
ON DISCRETE CONSTANT MEAN CURVATURE SURFACES
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Abstract. Recently a curvature theory for polyhedral surfaces has been established
which associates with each face a mean curvature value computed from areas and
mixed areas of that face and its corresponding Gaussian image face. Therefore a study
of constant mean curvature (cmc) surfaces requires studying pairs of polygons with
some constant non-vanishing value of the discrete mean curvature for all faces. We
focus on meshes where all faces are planar quadrilaterals or planar hexagons. We
show an incidence geometric characterization of a pair of parallel quadrilaterals having
a discrete mean curvature value of -1. This characterization yields an integrability
condition for a mesh being a Gaussian image mesh of a discrete cmc surface. Thus we
can use these geometric results for the construction of discrete cmc surfaces. In the
special case where all faces have a circumcircle we establish a discrete Weierstrass type
representation for discrete cmc surfaces.
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1. Introduction and Preliminaries

A discrete constant mean curvature surface, discrete cmc surface for short, is a discrete
surface, i.e., a mesh, where an appropriate notion of a discrete mean curvature is constant
on the entire mesh. In this way, discrete cmc surfaces discretize their counterparts
in classical differential geometry, the smooth cmc surfaces. The study of surfaces of
constant mean curvature is interesting from a purely mathematical viewpoint but it is
also motivated from physics namely from the interest in the geometric shape of soap
films. There are two different situations which need to be considered separately. First,
the soap films which occur having the same pressure on both sides of the film corresponds
to vanishing mean curvature. Second, if we have constant, but different, pressures on
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both sides then the resulting soap film represents a surface with some non-vanishing
constant mean curvature. In our paper we will focus on the later case.

Smooth cmc surfaces have been investigated now for a long time and the research
in this area is far away from being complete. One question which stimulated research
in this field was raised by H. Hopf who conjectured that the only closed, compact cmc
surface in R3 is the sphere. H. Wente [21] however, showed the existence of cmc surfaces
which are topologically equivalent to a torus, the now called Wente tori. U. Pinkall and
I. Sterling [15] classified and constructed all cmc tori. We will generate an example of a
discretized version of a Wente torus in Paragraph 6.4.

Our study of discrete cmc surfaces is located in the rising field of discrete differential
geometry. This theory tries to discretize objects, notions, equations, and methods from
classical differential geometry. A first approach in this direction was made by R. Sauer
in his book ‘Differenzengeometrie’ [17]. A modern approach is the manuscript ‘Discrete
Differential Geometry: Integrable Structure’ by A.I. Bobenko and Yu.B. Suris [4].

Different but equivalent characterizations of properties or notions in smooth differ-
ential geometry, such as the mean curvature for example, can be discretized in various
different ways. The resulting discretizations need no longer be equivalent or are equiva-
lent to only some other discretizations. In our special case we take over the definition of
the discrete mean curvature which appears in the recently discovered curvature theory
for polyhedral surfaces by A.I. Bobenko et al. [3]. The discrete curvature notions there
are assigned to the faces of a mesh with respect to an edge-wise parallel mesh which is
considered as a discrete Gaussian image.

1.1. Basic notations. In the present paper, we focus on meshes M whose faces are
planar polygons. In other words, we are concerned with polyhedral surfaces. Each
face F is an m-gon (m ≥ 3) and can be described by an ordered list of vertices, say
F = (f0, f1, . . . , fm−1), such that two vertices with succeeding indices, fi and fi+1, are
connected by an edge. For an m-gon we will always take indices modulo m. The first
forward difference operator will be denoted by δfi = fi+1 − fi.

1.2. Quad-graphs. For the most part of our work, we are interested in the local theory
of quadrilateral meshes, i.e., meshes where all faces are planar quadrilaterals. Thus, the
underlying graph G which represents the combinatorics of the mesh is, at least locally,
the cell decomposition of an open disc whose faces are quadrilaterals. G is therefore
called a quad-graph. The generic example of a quad-graph would be the Z2 grid or a
part of it. A more elaborate example is shown in Figure 1.

1.3. Koenigs meshes and Christoffel duality. In the special setting of planar quadri-
lateral meshes there exists a subclass of meshes namely the so called discrete Koenigs
nets or Keonigs meshes. We recall the definition of Koenigs meshes by following [4,
Section 2.3]. A Koenigs meshM is a mesh which has the combinatorics of a quad-graph
G and which admits dualization. This means that there exists a real-valued function
ν : V (G) → R \ 0 defined on the vertices V (G) of the graph G (or, defined on the ver-
tices V (M), which of course is the same) such that ν2 : ν0 = (M − f2) : (M − f0)
and ν3 : ν1 = (M − f3) : (M − f1), where M is the intersection point of the diago-
nals of the quadrilateral F = (f0, . . . , f3), and where νi is the function value of ν at
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Figure 1. Illustration of a quad-graph with non Z2 combinatorics. Each face is a quadrilateral. Apart
from the border this graph has vertices with valence three, four, and five.

the vertex fi. Then, for each quadrilateral F = (f0, . . . , f3) there exists a quadrilateral
F ∗ = (f∗0 , . . . , f

∗
3 ) with

(1) δf∗i =
δfi

νiνi+1
.

A mesh M∗ where each face F ∗ is dual to the corresponding face F of a Koenigs mesh
M with vertices f in the described way is called a Christoffel dual Koenigs mesh. If the
starting mesh M approximates a sphere then the Christoffel dual mesh M∗ represents
a discrete minimal surface, see e.g., [1, 2]. It should be mentioned here that this is one
of many possible definitions for an object called ‘discrete minimal surface’. However,
as it turns out, discrete minimal surfaces in the ‘Christoffel dual’ sense have vanishing
discrete mean curvature in the setting of the discrete curvature theory [3] which we will
present in Paragraph 1.5.

1.4. Oriented mixed area. In our discretization we are dealing with polyhedral sur-
faces and a discrete mean curvature notion coming from Steiner’s formula. The smooth
Steiner formula

area(fd) =

∫
U

(1−2dH+d2K) do.

measures the area of the offset surface fd of f at offset distance d. It is the surface integral
over the parameter domain U where H and K are the mean and Gaussian curvature
of f , respectively. Following [3] we will consider a discretization of Steiner’s formula to
obtain a discrete curvature notions. Suffice it to say here that for our discretization of
the mean curvature the notion of planar parallel polygons plays an important role. Two
planar m-gons F = (f0, . . . , fm−1) and S = (s0, . . . , sm−1) (with vertices fi, si ∈ R3) are
said to be parallel if all corresponding edges are parallel (i.e., fi− fi−1 and si− si−1 are
linearly dependent; indices are taken modulo m). We can see right away that parallel
polygons always lie in parallel planes.

