannot be
constructed because (7) is not fulfilled, still Q∗∗ may be constructible. For quadri-
laterals, (7) is never fulfilled, even after an index shift. We will be able to treat
quadrilaterals as degenerate hexagons.

2.3. Non-parallel polygons. The bilinear function of Equation (3) which mea-
sures the oriented mixed area for parallel polygons can be evaluated for arbitrary
pairs of polygons, without having a geometric meaning as mixed area in the clas-
sical sense. It still extends the quadratic functional which measures the oriented
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area by Leibniz’ sector formula. The definition of derived polygons according to
Definition 4 is not restricted to parallel polygons.

We here record a nice geometric property of this functional:

Lemma 5. Polygons P, Q are orthogonal with respect to the bilinear function (3),
if both derived polygons Q∗ and Q∗∗ with respect to even and odd indices degenerate
into points q∗ and q∗∗, respectively.

Proof. By Lemma 3, we have to show that
∑

0≤i<N det(pi, qi+1 − qi−1) = 0.
Our assumption on the degeneracy of derived polygons means that there are real
numbers λi with

q∗ = qi + λi(pi−1 − pi+1) for i even, q∗∗ = qi + λi(pi−1 − pi+1) for i odd.

=⇒ qi+1 − qi−1 = λi−1(pi−2 − pi)− λi+1(pi − pi+2) for all i.

We use this equality to evaluate (3):∑
0≤i<N

det(pi, qi+1 − qi−1)

=
∑

0≤i<N
det(pi, λi−1(pi−2 − pi)− λi+1(pi − pi+2))

=
∑

0≤i<N
λi det(pi+1, pi−1 − pi+1)−

∑
0≤i<N

λi det(pi−1, pi−1 − pi+1)

=
∑

0≤i<N
λi det(pi+1 − pi−1, pi−1 − pi+1) = 0

(indices are taken modulo N). This concludes the proof. �

2.4. Mixed area of derived polygons. The following theorem is the main tech-
nical contribution of the present paper. It is the basis of geometric characteri-
zations of polygons pairs with vanishing mixed area, and therefore the basis of
constructions of discrete minimal surfaces.

Theorem 6. For any pair of parallel polygons P, Q with an even number of ver-
tices, the oriented mixed area is unaffected by the passage to derived polygons:
area(P, Q) = area(P ∗, Q∗) = area(P ∗∗, Q∗∗), whenever the conditions of Definition
4, which allow construction of Q∗ or Q∗∗, are fulfilled.

Proof. It is obviously sufficient to show the result for P ∗ and Q∗. An elementary
computation yields the coordinates of Q∗’s vertices q∗i :

q∗i =
1

γi

(
αi(p

∗
i+1 − p∗i ) + βi(p

∗
i − p∗i−1)

)
, where

αi = det(q2i−1, p
∗
i − p∗i−1), βi = det(p∗i+1 − p∗i , q2i+1),

γi = det(p∗i+1 − p∗i , p
∗
i − p∗i−1).
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p0,1 = p∗0

p2,3 = p∗1 p4,5 = p∗2

p6,7 = p∗3

K K + λL K + λL∗

L

q∗0

q1,2

q∗1
q∗2 = q3,4,5,6

q∗3
q7,0(a) (b) (c) (d)

Figure 5. An explanation of the fact area(P,Q) = area(P ∗, Q∗) for artificially parallel
polygons which occur as boundaries P = ∂K and Q = ∂L. (a) Both polygons P and P ∗

describe the boundary ∂K. (b) Convex domains K + λL, where λ equals 0.1 and 0.2.
(c) The same for L∗ instead of L, where the boundary ∂L∗ is given by the polygon Q∗.
(d) Polygons Q and Q∗. Obviously the linearly growing part of area(K + λL) along the
edges of ∂K is not affected if we replace L by L∗.

We introduce the notation ∆k
j = det(p∗j , p

∗
k), which has the properties

∆j
j = 0, ∆j

i = −∆i
j, γi = ∆i

i+1 −∆i−1
i+1 + ∆i−1

i .

