
PLANAR DISCRETE ISOTHERMIC NETS OF CONICAL TYPE

CHRISTIAN MÜLLER

Abstract. We explore a specific discretization of isothermic nets in the plane which
can also be interpreted as a discrete holomorphic map. The discrete orthogonality of
the quadrilateral net is achieved by the so called conical condition imposed on vertex
stars. That is, the sums of opposite angles between edges around all vertices are equal.
This conical condition makes it possible to define a family of underlying circle patterns
for which we can show invariance under Möbius transformations. Furthermore, we use
the underlying circle pattern to characterize discrete isothermic nets in the projective
model of Möbius geometry, and as Moutard nets in homogeneous coordinates in relation
to the light cone in this model. We further investigate some examples of discrete
isothermic nets and apply the Christoffel dual construction to obtain discrete minimal
surfaces of conical type. Discrete differential geometry and conical nets and isothermic
nets and minimal surfaces

1. Introduction and preliminaries

1.1. Introduction. The focus of the present paper is the study of discrete isothermic
nets in C which in the smooth theory (assuming analyticity) are holomorphic. Various
applications have brought up the need of developing mathematical methods to make
complex analysis accessible to computational techniques. A very extensive source focus-
ing on that aspect mainly using numerical methods to PDE problems is [10]. Another
approach to discretize holomorphic maps can be made with circle packings. In that
setting W.P. Thurston (1985) formulated a discrete version of the Riemann mapping
theorem and conjectured convergence to the smooth theorem in the limit which was
then proved in different ways by [9, 19]. A text book on the circle packing approach
which also considers algorithmic issues is [21]. Another way of discretizing complex
analysis is via circle patterns [3]. That is, the circles are not touching but intersect-
ing in a meaningful way. There is also a notion of holomorphic maps in the theory of
discrete integrable systems defined with the complex cross-ratio [2] or with orthogonal
circle patterns [1].

In the present paper we study discrete isothermic nets represented by a quadrilateral
net in C, i.e., where all faces are quadrilaterals. In our case the property of discrete
orthogonality is a condition defined on vertex stars rather than on faces. For reasons
explained in Section 2 we call those type of isothermic nets to be of conical type.

E.B. Christoffel [6] constructs smooth isothermically parametrized minimal surfaces
from isothermic parametrizations of the sphere. Here, isothermic parametrization means
that the surface is parametrized by conformal curvature lines. Clearly, any curve on the
sphere is a curvature line. Consequently, the property of isothermicity reduces to a
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Figure 1. Left: Doliwa’s definition [8] of Koenigs lattice. All six points of intersection f+−i, f
+,

f+i , f−−j , f
−, f−j of consecutive opposite edges lie on a conic c. Right: A conical net. All four

quadrilaterals around each vertex touch a common cone of revolution.

conformally parametrized sphere. In the case where the parametrizations are analytic
they correspond exactly to holomorphic maps on the Riemann sphere Ĉ = C ∪ {∞}.
Discrete versions of Christoffel’s construction of minimal surfaces have already been
considered thoroughly e.g., in [1–3,11,13,15]. We apply this theory to construct discrete
minimal surfaces of conical type.

1.2. Notation. Throughout the paper we are considering meshes with planar quadri-
lateral faces and with Z2 combinatorics. The vertices are located either in Rn or in C.
The planarity condition in the latter case is clearly fulfilled automatically. We use the
notions nets and meshes in an equivalent way and often denote those by their generating
function, e.g., by f : Z2 → C. We are mainly considering local properties and therefore
when we refer to one point of a net we use the notion f instead of f(k, l) with k, l ∈ Z.
For the adjacent neighbors of f we use the subscripts mi or nj when we shift the first
or second index by m or n, respectively. That is, fi = f(k + 1, l), fj = f(k, l + 1),
fij = f(k + 1, l + 1), f−i = f(k − 1, l), fi−j = f(k + 1, l − 1), f2i = f(k + 2, l), etc.

1.3. Discrete conjugate nets and Koenigs nets/lattices. Conjugate nets are ob-
jects of projective differential geometry since the characterizing properties are invariant
under projective transformations. The commonly used discretization of two-dimensional
conjugate nets are planar quadrilateral meshes, i.e., meshes where all faces are planar
(see e.g., [3, 20]). Discrete conjugate nets enjoy popularity in theoretical and applied
fields such as discrete differential geometry, computer graphics, architecture, etc.

Koenigs nets are special conjugate nets. In the following, we will consider two different
discretizations of Koenigs nets [4, 8]. Both types of discretizations are invariant under
projective transformations just like smooth Koenigs nets. This is the reason why most
theorems of the present paper hold for both definitions (except in Section 4 where we
need dualizability of the nets). We distinguish between them by using the respective
author’s own wordings: Koenigs nets [4] – Koenigs lattice [8].