This notion of parallel m-gons leads to a vector space in the following sense. We take
a nondegenerate m-gon F , i.e., all edges have non-vanishing lengths, and consider the
set P(F ) := {S | S is parallel to F}. We immediately see that P(F ) is a vector space
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with vertex-wise addition and scalar multiplication

F + S := (f0 + s0, . . . , fm−1 + sm−1) and λF := (λf0, . . . , λfm−1).

As one verifies easily, this vector space P(F ) has dimension m + 1. The functional to
measure the oriented area of a planar polygon F is a discrete version of Leibnitz’ sector
formula

area(F ) =
1

2

∑m−1

i=0
det(fi, fi+1, n),

where n is a unit normal vector of the supporting plane of F . This area functional,
which is a quadratic form, induces a symmetric bilinear form

area(F, S) :=
1

4

∑m−1

i=0
det(fi, si+1, n) + det(si, fi+1, n),

for parallel m-gons F and S. This bilinear form is called oriented mixed area of two
parallel m-gons F and S. This notion of the oriented mixed area first appeared in [16]
and generalizes the classical mixed area that appears in the formula for the area of the
Minkowski sum of two convex sets in R2. Following [13, Lemma 3] we obtain

(2) 4 area(F, S) =
∑m−1

i=0
det(fi, si+1 − si−1, n) =

∑m−1

i=0
det(si, fi+1 − fi−1, n).

We immediately see that the mixed area is invariant under translations of F and S as
well as under orientation preserving isometries applied to both polygons at the same
time. Therefore, w.l.o.g. we can always assume F and S to be contained in R2.

1.5. Discrete mean curvature. For the discretization of the mean curvature we follow
[3, 16]. This discretization of the mean (and Gaussian) curvature appears the first time
in the setting of circular meshes in [18, 19]. Their idea is to discretize Steiner’s formula
for the surface area of offset surfaces.

To discretize Steiner’s formula one has to define an appropriate discrete offset surface
for polyhedral surfaces. Different types of offsets may lead to different notions of curva-
tures. In our setting offset meshes are parallel meshes with some constant distance which
has to be specified in more detail. A pair of parallel meshes consists of two meshes which
have the same combinatorics and which have the property that corresponding faces are
parallel. This immediately implies that all corresponding edges are parallel too. A spe-
cial subclass of pairs of parallel meshes consists of the so called offset meshes. For the
constant distance there are three common versions. The vertex [edge, face] offsets which
means that the distances d between corresponding vertices [edges, faces] are constant.
We have to note here that not all meshes possess these types of offsets. For the existence
of vertex offsets, which depends also on the topology of the mesh, see e.g., [11].

Let us consider a mesh M and a vertex [edge, face] offset Md at distance d. It is
easy to see that as we subtract corresponding vertices of M and Md and divide those
by the distance d, we obtain the new planar mesh σ(M) := (Md − M)/d. As one
verifies immediately, σ(M) is inscribed [midscribed, circumscribed] to the unit sphere
S2. Inscribed means that the vertices lie in S2, midscribed means that the edges are
tangent to S2, and circumscribed means that the faces are tangent to S2. It is therefore
natural to see σ(M) as a discrete Gaussian image of the discrete surface M. On the
other hand we can describe offset meshes Md by the use of the Gaussian image

Md =M+ d σ(M).
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The existence of offset meshes of the described three types is equivalent to the existence
of a Gaussian image mesh with the mentioned properties. For more details on this see
e.g., [11, 16].

The discrete Steiner formula measures the surface area of offset meshes Md. We
compare it with its smooth counterpart:

area(Md) =
∑

Faces F

(1−2dHF +d2KF ) area(F ) area(fd) =
∫
U

(1−2dH+d2K) do.

A straightforward computation shows (for details see [3, 16]) that the coefficients HF

and KF are given by

(3) HF = −area(F, σ(F ))

area(F )
and KF =

area(σ(F ))

area(F )
,

where σ(F ) is the corresponding face to F on the discrete Gaussian image mesh σ(M).
The notions HF and KF are called discrete mean curvature and discrete Gaussian cur-
vature, respectively. We would like to note that in this setting the discrete curvatures
correspond to faces in contrast to other definitions where they are corresponding to ver-
tices (see e.g., [14]) or edges (see e.g., [20]). It is further important to remark that this
definition only makes sense for meshes whose faces have more then three edges (except
possibly for some isolated faces) because there are no nontrivial offsets of triangular
meshes.

1.6. Discrete constant mean curvature surfaces. Equation (3) represents a dis-
crete mean curvature notion and a discrete Gaussian curvature notion for polyhedral
surfaces M. This definition does not only depend on the mesh M alone but also on its
Gaussian image σ(M). Different Gaussian images belonging to the same mesh M lead
to different values of the mean curvature. For example let us consider a mesh M with
the combinatorics of a cell decomposition of a disc. Consequently, in the vertex offset
case there exists a two parameter family of possible Gaussian images of M. However,
for meshes M which represent surfaces with a more complicated topology than a disc
not even the existence of at least one suitable Gaussian image mesh is guaranteed. For
more details see [11, 16].

In order to find discrete constant mean curvature surfaces, or shorter discrete cmc
surfaces, we are looking for a pair of parallel meshes, namelyM together with a suitable
Gaussian image σ(M), such that the discrete mean curvature HF from (3) takes some
constant value H for all faces F of the mesh M.

In smooth differential geometry one distinguishes two types of cmc surfaces. Those
with vanishing mean curvature (H = 0), which are the minimal surfaces and all the
others with non-vanishing constant mean curvature (H = const. 6= 0). Some authors use
the term ‘cmc surfaces’ just for the latter as we will do in the present paper. Different
nonzero values of H do not require separate investigations since a scaling of the surface
by a factor λ 6= 0 changes the mean curvature by the constant factor 1/λ. I.e., it suffices
to study cmc surfaces with H = −1, which is what we are going to do later. This scaling
property carries over to the discrete setting as one verifies easily

(4) HλF = −area(λF, σ(λF ))

area(λF )
= −λ area(F, σ(F ))

λ2 area(F )
=

1

λ
HF ,
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since σ(λF ) = σ(F ).
Discrete minimal surfaces are characterized, in our setting, by vanishing mixed area of

all faces ofM with their corresponding faces of σ(M), i.e., area(F, σ(F )) = 0 for all faces
F of M. They have been investigated in [3, 13, 16]. It turns out that discrete minimal
surfaces generated via the approach using the discrete Christoffel dual construction (see
Paragraph 1.3) have vanishing discrete mean curvature in the sense of (3) too.

We now turn to our main topic, the discrete cmc surfaces. Because of the bilinearity
of the mixed area and the fact that area(F ) = area(F, F ) we obtain:

HF = −area(F, σ(F ))

area(F )
⇐⇒ area(F, F +

1

HF
σ(F )) = 0.