For the mixed area of P ∗ and Q∗, we consider the following sum, where indices i
range from 0 to N/2− 1, and indices j range from 0 to N − 1:∑

i
det(q∗i , p

∗
i+1 − p∗i−1) =

=
∑

i

1

γi

det
(
αi(p

∗
i+1 − p∗i ) + βi(p

∗
i − p∗i−1), p

∗
i+1 − p∗i−1

)
=

∑
i

1

γi

(
αi(−∆i−1

i+1 −∆i+1
i + ∆i−1

i ) + βi(∆
i+1
i −∆i−1

i −∆i+1
i−1)

)
=

∑
i

1

γi

(
αiγi − βiγi

)
=

∑
i

(
det(q2i−1, p

∗
i − p∗i−1)− det(p∗i+1 − p∗i , q2i+1)

)
=

∑
j even

(
det(qj−1, pj − pj−2) + det(qj+1, pj+2 − pj)

)
.

An index shift shows that
∑

j even det(qj−1, pj−pj−2) =
∑

j even det(qj+1, pj+2−pj)

=
∑

j odd det(qj, pj+1 − pj−1), so we conclude that

area(P ∗, Q∗) =
1

4

∑
i
det(q∗i , p

∗
i+1 − p∗i−1) =

1

2

∑
j odd

det(qj, pj+1 − pj−1).

By Lemma 3, this expression equals area(P, Q), which concludes the proof. �
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This result concerning the mixed area of parallel polygons is strong in reducing
the number of vertices to deal with by a factor 2. However, if we apply it to
two arbitrary polygons, which are made artificially parallel like those of Figure 1,
we only obtain a fact which is obvious from the definition of mixed area anyway.
As illustrated by Figure 5, Q∗ then describes the boundary of the domain L∗

constructed from K and L as the intersection of all supporting half-spaces of L
whose boundary is parallel to an edge of K. Obviously, area(K, L) = area(K, L∗).

3. Vanishing mixed areas

This sections applies Theorem 6 to parallel polygons P, Q whose mixed area van-
ishes. As mentioned in § 1.3, such pairs of polygons are especially interesting for
the construction of discrete minimal surfaces.

3.1. Vanishing mixed area for parallel hexagons. Here we treat both quadri-
laterals and 5-gons as special hexagons. Before we derive a geometric criterion for
the vanishing of mixed area for parallel hexagons, we discuss pairs P, Q of hexagons
where Theorem 6 cannot be applied, because neither derived polygon Q∗, Q∗∗ can
be constructed. Obviously, this is the case if and only both p0, p2, p4 and p1, p3, p5

are collinear, i.e., P is a Pappos hexagon (see Figure 6). Exchanging the role of P
and Q helps, except for the case that both q0, q2, q4 and q1, q3, q5 are collinear.

Theorem 7. For parallel hexagons P, Q where one, say P , is not a Pappos hexagon,
there is a labeling of vertices such that the derived polygons P ∗, Q∗ can be con-
structed. Then area(P, Q) = 0 if and only if all vertices of the triangle Q∗ coincide,
i.e., if the lines

q1 + [p2 − p0], q3 + [p4 − p2], q5 + [p0 − p4]

intersect in a common point.

Proof. The derived polygons P ∗, Q∗ are parallel triangles, with Q∗ = λP ∗ + a.
It follows that area(P ∗, Q∗) = λ area(P ∗). By non-collinearity of P ∗, this area
vanishes if and only if λ = 0. �

The case of two Pappos hexagons has to be treated separately:

Proposition 8. Suppose that P, Q are two parallel hexagons such that p1, p3, p5 as
well as q0, q2, q4 are collinear (this includes the case of parallel Pappos hexagons).
Then area(P, Q) = 0 in exactly the following cases:

(i) p1 = p3 = p5 or q0 = q2 = q4.
(ii) The triples (p1, p3, p5) and (q4, q0, q2) are affinely equivalent.
(iii) The lines which carry p1, p3, p5 and q0, q2, q4 are parallel.
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p0

p1

p2

p5

p4

p3

q0

q1

q2

q3

q4

q5

Figure 6. A Pappos hexagon does not fulfill the requirements of Definition 4, and so
Theorem 7 is not applicable to this pair of parallel Pappos hexagons with area(P,Q) = 0
(we must apply Proposition 8 instead).

p1

p2 = p∗1

p3

p4 = p∗2

p5

p0 = p∗0

q0

q1

q2

q3 q4

q5

q∗0,1,2

Figure 7. Parallel hexagons P,Q with vanishing mixed area (the derived triangle Q∗

degenerates).

p0,1 = p∗0 p2,3 = p∗1

p4 = p∗2

p5

q0,1
q2,3 = q∗0,1,2

q4 q5

Figure 8. Quadrilaterals with antiparallel diagonals are degenerate hexagons P,Q,
where the triangle Q∗ degenerates into a point.



12 CHRISTIAN MÜLLER AND JOHANNES WALLNER

p0 = p∗0

p1

p2 = p∗1

p3

p4 = p∗2

p5

q0

q1

q2

q3

q4
q5 q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2

q∗0,1,2q∗0,1,2
q∗0,1,2q∗0,1,2
q∗0,1,2q∗0,1,2
q∗0,1,2q∗0,1,2
q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2q∗0,1,2

Figure 9. A pair of parallel 5-gons P,Q seen as hexagons, and a geometric charac-
terization of vanishing mixed area which follows from this interpretation. Index shifts
produce equivalent configurations.

Proof. By parallel translation we can achieve that the straight lines pass through
the origin of the coordinate system, so there are v, w ∈ R2 \ 0 with pi = λiv for
i = 1, 3, 5 and qj = µjw for j = 0, 2, 4. By Equation (5),

2 area(P, Q) =
∑

i=1,3,5
det(λiv, (µi+1 − µi−1)w)

= det(v, w)(λ1(µ2 − µ0) + λ3(µ4 − µ2) + λ5(µ0 − µ4))

= det(v, w)((λ1 − λ3)(µ2 − µ4)− (λ1 − λ5)(µ0 − µ4))

In case (iii) we have det(v, w) = 0, so area(P, Q) = 0. In case (i) we have λ1 =
λ3 = λ5, or µ0 = µ2 = µ4, which likewise implies vanishing mixed area. We now
assume that we have neither case (i) nor case (iii). Then

area(P, Q) = 0 ⇐⇒ (λ1 − λ3) : (λ1 − λ5) = (µ4 − µ0) : (µ4 − µ2),

i.e., if and only if the ratio of collinear points p1, p3, p5 equals the ratio of collinear
points q4, q0, q2. This is equivalent to (ii). �

We refrain from an exhaustive discussion of cases. An example of two parallel
Pappos hexagons with vanishing mixed area is shown by Figure 6.

3.2. Vanishing mixed area for 4- and 5-gons as degenerate 6-gons. Two
parallel quadrilaterals are converted to parallel hexagons if we count two pairs of
corresponding vertices twice. This operation does not change the mixed area, and
Theorem 7 immediately gives the known result of Proposition 2 that vanishing
mixed area is characterized by anti-parallelity of diagonals (see Figures 2 and 8).
Anyway Proposition 2 follows directly from Lemma 3, because for parallel quads,
(6) expands to area(P, Q) = det(p0−p2, q1−q3). For 5-gons, we have the following
result:

Corollary 9. The oriented mixed area of two parallel 5-gons P = (p0, . . . , p4) and
Q = (q0, . . . , q4) vanishes if both of them are contained in a straight line. If this is
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not the case, area(P, Q) = 0 is characterized by the following geometric condition
for one index i (and equivalently for all indices i): The lines

qi+1 + [pi+2 − pi] and qi+3 + [pi+4 − pi+2]

meet on the edge qi+4qi, where indices are taken modulo 5.