Koenigs nets. First, there is the definition by A.I. Bobenko and Yu.B. Suris [4]
focusing on the dualization property. Conjugate nets f : Z2 → Rn are called Koenigs
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nets if they allow for Christoffel dualization, i.e., if there is a real valued function ν :
Z2 → R \ {0} and a net f∗ : Z2 → R3 such that νij : ν = (M − fij) : (M − f) and
νj : νi = (M − fj) : (M − fi), where M is the intersection point of the diagonals of the
quadrilateral f, fi, fij , fj and such that

(1) f∗i − f∗ =
fi − f
ννi

and f∗j − f∗ = −fj − f
ννj

hold. Then f∗ is determined up to translation and scaling and f∗ is called dual of f .
As it turns out (see [4]) it is possible to characterize the Koenigs property in terms of so
called exact discrete multiplicative one-forms as follows. Let q be the function defined
on the diagonals representing ratios of the form (f−M) : (fij−M). Then f is a Koenigs
net if and only if q is an exact multiplicative one-form meaning that the product of all
values of q along any cycle of diagonals equals 1.

Koenigs lattices. Second, there is A. Doliwa’s [8] definition. Here, we need to
consider a face F = (f, fi, fij , fj) and its four edgewise neighboring faces. Then we
intersect opposite (extended) edges of three consecutive quadrilaterals in a row and in a
column as illustrated by Figure 1 (left) to obtain the following six points

f+−i := (f−i ∨ f−ij) ∩ (f ∨ fj), f−−j := (f−j ∨ fi−j) ∩ (f ∨ fi),
f+ := (f ∨ fj) ∩ (fi ∨ fij), f− := (f ∨ fi)) ∩ (fj ∨ fij),
f+i := (fi ∨ fij) ∩ (f2i ∨ f2ij), f−j := (fj ∨ fij) ∩ (f2j ∨ fi2j),

where a ∨ b denotes the straight line connecting points a and b. Then a conjugate net
f : Z2 → Rn is called a Koenigs lattice if the six just defined vertices f+−i, f

+, f+i , f−−j ,

f−, f−j lie on a conic (see Figure 1 left). This is indeed a condition since five different
points already uniquely determine a conic.

Remark 1. Most results of the present paper can be formulated and proved for both
notions, Koenigs nets and lattices. Note in this regard that a remark in [4] says that
the intersection points M : Z2 → Rn of the diagonals of a Koenigs net f constitute a
Koenigs lattice. Nevertheless, as we will explain later (in Remark 14), we do have to
consider both notions independently.

2. Discrete isothermic nets in C

In this section we first give a motivation for our definition of discrete isothermic
nets. Then we present characterizations and properties by looking at different models
of Möbius geometry.

2.1. Motivation and definition. Among different approaches to discrete curvature
lines we focus on so called conical nets [12]. Conical nets are quadrilateral meshes with
planar faces such that all faces around one vertex are tangent to a cone of revolution
(see Figure 1 right).

The reason why it is sensible to call conical nets discrete curvature line parametri-
zations is the following. Geometrically speaking the axes of the cones of revolution
corresponding to two adjacent vertices of a conical net are intersecting. In other words
the discrete normals along a discrete parameter curve form a discrete developable sur-
face. Now we recall the analogous fact in smooth differential geometry where curvature
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Figure 2. Left: The Möbius transformation z 7→ 1/z applied to (the vertices of) a vertex star.
Note that the sum of opposite angles is not preserved. Center: A vertex star fulfilling the
angle condition (2). In this case reflecting a point m in the edges is independent of the path,

i.e., m
(1)
−i−j = m

(2)
−i−j = m−i−j . The four points m,m−i,m−j ,m−i−j are concircular. Right: A

vertex star of a net in C not fulfilling the angle condition (2). In this case reflecting a point m

in the edges is not independent of the path, i.e., m
(1)
−i−j 6= m

(2)
−i−j .

lines are characterized by the fact that the surface normals along those curves form de-
velopable surfaces if and only if the curves are curvature lines. Consequently, we regard
polygons of the form f(Z, k) or f(k,Z) (which are discrete parameter curves) of a conical
net as discrete curvature lines [3, 12].

Conical nets as a special type of polyhedral surfaces were invented for applications
in architecture [12] because those meshes resemble smooth curvature line nets (and
therefore orthogonal nets), and in addition allow for so called face offsets that can be used
as a support structure. In terms of elementary geometry conical meshes are characterized
by equality of opposite angle sums at all vertices. To be more precise, let us consider a
vertex of valence four in the generic case where the vertex star is not contained in a plane.
Further, let ω1, . . . , ω4 measure the angles between the edges of the four quadrilaterals
around the vertex in cyclic order (see Figure 1 right and Figure 2 center). Then this
vertex is conical if and only if

(2) ω1 + ω3 = ω2 + ω4.