As indicated before, we are interested in discrete cmc surfaces with HF = −1, i.e., we
are looking for a mesh M with a suitable corresponding Gaussian image mesh σ(M)
such that

(5) area(F, F − σ(F )) = 0

holds for all faces F of M. We will pay special attention to the cases where all faces
(except maybe some isolated faces) are quadrilaterals or hexagons.

In the quadrilateral mesh case we have a connection to the Christoffel dual transforma-
tion. A Koenigs meshM is cmc if and only if the offset meshM−σ(M) equalsM∗, the
Christoffel dual ofM. I.e., in terms of vertices: Let F = (f0, . . . , f3), F

∗ = (f∗0 , . . . , f
∗
3 ),

and σ(F ) = (s0, . . . , s3). Then HF = −1 if and only if there exists a real-valued function
ν : V (M) → R \ 0 defined on the vertices such that δfi − δsi = δf∗i = 1

νiνi+1
δfi and

therefore

(6) δsi =
νiνi+1 − 1

νiνi+1
δfi.

In conclusion, with Equation (6) we obtain a difference equation for a pair of meshes
where fi are the vertices of a discrete cmc surface with respect to the Gaussian image
mesh with vertices si. For details see [4, Theorem 4.49].

2. Pairs of parallel polygons with HF = −1

We have studied incidence geometric characterizations of pairs of parallel polygons
F and σ(F ) in [13] to obtain discrete minimal surfaces. I.e., we investigated properties
for area(F, σ(F )) = 0 which led to a recursive formula with a geometric interpretation.
It turned out that we obtain such incidence geometric characterizations for pairs of
polygons with an arbitrary number of vertices.

In order to find discrete cmc surfaces (with discrete mean curvature HF = −1 for
all faces) we are here concerned with Equation (5). I.e., the characterizing equation is
area(F, F − σ(F )) = 0 which is equivalent to HF = −1. Unfortunately, we cannot give
an incidence geometric characterization for two parallel m-gons F and S with m > 6
but only for quadrilaterals and hexagons. For even m > 6 we have a sufficient but
not necessary condition. Before we state our characterizations we have to make some
preparations.
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2.1. The derived polygons. We are aiming at an incidence geometric characterization
of area(F, F − σ(F )) = 0. As it turns out we are going to need some diagonals and lines
parallel to diagonals of F and σ(F ) which leads us to the definition of so called derived
polygons. We consider parallel polygons F = (f0, . . . , fm−1) and S = (s0, . . . , sm−1)
with an even number m of vertices. In all our formulas we take indices modulo m. For
the following constructions of the derived polygons we need one further condition to be
fulfilled: Two successive ‘diagonals’ of F shall not be parallel, i.e., fi−fi−2 and fi−fi+2

are assumed to be linearly independent. We drop this condition for m = 4 because
otherwise we could not assign derived polygons to quadrilaterals. However, in this case
the derived polygons will degenerate.

We call the following three polygons F ∗ = (f∗0 , . . . , f
∗
m/2−1), F̃

∗ = (f̃∗0 , . . . , f̃
∗
m/2−1),

and S∗ = (s∗0, . . . , s
∗
m/2−1) derived polygons if

f∗i = f2i,

f̃∗i = (f2i−1 + [f2i−2 − f2i]) ∩ (f2i+1 + [f2i − f2i+2]),

s∗i = (s2i−1 + [f2i−2 − f2i]) ∩ (s2i+1 + [f2i − f2i+2]),

holds. [v] denotes the 1-dimensional linear subspace of a nonzero vector v. For an
illustration of the derived polygons see Figure 2. Note that all three derived polygons
F ∗, F̃ ∗, and S∗ are pairwise parallel polygons. The choice of the indices of the vertices
to obtain the derived polygons is not significant and works just as well for the index
shift i → i + 1. In that case we will denote the derived polygons by F ∗∗, F̃ ∗∗, and S∗∗

instead. It will be clear that all statements which hold for the derived polygons with
‘ ∗ ’ also hold for those with ‘ ∗∗ ’.

In the quadrilateral case (i.e., m = 4) the derived polygons degenerate. F ∗ is a two-

sided polygon whereas F̃ ∗ and S∗ consist of two parallel lines as illustrated by Figure 2
(right).

The relation between the mixed area of F and S and their derived polygons F ∗ and
S∗ is the content of the following theorem. For a proof see [13, Theorem 6].

Theorem 1. Let F and S be a pair of parallel polygons with an even number of vertices,
and let F ∗, S∗, F ∗∗, and S∗∗ be the derived polygons. Then the oriented mixed area is
the same for all three pairs: area(F, S) = area(F ∗, S∗) = area(F ∗∗, S∗∗).

2.2. Pairs of parallel polygons with HF = −1. The following theorem describes a
sufficient geometric condition for HF = −1. As we have seen before (cf. Equation (5))
HF = −1 is equivalent to area(F, F − σ(F )) = 0. Since the following theorems are
not depending in any way on σ(F ) being a polygon of a Gaussian image of some mesh
but rather on the fact that σ(F ) is a polygon parallel to F , we will replace σ(F ) by
S. Nonetheless, we will use the abbreviation HF = −1 for area(F, F − S) = 0 which is
coherent with the motivation of this work.

Theorem 2. Let F = (f0, . . . , fm−1) and S = (s0, . . . , sm−1) be two parallel m-gons,

where m is even, such that the derived polygons F ∗, F̃ ∗ and S∗ exist. Then HF = −1 if
S∗ and F̃ ∗ are equal up to translation.
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F̃ ∗

F F ∗

f̃∗1

f̃∗0

f̃∗2

f1

f2

f0

f3

f4

f5

S
S∗

s∗1

s∗0

s∗2

s1

s2
s3

s4

s5
s0

F

F ∗

f0

f1

f2

f3

S

F̃ ∗ = S∗

s0

s1

s2

s3

Figure 2. Left: A pair of parallel hexagons F and S such that HF = −1. The derived polygons F̃ ∗ and
S∗ are equal up to translation (see Theorem 3). Right: A pair of parallel quadrilaterals F and S such
that HF = −1 (see Theorem 4). The derived polygon F ∗ of a quadrilateral consists just of the diagonal

of F . F̃ ∗ and S∗ degenerates to a pair of parallel lines.

Proof. We have

area(F, S) = area(F ∗, S∗) = area(F ∗, F̃ ∗) = area(F, F ).

For the first and last equality we use Theorem 1. For the second equality w.l.o.g. we
can use S∗ = F̃ ∗ from the assumptions since translations leave the mixed area invariant.
The third equality follows again from Theorem 1, since replacing S by F in Theorem
1 implies replacing S∗ by F̃ ∗. Bilinearity of area(· , ·) yields area(F, F − S) = 0 and
therefore HF = −1. �

One verifies easily by simple examples that the condition in Theorem 2, i.e., that the
two derived polygons S∗ and F̃ ∗ are equal, is not necessary for HF = −1. However, for
quadrilaterals and hexagons we do have a geometric ‘if and only if’ characterization.