Proof. It is sufficient to assume that p0, p1, p4 are not collinear and show the
result for the case i = 0 illustrated by Figure 9. By introducing vertices p5, q5 in
the edges p4p0 and q4q0, resp., we convert both P and Q into parallel hexagons, and
Theorem 7 is applicable. The statement that Q∗ degenerates to a point translates
to the statement we want to show. �

3.3. Vanishing mixed area for 8-, 7- and 6-gons (again). Theorem 6 is re-
cursively applicable, but the number of cases to be distinguished because diagonals
are parallel and derived polygons cannot be constructed becomes greater. The fol-
lowing result for generic 8-gons follows directly from Theorem 6 and Proposition
2 (see Figure 10).

Corollary 10. Parallel 8-gons P, Q where the derived polygons P ∗, Q∗ can be con-
structed have vanishing mixed area exactly in the following three cases: (i) both
sets {p0, p2, p4, p6} and {q∗0, q∗1, q∗2, q∗3} are contained in a straight line; (ii) p0 6= p4

and p0p4 is parallel to q∗1p
∗
3, (iii) p2 6= p6 and p2p6 is parallel to q∗0p

∗
2.

The obvious way to treat parallel 7-gons is as 8-gons with two coincident vertices:
We simply add an 8th vertex p7 = p6 and q7 = q6 to each an apply Corollary
10. This is illustrated by Figure 11. It is interesting to observe that also for
hexagons we get again an easy geometric condition if we treat them as 8-gons with
2 coincident vertices (see Figure 12). Disregarding special cases, we have:

Corollary 11. The parallel hexagons (p0, p1, p2, p4, p5, p6) and (q0, q1, q2, q4, q5, q6)
generically have zero oriented mixed area if and only if p0 ∨ p4 ‖ q∗1 ∨ q∗3, where

q∗1 = (q1 + [p2 − p0]) ∩ (q2 ∨ q4), q∗3 = (q5 + [p4 − p6]) ∩ (q6 ∨ q0).

Proof. The polygons are extended to 8-gons P, Q with the same mixed area by
letting p3 := p2, p7 := p6, q3 := q2, and q7 := q6. The derived quadrilateral Q∗

according to Corollary 10 has the two vertices q∗1, q
∗
3, so the result follows. �

4. Discrete minimal surfaces

Section 1.3 already introduced in general terms the definitions of curvature accord-
ing to [6]. Recall that a polyhedral surface Φ is a discrete minimal surface with
respect to a Gauss image Σ, if Φ, Σ are parallel meshes such that corresponding
faces have vanishing mixed area. We view Φ as a discrete Christoffel dual of Σ,
and vice versa.
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Figure 10. Parallel 8-gons P,Q with vanishing mixed area. The derived polygons
P ∗, Q∗ are parallel quads with area(P ∗, Q∗) = 0 and consequently antiparallel diagonals.
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Figure 11. Parallel 7-gons P,Q with vanishing mixed area, which are interpreted as
8-gons with p6 = p7 and q6 = q7, respectively. The derived polygons P ∗, Q∗ are parallel
quads with area(P ∗, Q∗) = 0 and consequently antiparallel diagonals.
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Figure 12. Parallel hexagons P,Q with vanishing mixed area, which are interpreted as
8-gons with p6 = p7, p2 = p3 and q6 = q7, q2 = q3 respectively. The derived polygons
P ∗, Q∗ are parallel quads with area(P ∗, Q∗) = 0 and consequently antiparallel diagonals.
For a geometric characterization, only one half of Q∗ is needed.
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Σ Φ

Figure 13. A discrete Enneper’s surface Φ in the shape of a hexagonal mesh, which
corresponds to a spherical mesh Σ by a discrete Christoffel duality. The marked hexagons
correspond to each other.

Not every quadrilateral mesh Σ with planar faces (i.e., a polyhedral surface with
regular grid combinatorics) has a Christoffel dual Φ: It turns out that exactly the
Koenigs nets (see [3, 4]) have this property.