Clearly, equivalence here is only guaranteed for non-planar vertex stars. For a proof of
this characterization and further details see [17,22].

In analogy to [3, Def. 4.20] we add the Koenigs property to a discrete curvature line
net to obtain isothermicity.

Definition 2. A (discrete) isothermic net/lattice (of conical type) f : Z2 → R3 is a
conical Koenigs net/lattice.

Our main focus does not lie in spatial discrete isothermic surfaces except for some
examples of discrete minimal surfaces in Section 4 but rather on discrete isothermic
nets/lattices in C. The property of having a cone of revolution tangent to all faces at
each vertex is fulfilled by any net in a plane. To overcome that problem we replace the
“cone-condition” by the (in the non-planar case) equivalent angle condition (2). We thus
arrive at our main definition.
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Definition 3. A (discrete) isothermic net/lattice (of conical type) f : Z2 → C is a
Koenigs net/lattice which fulfills the angle condition (2) at all vertex stars.

Remark 4. In our planar situation we additionally have the property that the sum of
all angles at one vertex equals 2π, i.e., ω1 + . . . + ω4 = 2π. Thus, our angle condition
(2) immediately turns into ω1 + ω3 = ω2 + ω4 = π.

There is one thing we would like to expect from any definition of discrete isothermic
nets/lattices. It is invariance under Möbius transformations. For example in [2] they call
a map f : Z2 → C discrete isothermic (or discrete holomorphic) if the cross-ratio equals
−1 for all quadrilaterals f, fi, fij , fj , i.e., if cr(f, fi, fij , fj) = (f − fi)(fi − fij)−1(fij −
fj)(fj − f)−1 = −1. Since the cross-ratio is invariant under Möbius transformations
the notion of holomorphicity from [2] is invariant under Möbius transformations applied
to all vertices of the net. However, Figure 2 (left) illustrates that applying a Möbius
transformation directly to the vertices would destroy the characterizing properties (in
Figure 2 (left) obviously the conical condition is destroyed). Nevertheless, there is a
way to apply Möbius transformations to discrete isothermic nets/lattices and retain the
properties of Definition 3. We will elaborate on that in Section 2.5 after introducing the
notion of an underlying circle pattern.

2.2. The underlying family of circle patterns. Let us consider a discrete isothermic
net of conical type f : Z2 → C and a pointm ∈ C. We reflectm in the supporting straight
lines carrying ffi and ffj to obtain m−j and m−i, respectively. For an illustration see

Figure 2 (right). Then we reflect m−i in ffi and m−j in ff−j to obtain m
(1)
−i−j and m

(2)
−i−j ,

respectively. The question whether or not the last two points coincide is answered by
the following lemma which is also true in the non-planar setting, i.e., for conical nets in
R3 [17].

Lemma 5. For any quadrilateral net in C fulfilling (2) and in particular for discrete
isothermic nets/lattices of conical type we have

m
(1)
−i−j = m

(2)
−i−j =: m−i−j .

Proof. For the following geometric proof cf. Figure 2 (center and right). Reflecting a
point on two intersecting lines enclosing an angle of α is equivalent to rotating the point

about 2α around the point of intersection. Thus, m
(1)
−i−j is equivalently generated by a

rotation about an angle of 2ω2 which is 2π−2ω4 according to Remark 4. In other words

we obtain m
(1)
−i−j also by rotating m about an angle of 2π − 2ω4 in the other direction

which is exactly how we got m
(2)
−i−j . �

In this way we can assign a unique point mF to each face F around a vertex f
of a discrete isothermic net/lattice f : Z2 → C once we have chosen m. Due to the
construction of the four points m,m−i,m−i−j ,m−j through reflections those points are
concircular with center f (see also Figure 2 center). As we now continue to reflect mF in
the four edges corresponding to F we obtain a circular quadrilateral net m : (Z2)∗ → C,
where (Z2)∗ denotes the dual graph of Z2. We identify (Z2)∗ and Z2 in the following since
they have the same combinatorics. We call the two parameter family of quadrilateral nets
m(Z2) underlying family of circular quadrilateral nets or focusing on the corresponding



6 CHRISTIAN MÜLLER

Figure 3. Different underlying circle patterns of the same discrete isothermic net/lattice f :
Z2 → C. A stereographic projection as well as their Christoffel duals are illustrated by Figure
10.

circles s : Z2 → {circles ⊂ C} underlying family of circle patterns. Three different
instances of underlying circle patterns of the same net f(Z2) are depicted in Figure 3.
The following remark states that we can also go the other way around.