Theorem 3. Let F = (f0, . . . , f5) and S = (s0, . . . , s5) be two parallel hexagons such

that the derived polygons F ∗, F̃ ∗ and S∗ exist (see Figure 2 left). Then HF = −1 if and

only if S∗ and F̃ ∗ are equal up to translation.

Proof. Theorem 2 yields HF = −1 if F̃ ∗ and S∗ are equal up to translation. Thus, it
remains to derive equality of F̃ ∗ and S∗ up to translation from HF = −1. Bilinearity
of area(· , ·) yields HF = −1 ⇔ area(F, F ) = area(F, S). Further, Theorem 1 yields

area(F, F ) = area(F ∗, F̃ ∗), since replacing S by F in Theorem 1 implies replacing S∗ by

F̃ ∗. Alltogether we obtain

area(F ∗, S∗) = area(F, S) = area(F, F ) = area(F ∗, F̃ ∗),

which yields area(F ∗, S∗ − F̃ ∗) = 0. It is easy to see that the mixed area of two parallel
triangles vanishes if and only if at least one of these degenerates to a single point. Now,
F ∗ and S∗ − F̃ ∗ are two parallel triangles with vanishing mixed area. Since F ∗ is a
nondegenerate triangle the triangle S∗ − F̃ ∗ degenerates to a single point which implies
S∗ = F̃ ∗. �

Analogous to the case m = 6 of Theorem 3 we can give a geometric characterization
for the quadrilateral case m = 4. Note that the derived polygons F̃ ∗ and S∗ degenerate
to two pairs of parallel lines (see Figure 2 right). Here, equality of F̃ ∗ and S∗ up to
translation means that the two pairs of parallel lines have the same distance.
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fi

fi+1fi+1fi+1fi+1fi+1fi+1fi+1fi+1fi+1fi+1fi+1fi+1fi+1fi+1fi+1fi+1fi+1

fi+2

si+1si+1si+1si+1si+1si+1si+1si+1si+1si+1si+1si+1si+1si+1si+1si+1si+1

pi

p−i+1

si+2si
F ∗

F̃ ∗ = S∗

Figure 3. Left: Schematical image of the discrete Cauchy problem described in 3.1. Right: Illustration
of a part of two parallel polygons F and S together with their derived polygons F ∗, F̃ ∗ and S∗ after an
appropriate translation such that F̃ ∗ = S∗. Since fi − fi+1 is parallel to si − si+1 it is easy to see that
p−i+1 − pi = fi+2 − fi and pi − si+1 = fi − fi+1 and p−i+1 − si+1 = fi+2 − fi+1.

Theorem 4. Let F = (f0, . . . , f3) and S = (s0, . . . , s3) be two parallel quadrilaterals

and let F̃ ∗ and S∗ be the derived polygons which degenerate to pairs of parallel lines (see

Figure 2 right). Then HF = −1 if and only if S∗ and F̃ ∗ are equal up to translation.

Proof. The proof is analogous to the hexagonal case (Theorem 3), but with pairs of
parallel lines as derived polygons instead of triangles. �

3. Hexagonal meshes as discrete cmc surfaces

We take up Theorem 3 which characterizes pairs of parallel hexagons with area(F, F−
S) = 0, or equivalently HF = −1. We derive a construction for a polygon S from a given
polygon F such that HF = −1. The other direction i.e., from S to F , seems to be much
more complicated and a direct construction is still missing. We can only state another
indirect characterization which can be modified into an objective function of a nonlinear
optimization problem to generate examples. An illustration of a hexagonal cmc surface
which is a discrete surface of revolution can be found in Figure 4.

3.1. Construction of pairs of hexagons with HF = −1. Given any hexagon F it is
easy to derive a construction from Theorem 3 to generate a quadrilateral S such that
area(F, F −S) = 0. We only have to choose three points, say s1, s3, s5 on F̃ ∗ (we choose
the even labeled vertices as derived polygon F ∗), draw lines parallel to f0 − fi, f2 − fi,
and f4− fi through si (i = 1, 3, 5) and intersect those lines. Up to translation we obtain
a three-parameter family of solutions for S. For an illustration see Figure 2 (left).

This construction can be used to test whether or not a mesh M is a discrete cmc
surface, namely whether or not σ(M) exists and approximates a sphere. The existence
depends of course on the combinatorics and topology of the mesh but in general we have
much more degrees of freedom then in the quadrilateral case (see Section 4). Just by
counting degrees of freedom one comes to the conclusion that any hexagonal meshes with
regular combinatorics, i.e., like the honeycomb pattern, can serve as Gaussian image of
a hexagonal cmc mesh. That is, there is no integrability condition to be fulfilled.

This has an immediate consequence for the following discrete Cauchy problem. Let
us assume we are given two strips of parallel hexagons, one arbitrarily lying in R3

and the other one being part of a hexagonal mesh with honeycomb combinatorics and
approximating the sphere, as indicated in Figure 3 (left). Then there is a unique discrete
cmc surface containing the first strip.
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In the following we are going to derive a statement for arbitrary m-gons (m even)
which is a characterization only in the hexagonal case.

Let us assume we are given a pair of parallel m-gons F and S with an even number of
vertices and such that the derived polygons S∗ and F̃ ∗ are congruent. Then Theorem 2
yields area(F, F − S) = 0. Recall that in the hexagonal case area(F, F − S) = 0 implies

congruence of S∗ and F̃ ∗ (see Theorem 3). We set

pi := (fi + [fi+2 − fi]) ∩ (si + [si − si+1]),

p−i := (fi+1 + [fi−1 − fi+1]) ∩ (si + [si − si+1]),
(7)

for i even only. It is now easy to see that

p−i+1 − pi = fi+2 − fi,
pi − si+1 = fi − fi+1,

p−i+1 − si+1 = fi+2 − fi+1,

which is illustrated by Figure 3 (right). This immediately implies the following propo-
sition.

Proposition 5. Given a polygon S and even labeled points pi, p
−
i , qi with

pi, p
−
i ∈ si + [si − si+1],

qi = (pi + [pi − p−i+1]) ∩ (pi−2 + [pi−2 − p−i−1]),

pi − qi = p−i+1 − qi+2.

Then there exists a polygon F parallel to S with even labeled vertices fi = qi and such
that area(F, F − S) = 0.

The assumptions of Proposition 5 imply F̃ ∗ = S∗ up to translations and therefore
area(F, F − S) = 0 (see Theorem 2). Thus, Proposition 5 is an ‘if and only if’ charac-
terization only for hexagons and quadrilaterals.