4.1. Construction of hexagonal minimal surfaces. Figure 13 illustrates a
parallel pair (Σ, Φ) of meshes (for more details, see the example below). The
faces of Σ are tangent to the unit sphere, so it makes sense to consider Σ as a
discrete Gauss image of Φ. As Φ has been constructed such that the mixed area
of corresponding faces vanishes, Φ is discrete minimal. It should be mentioned in
this place that the exact relation between the discrete Gauss image Σ and the unit
sphere S2 can be of a different nature: We could also require that vertices of Σ
lie in S2, or its edges are tangent to S2. The three cases of vertices, edges, and
faces having an exact tangency relation with S2 correspond to the mesh Φ having
offset meshes Φ + dΣ at constant vertex-vertex distance d, or edge-edge distance
d, or face-face distance d [7, 6]. Note that the property of vanishing mixed area
does not only occur between minimal surface and Gauss image, but also between
a surface Φ of constant mean curvature H with respect to a Gauss image Σ, and
its offset Φ + 1

H
Σ.

The construction of a discrete Christoffel dual (i.e., Φ from Σ) for hexagonal meshes
is easy, as there are enough degrees of freedom. The fact that dimP(P ) = 4 leads
to a three-dimensional space of parallel polygons Q with area(P, Q) = 0. Conse-
quently adding a new hexagon of Φ to already constructed ones is an operation
which has 3−k degrees of freedom, where k is the number of known vertices (which
are shared with already existing neighbours of the hexagon to be constructed).

Example. Figure 13 shows a hexagonal mesh Σ which is circumscribed to the unit
sphere and its Christoffel dual mesh Φ which assumes the shape of an Enneper’s
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Σ Φ

Figure 14. A discrete Enneper’s surface created in the same way as Figure 13, but with
a different size of the spherical mesh Σ. Here Φ has self-intersections. The viewpoint is
different from that of Figure 13.

surface. This example is constructed as follows: We start with an isothermic
curvature-line parametrization x(u, v) of the known smooth Enneper’s surface M .
Next we tile the parameter domain with non-convex hexagons — we used dilates
of the hexagon with vertices (0, 0), (1

2
, 1

4
), (1, 0), (1, 1), (1

2
, 3

4
), (0, 1). Mapping the

vertices of this tiling with the parametrization x yields a hexagonal mesh Φ0 with
non-planar faces inscribed to M (it looks very much like Figure 13, right). Each
planar hexagon has a center, say (u∗, v∗), and we consider x(u∗, v∗) as the center
of the corresponding spatial hexagon. Next we construct the mesh Σ by parallel
translating the tangent planes of M in the centers of hexagons such that they touch
the unit sphere. Vertices qi of Σ are found by intersection of planes (see Figure
13, left). Having constructed Σ, we find its Christoffel dual Φ by optimizing Φ0

such that mixed areas of corresponding faces Q in Σ and P in Φ are zero, and such
that corresponding edges qiqj and pipj are parallel. This amounts to minimizing
the quadratic functional

λpar

∑
edges

‖(qi − qj)× (pi − pj)‖2 + λmix

∑
faces

‖ area(P, Q)‖2.

This is done by a standard conjugate gradient method, and turns out not to change
the shape of Φ0 much, despite the fact that the theoretical number of degrees of
freedom is larger.

4.2. Reciprocal parallelity in discrete minimal surfaces. In the quad mesh
case, there is an interesting connection of minimal surfaces with reciprocal-parallel
meshes. A reciprocal-parallel mesh pair is defined as meshes which are combina-
torial duals of each other (there is a correspondence face–vertex, vertex–face, and
edge–edge), such that corresponding edges are parallel [8]. Proposition 2 immedi-
ately shows that Φ is a minimal surface with respect to Σ if meshes composed from
diagonals of quads in both Σ, Φ are reciprocally parallel [6]. This is illustrated in
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(a) (b) (c) (d) (e) (f)