4. Quadrilateral meshes as discrete cmc surfaces

At the beginning of this section we focus on a pair of corresponding faces F and σ(F )
where we are going to use Theorem 4 to derive a construction to obtain a polygon σ(F )
from a given face F such that HF = −1. Further, we will use these properties to obtain
the other and more important direction namely generating F from σ(F ). Then we draw
our attention to entire meshes and present a geometric integrability condition for a mesh
being the Gaussian image of a discrete cmc surface. Afterwords we narrow our viewpoint
to the setting of circular meshes.

4.1. Construction of pairs of quadrilaterals with HF = −1. Given any quadrilat-
eral F it is easy to derive a construction form Theorem 4 to generate a quadrilateral S
such that area(F, F − S) = 0. Let us take the even labeled vertices as derived polygon

F ∗. Thus, we only have to choose two points s1 and s3 on F̃ ∗, then draw lines parallel
to f0 − fi and f2 − fi through si (i = 1, 3) and intersect those lines consistently. Up
to translation we obtain a one-parameter family of solutions for S. The construction is
illustrated by Figure 2 (right).
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Figure 4. A hexagonal cmc surface which discretizes a nodoid. The meridian curve of the smooth
nodoid is a so called nodary curve which occurs as the locus of a focal point of a hyperbola which rolls
along a straight line. In the Figure on the right we can check the meridian polygon of the discretized
nodoid against the smooth nodary curve. A visual inspection suggests convergence of the discrete object
to its smooth counterpart in an appropriate limit, but a convergence proof is still missing in that setting.
For further details on this Figure see Section 6.

Let us recall the meaning of F and S on our discrete surfaces. F represents a face
on the discrete surface M whereas S plays the role of the corresponding face σ(F ) of
the Gaussian image mesh σ(S). Thus, the construction described before is only suitable
for checking whether or not a mesh M is a discrete cmc surface. Namely whether or
not its Gaussian image σ(M) exists and approximates the sphere S2. We note that
the existence of σ(M) is equivalent to the integrability of Equation (6) and therefore
equivalent to the property of M being a Koenigs mesh.

To construct F out of S such that area(F, F − S) = 0 might not be so obvious at a
first glance. Thus, we need some preparations to obtain such a geometric construction.
It is clear from Theorem 4 that in the case of HF = −1 the derived polygons F̃ ∗ and
S∗ are equal up to translation as well as F̃ ∗∗ and S∗∗. Therefore, we can translate
the quadrilaterals until F̃ ∗ equals S∗ and F̃ ∗∗ equals S∗∗ as shown in Figure 5. In our
translated setting we define

pi := (fi + [fi − fi+2]) ∩ (si + [si−1 − si]),
p−i := (fi−1 + [fi−1 − fi+1]) ∩ (si + [si−1 − si]).

Note that the just defined notions vary from those which we defined in (7) for the general
(non-quadrilateral) case. We derive from Figure 5 (left) that the triangles f0, s0, p

−
1 and

f1, p1, s1 are congruent which yields s0 − p−1 = p1 − s1. Analogously (Figure 5 right)
the triangles f1, s1, p

−
2 and f2, s2, p2 are congruent which yields s1− p−2 = p2− s2. More

generally speaking: We have points p0, . . . , p3 and p−0 , . . . , p
−
3 which fulfill the following



12 CHRISTIAN MÜLLER

F̃ ∗=S∗

F̃ ∗∗=S∗∗

F ∗F ∗∗

f0

s0

p−1

f1

f2

f3

s1

s2

s3

p1

p−3

p3

F̃ ∗=S∗

F̃ ∗∗=S∗∗

F ∗
F ∗∗

f0

s0

p0

f1 s1

p−2

f2

s2

p2

f3

p3

p−0

p−1

p1

s3

p−3

Figure 5. We translate the two parallel quadrilaterals F = (f0, . . . , f3) and S = (s0, . . . , s1) such that

the corresponding pairs of derived polygons coincide, i.e., such that F̃ ∗ coincides with S∗ and F̃ ∗∗ with
S∗∗. Thus, equally dashed lines are parallel. We conclude that equally shaded triangles in each figure
are congruent triangles which implies s0 − p−1 = p1 − s1 and f1 − f0 = p1 − s0 or more generally (10)
and (11).

properties (indices taken modulo 4)

pi, p
−
i ∈ si + [si−1 − si],(8)

{p−0 , p1, p
−
2 , p3} and {p0, p−1 , p2, p

−
3 } are collinear, and(9)

si − p−i+1 = pi+1 − si+1 for all i = 0, . . . , 3.(10)

In the following theorem we characterize the configuration of points, lines, incidences
and distances given by (8) – (10) in terms of elementary geometry in a more elegant
way.

Theorem 6. Let S = (s0, . . . , s3) be a quadrilateral and let p0, . . . , p3 and p−0 , . . . , p
−
3 be

points lying on respective edges of S as specified by (8). Then property (10) is equivalent
to the existence of a hyperbola through s0, . . . , s3 with asymptotes p1 + [p1 − p3] = p−0 +
[p−0 −p

−
2 ] and p0+[p0−p2] = p−1 +[p−1 −p

−
3 ] as illustrated by Figure 6 (left). The hyperbola

can degenerate into a pair of straight lines which then consists of two diagonals of S or
a pair of opposite edges.

Proof. First, we need to recall some properties from elementary geometry about hy-
perbolas. Let us consider an arbitrary hyperbola together with an arbitrary straight
line which intersects the hyperbola in two points A1, A2. The points of intersection
of the line with the corresponding asymptotes are denoted by B1, B2. Then we get
A1 − B1 = B2 − A2 (independent from the labeling). Therefore, property (10) follows
immediately from the existence of a hyperbola with the described asymptotes.

Conversely, we start with a quadrilateral S such that Equation (10) holds. Again,
elementary geometry tells us that there is a unique hyperbola which has two given
lines as asymptotes and which passes through one given point. As asymptotes we take
p1 + [p1 − p3] and p0 + [p0 − p2] and for the point we take s0. It is now easy to see that
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s2s2s2s2s2s2s2s2s2s2s2s2s2s2s2s2s2

s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3

p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2
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−
0p
−
0p
−
0p
−
0p
−
0p
−
0p
−
0p
−
0p
−
0p
−
0p
−
0p
−
0p
−
0p
−
0p
−
0p
−
0

p−2

p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3
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Figure 6. Left: Illustration of Theorem 6: The vertices of a quadrilateral S = (s0, . . . , s3) and points
p0, . . . , p3 and p−0 , . . . , p

−
3 fulfill properties (8) – (10) if and only if there is a hyperbola through the

vertices of S and with p1 + [p1− p3] = p−0 + [p−0 − p
−
2 ] and p0 + [p0− p2] = p−1 + [p−1 − p

−
3 ] as asymptotes.

Center: A quadrilateral F = (f0, . . . , f3) with a circumcircle. The inscribed angle theorem implies that
the marked angles are equal. Right: A quadrilateral S = (s0, . . . , s3) such that, together with F (center
image), we have area(F, F −S) = 0, or equivalently, such that HF = −1. The sides of the corresponding
angles which are marked in F and S are pairwise parallel. Thus, the marked angles are equal. Therefore,
the inscribed angel theorem implies that the four points p0, p

−
0 , p2, p

−
2 have a circumcircle too.

due to the facts from elementary geometry which we used for the other direction of this
proof all the other three vertices s1, s2, s3 have to lie on this hyperbola as well. �

We immediately see that Theorem 6 yields the construction we are looking for, namely
to generate F from a given quadrilateral S = σ(F ) such that HF = −1. We could even
do this construction by means of compass and ruler, as we will see. Given a quadrilateral
S, we choose an arbitrary direction for one asymptote, i.e., geometrically speaking we
choose a point at infinity. The hyperbola through the four points of S and through that
point at infinity has two asymptotes which intersect the edges of S in points pi and p−i .

With the help of Figure 5 we obtain p−2 − f1 = s2 − f2 = p3 − f3 which implies that
the diagonal vector f1 − f3 equals p−2 − p3 and p1 − p−0 , and analogously f2 − f0 equals
p2 − p−1 and p−3 − p0. Further, we obtain

(11) fi − fi−1 = si − p−i = pi − si−1,

i.e., the edges and diagonals of F are already directly determined by S, pi and p−i . Thus,
we can easily construct a one parameter family of polygons F such that area(F, F−S) = 0
or equivalently HF = −1.

4.2. Integrability condition for Gaussian images of cmc surfaces. We come back
to the question for which meshes S we could get a discrete cmc surfaceM with σ(M) =
S. In other words, which meshes S are suitable for Gaussian image meshes of a discrete
cmc surface. We already encountered an algebraic characterization with Equation (6):
There exists a discrete cmc surface M with faces F to a given Gaussian image mesh S
with faces S if and only if there exists a real-valued function ν defined on the vertices
of S such that Equation (6) holds for all pairs of corresponding faces.

The following theorem presents the equivalent geometric version of this integrability
condition. It answers the question which meshes S together with points pi and p−i
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permit the transformation (11) from S to M, i.e., from the discrete Gaussian image to
the corresponding discrete cmc surface.

Theorem 7 (Geometric integrability condition). Let S be a quadrilateral mesh, i.e.,
with the combinatorics of a quad-graph G, and such that S approximates a part of a
sphere. Then each of the following statements is equivalent to the others.

(i) S is the Gaussian image mesh of a discrete cmc surface.
(ii) There exists a real-valued function ν : V (G)→ R\0, i.e., defined on the vertices,

such that the difference equation (6) is integrable.
(iii) For all pairs S1, S2 of adjacent faces of S the associated points pi, p

−
i of S1 and

S2 which fulfill properties (8) – (10) coincide on the common edge.
(iv) For all faces S of the mesh S there is a hyperbola going through all four vertices

with the following property: For adjacent faces the corresponding asymptotes are
intersecting on the common edge, as illustrated by Figure 7.

Proof. Statement (ii) is just a rewriting of (i) into the setting of Christoffel duality.
For details see [4, Section 4.5]. The equivalence of (iii) and (iv) follows directly from
Theorem 6.
(i) ⇒ (iii): There is a discrete cmc surface M whose corresponding Gaussian image is
S. Therefore, there exist points pi and p−i for each face S fulfilling properties (10) and

(11). I.e., pi = si−1 + fi − fi−1 and p−i = si − fi + fi−1. We conclude that those pairs of

points pi, p
−
i only depend on those vertices of S and F which lie on the common edge.

Thus, pi, p
−
i are independent of the exact face they are assigned to. That is why those

points coincide on common edges which yields (iii).
(iii)⇒ (i): For each face S of S we use the transformation (11) to obtain a face F . Since
corresponding points pi and p−i on common edges of adjacent faces coincide we obtain
the same edge length from (11) for their common edge no matter which face we use for
computation. Therefore, the so generated faces close up to a discrete cmc surface M
which implies (i). �

Remark 8. We would like to mention here that Theorem 7 is still true if S does not
approximate a sphere. However, a discrete constant mean curvature surface with respect
to some arbitrary Gaussian image would take us too far away from the smooth setting.

4.3. Circular cmc meshes. Discrete Gaussian images can be understood as polyhedral
surfaces approximating the sphere. Thus, one of the natural ways to define such a
Gaussian image is as a polyhedral surface inscribed to the unit sphere, i.e., where all
vertices are contained in the sphere. In the quadrilateral case this requirement implies
two things. First, all faces of all parallel meshes have a circumcircle and second, all
parallel meshes possess vertex offset meshes (see e.g., [11, 16]). Those meshes are called
circular meshes. It turns out that in the circular mesh case our discrete cmc surfaces are
discrete isothermic surfaces, as introduced in [2] and extensively studied with respect
to discrete cmc surfaces in [6, 8]. In [8] the ‘loop group method’ is used to obtain cmc
surfaces from discrete holomorphic functions. The approach in [6] is via Christoffel- and
Darboux transformations with the following main result. A discrete isothermic net M
is cmc (with mean curvature H) if and only if there is a Christoffel transform M∗ of



ON DISCRETE CONSTANT MEAN CURVATURE SURFACES 15

Figure 7. Illustration of the geometric integrability condition of Theorem 7 for quadrilateral meshes.
Four quadrilaterals around one vertex on the left hand side and three quadrilaterals around one vertex
on the right hand side. The vertices of each quadrilateral are lying on a hyperbola. The integrability
condition is fulfilled if and only if the asymptotes of the hyperbolas corresponding to adjacent faces are
intersecting on the common edge. Such meshes S can serve as discrete Gaussian images of a discrete
cmc surface M, i.e., σ(M) = S.

M at constant distance, i.e., ‖fi − f∗i ‖2 = 1/H2 for all pairs of corresponding vertices
fi ∈M and f∗i ∈M∗.

In the following we are looking at discrete Gaussian images of cmc surfaces and obtain
the following geometric characterization.

Proposition 9. Let S be a quadrilateral with a circumcircle and let p0, . . . , p3 and
p−0 , . . . , p

−
3 be points fulfilling (8) and (9). Then the following are equivalent.

(i) p0, . . . , p3 and p−0 , . . . , p
−
3 fulfill (10), i.e., si − p−i+1 = pi+1 − si+1.

(ii) Each of the two quadrilaterals p−1 , p1, p
−
3 , p3 and p0, p

−
2 , p2, p

−
0 has a circumcircle,

and all three occurring circles have the same center.