Figure 15. Reciprocal-parallel meshes derived from a quadrilateral mesh Σ and its
Christoffel dual mesh Φ, which is combinatorially equivalent such that corresponding
quadrilaterals P and Q have vanishing mixed area. From left: (a) Mesh Σ with face P .
(b) Mesh Φ with face Q corresponding to P . (c) Quadrilateral mesh Σ∗ composed from
one half of diagonals of Σ. (d) Those diagonals in Φ which are parallel to the previous
ones according to Proposition 2 constitute a mesh Φ∗ reciprocal-parallel to Σ∗: vertices
in Σ∗ correspondence faces of Φ∗. (e) and (f) show the reciprocal-parallel mesh pair
Σ∗∗,Φ∗∗ composed from the diagonals omitted in (c) and (d).

Figure 15. It should be mentioned that reciprocal parallelity of meshes in con-
nection with discrete minimal surfaces also occurs in other places, for instance in
[10].

For hexagonal meshes, we similarly can derive pairs of reciprocal-parallel meshes
from a Christoffel dual pair (Σ, Φ). The geometric characterization of vanishing
mixed area according to Theorem 7 and Figure 7 leads to the configuration of
lines in meshes Σ and Φ, which is illustrated in Figures 16a and 16b. Obviously,
the configuration of diagonals in Σ (Figure 16c) is reciprocally parallel to the
configuration of lines in Φ, which consist of the to-be edges of degenerate derived
polygons (Figure 16d). A different choice of diagonals in Σ would lead to a different
pair of reciprocal-parallel meshes.

Obviously for each vertex of Σ∗, the cycle of edge vectors adjacent to the corre-
sponding face of Φ∗ serves as equilibrium forces acting on that vertex. Thus, Φ∗

represents a collection of equilibrium forces for Σ∗. These forces (scaled) are shown
by Figure 16c.

As the relation area(P, Q) = 0 is symmetric, the geometric configuration of the
triangle P ∗ and the degenerate triangle Q∗ exists also if the roles of P and Q (i.e.,
the roles of Σ and Φ) are exchanged: One half of the diagonals in Φ constitute
a triangle mesh Φ∗∗, which possesses a reciprocal-parallel hexagonal mesh Σ∗∗

associated with Σ (see Figures 16e and 16f). Figure 16f also shows equilibrium
forces for Φ∗∗ which are a scaled version of the edges of Σ∗∗.
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(a): Σ (b): Φ

(c): Σ∗ (d): Φ∗

QQQQQQQQQQQQQQQQQ

PPPPPPPPPPPPPPPPP

Q∗Q∗Q∗
Q∗Q∗Q∗Q∗Q∗Q∗
Q∗Q∗
Q∗Q∗Q∗Q∗Q∗Q∗

(e): Σ∗∗ (f): Φ∗∗

Q∗∗Q∗∗Q∗∗
Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗
Q∗∗Q∗∗
Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗Q∗∗

P ∗∗P ∗∗P ∗∗
P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗
P ∗∗P ∗∗
P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗P ∗∗

Figure 16. Reciprocal-parallel meshes Σ∗,Φ∗ derived from Christoffel-dual meshes
Σ,Φ. The edges around a face in Φ∗ serve as equilibrium forces acting in the edges
adjacent to the corresponding vertex of Σ∗. (a) Hexagonal mesh Σ with face Q. (b)
Hexagonal mesh Φ of the same combinatorics such that corresponding faces Q of Σ and
P of Φ have vanishing mixed area. (c) Triangle mesh whose edges are derived polygons
Q∗ in mesh Σ. (d) Hexagonal mesh whose edges are the lines p1p

∗, p3p
∗, p5p

∗ in each
hexagon of Φ, where p∗ is the degenerate polygon P ∗. Note that Φ∗ does not have planar
faces. In (e) and (f), the geometric characterization of vanishing mixed area which yields
diagonals and their parallels is read in reverse order compared to (a)–(d): Diagonals are
taken from the non-convex hexagons in the mesh Φ.
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