Proof. (i) ⇒ (ii): First, we construct F , up to translation, with formula (11). F is a
quadrilateral which is parallel to S. Elementary counting of angles in a quadrilateral
implies that for two edge wise parallel quadrilaterals either both have a circumcircle
or none of them. Hence, since S has a circumcircle so does F . The diagonals of F
have directions p1 − p3 and p−1 − p

−
3 . The inscribed angle theorem implies that the two

angles ∠(f2 − f1, p−3 − p
−
1 ) and ∠(f3 − f0, p3 − p1) are equal (see Figure 6 center and

right). The same angles appear for ∠(p2 − p−2 , p2 − p0) and ∠(p−0 − p0, p
−
0 − p

−
2 ), which

yields the existence of a circumcircle for p0, p
−
2 , p2, p

−
0 . The center of the circumcircle of

p0, p
−
2 , p2, p

−
0 lies on the perpendicular bisectors of p0p

−
0 and p2p

−
2 which are the same as

the perpendicular bisectors of s0s3 and s1s2, respectively, since (10) has to be fulfilled.
Analogously, we can show the same for p−1 , p1, p

−
3 , p3.

(ii) ⇒ (i): We have to show (10). This is obvious because of the existence of concentric
circles, one containing si, si+1 and the other one containing pi+1, p

−
i+1 (see Figure 6

right). �
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Figure 8. The stereographic projection of a quadrilateral S = (s0, . . . , s3) from the sphere to the
quadrilateral (w0, . . . , w3) in C. p1 is being projected to p̃1 = λ1w0 + (1 − λ1)w1. This λ1 plays a role
in the Weierstrass type representation for discrete cmc surfaces, see Theorem 11.

5. A discrete Weierstrass type representation for discrete cmc surfaces

The classical Weierstrass representation formula is a parametrization of minimal sur-
faces and establishes a bijective relation between minimal surfaces and holomorphic
functions. As references see e.g., [5, 12].

In time the Weierstrass representation has been generalized in many aspects. One of
these generalizations has been made by K. Kenmotsu [9, 10] to describe cmc surfaces.
In contrast to the classical Weierstrass representation, Kenmotsu’s version establishes a
bijective relation between cmc surfaces and harmonic maps on the sphere. A map n to
the sphere is harmonic, if ∆n ⊥ TnS2 where ∆ is the Laplace operator. Equivalently,
after applying the stereographic projection p, we obtain harmonicity of w := p ◦n if and
only if

(12) wzz −
2w

1 + |w|2
wzwz = 0,

where z = x+iy and where wz, wz denote Wirtinger’s derivatives, i.e., wz = 1
2(∂w∂x−i

∂w
∂y ),

and wz = 1
2(∂w∂x + i∂w∂y ). K. Kenmotsu [10] proved the following theorem.

Theorem 10 (Weierstrass type representation for cmc surfaces). Let f : U ⊂ C → R3

be a conformal parametrization and for any function w : U → C and H = const. 6= 0 we
set

ψ :=
−2

H
· 1

(1 + |w|2)2
· wz.

Then f is a cmc surfaces with constant mean curvature H if and only if w is a harmonic
function, i.e., w fulfills (12), and

f(z) = Re

∫ z

0
ψ(1− w2, i(1 + w2), 2w) dζ.

Then, w is the stereographic projection of the Gauss map of f .

5.1. Discrete Weierstrass type representation for cmc surfaces. The aim of the
present paragraph is to discretize the smooth Weierstrass type representation from The-
orem 10. The idea is similar to the discretization of the classical Weierstrass represen-
tation for discrete minimal surfaces in the setting of discrete isothermic surfaces by A.I.
Bobenko and U. Pinkall [2].
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We start with a quadrilateral mesh S whose vertices are contained in the unit sphere
S2 and which fulfills the equivalent conditions of Theorem 7. Consequently, S is the
Gaussian image mesh of a circular cmc surfaceM. Further, Theorem 7 implies that any
mesh S which is the Gaussian image of a discrete cmc surface comes with points pk and
p−k on each edge fulfilling (8) – (10). Now we use indices labeled by k instead of i not

to get confused with the complex number i =
√
−1. The stereographic projection maps

the vertices sk of S to vertices wk of a mesh W contained in C. The central projection
which extends the same stereographic projection to the three dimensional real projective
space maps pk from the line spanned by sk−1sk to a point p̃k on the line spanned by
wk−1wk, see also Figure 8. Thus, p̃k is an affine combination of wk−1 and wk

(13) p̃k = λkwk−1 + (1− λk)wk,

for some λk ∈ R. Note that W is the stereographic projection of the Gaussian image S
of a cmc surface M. Consequently in analogy to Theorem 10 we can call the mesh W
discrete harmonic.

Theorem 11 (Weierstrass type representation for discrete cmc surfaces). Let W be a
discrete harmonic, circular mesh with quad-graph combinatorics in C. Further, let W
together with some given points p̃k and values λk for each edge fulfill Equation (13).
Then the edge vectors of the corresponding discrete cmc surface M with constant mean
curvature H 6= 0 can be expressed by

δfk−1 = Re
[
Ψ (1− wk−1wk, i(1 + wk−1wk), wk−1 + wk)

]
,

where

Ψ =
−2

H
· (1− λk)
λk(1 + |wk−1|2)2 + (1− λk)(1 + |wk|2)(1 + |wk−1|2)

· (wk − wk−1).

Proof. First, we show the representation formula for H = −1. By Equation (4) a scaling
of the discrete cmc surface by a factor 1/H then yields a discrete cmc surface with
constant mean curvature H.

The idea of the proof is as follows. We start with an edge wk−1wk from W which
carries the point p̃k

p̃k = λkwk−1 + (1− λk)wk,

where λk is determined by (13). We have to compute the stereographic projection of
wk−1 and wk to the sphere i.e., we get vertices sk−1 and sk of a mesh S in the unit
sphere. We use the corresponding central projection to project p̃k to the line spanned by
sk−1sk to get pk (see Figure 8). Then we easily obtain the edge vectors of our discrete
cmc surface we are looking for via

δfk−1 = pk − sk−1,

where we used Equation (11).
Let us now move to the computation of δfk−1. We determine pk as affine combination

of sk−1 and sk, i.e., there is a γk such that pk = γksk−1+(1−γk)sk and therefore δfk−1 =
(1 − γk)δsk−1. Thus, we compute the central projection of pk = γksk−1 + (1 − γk)sk
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Figure 9. A discrete Delaunay surface (left) and a discrete Wente torus (right). For a description and
further details see Section 6.

and compare it with p̃k = λkwk−1 + (1 − λk)wk. After a lengthy but straightforward
computation we obtain for the coefficient γk

(14) 1− γk =
(1− λk)(|wk|2 + 1)

λk(|wk−1|2 + 1) + (1− λk)(|wk|2 + 1)
.

If we write the stereographic projection as

sk =
( 2wk
|wk|2 + 1

,
|wk|2 − 1

|wk|2 + 1

)
∈ C× R ∼= R3,

we obtain

δsk−1 =
(wk−1(wk−1wk − 1)− wk(wk−1wk − 1)

(|wk−1|2 + 1)(|wk|2 + 1)
,

|wk|2 − |wk−1|2

(|wk−1|2 + 1)(|wk|2 + 1)

)
.

We compute the real and imaginary part of the first component of δsk−1 which corre-
spond to the x and y components of δsk−1 as regarded as vector in R3. Since

Re
(
wk−1(wk−1wk − 1)− wk(wk−1wk − 1)

)
= Re

(
(wk − wk−1)(1− wk−1wk)

)
Im
(
wk−1(wk−1wk − 1)− wk(wk−1wk − 1)

)
= Re

(
(wk − wk−1)(wk−1 + wk)

)
we can write

δsk−1 = Re
[ 2(wk − wk−1)

(|wk−1|2 + 1)(|wk|2 + 1)
(1− wk−1wk, i(1 + wk−1wk), wk−1 + wk)

]
.

Multiplying the last equation by 1− γk from (14) concludes the proof. �

6. Examples

6.1. Discrete sphere. A very simple example of a cmc surface would be a sphere. In
the Weierstrass type representation, Theorem 10, the harmonic map w(z) = −1/z and
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the constant H = 1 lead to the rational parametrization

(15) f(x+ iy) =
( 2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
of the unit sphere. In the discrete analogue, Theorem 11, the discrete harmonic mesh
W with Z2 combinatorics is given by vertices wm,n = −1/(m − in). For ‘λk’ we use
the notation λmm,n for the edge wm−1,nwm,n and λnm,n for the edge wm,n−1wm,n. We set
λmm,n = λnm,n = 0 for all m,n. Replacing wk−1 by wm,n−1 and wk by wm,n we obtain

Ψ =
−2(wm,n − wm,n−1)

(1 + |wm,n|2)(1 + |wm,n−1|2)
=

2(m− 2mn+ i(n2 − n−m2))

(1 +m2 + n2)(2 +m2 − 2n+ n2)
,

and further

‘δfk−1’ = fm,n − fm,n−1 = f(m+ in)− f(m+ i(n− 1)),

with f(·) from Equation (15). I.e., the difference vectors δfk−1 correspond to difference
vectors of the parameter lines of the smooth parametrization f of the unit sphere. Fur-
ther, if we choose f0,0 = (0, 0,−1) as initial value for the integration of the difference
equation of Theorem 11, we obtain fm,n = f(m+ in) as discrete parametrization of the
unit sphere.

6.2. Discrete cylinder. Another simple example of a cmc surface is a cylinder. For
w(x+ iy) = cos(x) + i sin(x) and H = 1 we obtain the parametrization

f(x+ iy) =
(

sin2 x

2
,−sinx

2
,−y

2

)
of the cylinder with equation (x− 1/2)2 + y2 = 1/4. The Gaussian image of a cylinder
is just the great circle. In the discrete setting we take a strip of congruent rectangles
around the equator as discrete Gaussian image mesh. We therefore construct a mesh W
with Z2 combinatorics as follows. Let c > 1, ϕ > 0, and

wm,n =

{
c exp(imϕ) for even n,
1
c exp(imϕ) for odd n.

Further, let

λnm,n =

{
0 for even n,
−2
c2−2

for odd n.

and λmm,n = 0 for all m,n. First, we consider an edge defined by vertices with indices
(m,n − 1) and (m,n) where n is even. Then λk = λnm,n = 0, wk−1 = wm,n−1 =
exp(imϕ)/c, wk = wm,n = c exp(imϕ), and

Ψ =
2c(c2 − 1) exp(−imϕ)

(1 + c2)2
and fm,n − fm,n−1 =

(
0, 0,

2− 2c2

1 + c2

)
,

which is a vector parallel to the z axis and independent of m. Next, we consider an
edge defined by vertices with indices (m,n − 1) and (m,n) where n is odd. Then
λk = λnm,n = −2/(c2 − 2), wk−1 = wm,n−1 = c exp(imϕ), wk = wm,n = exp(imϕ)/c,
which yields the exact same Ψ and difference fm,n − fm,n−1 as before. I.e., the discrete
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parameter lines in ‘n’-direction are straight lines parallel to the z-axis. For the other
type of edges namely (m− 1, n) and (m,n) we get for arbitrary n

fm−1,n − fm,n =
2c

1− c2
[ cos(m− 1)ϕ

sin(m− 1)ϕ
0

−
 cosmϕ

sinmϕ
0

],
which are horizontal vectors rotating about ϕ around the z axis as m increases by 1. We
conclude that fm,n is a discrete cylinder of revolution.

6.3. Discrete nodoid as quadrilateral mesh. Figure 9 (left) shows a discrete Delau-
nay surface. Delaunay surfaces are surfaces of revolution with constant mean curvature.
The surfaces of revolution which have non vanishing mean curvature are the spheres,
cylinders, nodoids and unduloids. The discretization in the picture corresponds to a
nodoid. The meridian curve can be seen as a discretization of the locus of the focus
of a hyperbola while rolling on a straight line. See also [7] for discrete rotational cmc
surfaces. The picture in Figure 9 (left) was constructed rather directly. We start with
a regular polygon on a circle and rotate it about an axis through its center. The so
generated mesh is our Gaussian image mesh S. We choose a point, say p0 on one edge
s0s1 of S and successively construct all the other points pi and p−i on all faces such that
the integrability condition (Theorem 7) for S being a Gaussian image mesh of a discrete
cmc surface is fulfilled. It turns out that for rotational symmetric meshes this is an easy
construction.

Figure 4 shows a hexagonal mesh which assumes the shape of a nodoid. We construct
this example as follows: We start with a rotational symmetric hexagonal mesh S with
vertices in the sphere and construct a meshM parallel to S minimizing energies with the
following goals: Constant mean curvature HF = 1 for all faces of the mesh, fairness of
the mesh, and same discrete rotational symmetry as S. The discrete cmc surface which
we get discretizes a smooth nodoid but with planar hexagons instead of quadrilaterals.
Figure 4 (right) shows in addition a smooth nodary curve and indicates how close the
discrete nodoid approximates the smooth one.

6.4. Discrete Wente torus. Figure 9 (right) shows a discrete Wente torus. A Wente
torus is a compact cmc surface. H. Wente [21] was the first to show the existence of a
compact constant mean curvature surface in R3 which is not a sphere. The picture in
Figure 9 (right) is the result of an optimization process because a construction via the
discrete Weierstrass type representation is still missing and remains future research.

The initialization mesh of the optimization was constructed with a smooth parametriza-
tion of the Wente torus. The optimization process uses objective functions which op-
timize for planarity of all faces, fairness of the mesh, and the connection (11) with an
appropriate Gaussian image mesh.
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