Remark 6. If we start with four concircular points then the mirror axes of two con-
secutive points all pass through the given circle center and form a planar vertex star
fulfilling the angle condition (2). Thus, the centers f : Z2 → C of a circle pattern with
Z2 combinatorics determines a quadrilateral net in C which meets the angle condition
(2) in all vertices.

2.3. Representation of circles by points. To work with the underlying circle pattern
we choose to take advantage of point models of circles. In the following we recall three
models and their relations.

2.3.1. Paraboloid model. Any circle s in C with center c and radius r can be represented
by the point

sp = (c, |c|2 − r2) ∈ C× R ∼= R3.

Geometrically, we obtain this point by the following procedure. We project the circle in
z-direction to the paraboloid x2 + y2− z = 0. The curve of intersection is an ellipse and
the pole of the supporting plane of this ellipse with respect to the paraboloid is exactly
our representative sp. Consequently, it is called paraboloid model or isotropic model (see
e.g., [16] for a justification of the latter name).

2.3.2. Spherical model. We stereographically project the circle s to the unit sphere. Here,
we restrict ourselves to the case where the projected circles are no great circles. Then
we construct the pole with respect to the unit sphere which reads

(3) φ(s) =
(
2c, |c|2 − r2 − 1

)
/(|c|2 − r2 + 1) ∈ C× R ∼= R3.

We obtain the spherical model by applying a special projective transformation to the
paraboloid model that maps the paraboloid to the unit sphere.
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2.3.3. Projective model. Circles s in C are represented in the projective model P(R3,1)
by homogeneous coordinates

ŝ =
(
c,

1

2
(|c|2 − r2 − 1),

1

2
(|c|2 − r2 + 1)

)
∈ C× R2 ∼= R3,1.

Here, R3,1 denotes the Minkowski space with an inner product 〈·, ·〉1 of signature (+ +
+−). For further details on projective models of Möbius geometry see e.g., [3, 5, 11].
Proper circles s, i.e., circles with non-vanishing radius, are characterized by 〈ŝ, ŝ〉1 > 0,
whereas points are lifted to the light cone L3,1 = {x̂ ∈ R3,1 | 〈x̂, x̂〉1 = 0}. Two circles
s1, s2 are intersecting orthogonally if and only if their representing points are lying polar
with respect to the light cone, i.e., 〈ŝ1, ŝ2〉 = 0. A pencil of circles in C is represented
by a straight line in R3,1. The representatives ŝ of circles lie in the affine hyperplane
x4 − x3 = 1. For a schematic illustration of the projective model and the light cone see
Figure 4 (left). We immediately see that the linear map

(4) (x1, . . . , x4) 7→ (x1, x2, (x3 − x4)/2, (x3 + x4)/2)

maps the paraboloid model (sp, 1) (lifted to the hyperplane x4 = 1) to the projective
model φ(s).

2.4. Discrete isothermic nets/lattices in point models. The goal of this para-
graph is to establish bijective relations between an underlying circle pattern of a discrete
isothermic net/lattice (of conical type) and special types of nets in the point models of
circles.

Lemma 7. Let s1, s2, s3 denote three circles of a pencil of circles with centers c1, c2, c3
such that c3 = (1− λ)c1 + λc2 for some λ ∈ R. Then

sp3 = (1− λ)sp1 + λsp2 and ŝ3 = (1− λ)ŝ1 + λŝ2.

Thus, the representatives of three circles of a pencil in the paraboloid and projective
models are collinear and their affine ratio equals the ratio of their corresponding centers.

Proof. It is easily verified and well known that a pencil of circles is represented by a line
in the paraboloid model. Further, by definition sp lies in x3-direction over the center of
s. Consequently, the first equation is clear. The second equation is then also clear since
the linear map (4) maps the three points spi to ŝi. �

Lemma 8. Let s1, . . . , s4 be four circles in C all passing through one point m. Then
ŝ1, . . . , ŝ4 are coplanar and the supporting plane is contained in the tangent space of the
light cone at m̂.

Proof. Lemma 7 immediately implies that in the paraboloid model circles s passing
through a point m are mapped to points in the tangent plane of the paraboloid at mp.
Consequently, sp1, . . . , s

p
4 are coplanar. The linear map (4) maps the tangent plane of the

paraboloid to a two dimensional plane P in the tangent space of the light cone Tm̂L3,1.
Thus, P is the supporting plane of ŝ1, . . . , ŝ4. �

With these preparations we can prove the following characterization of (discrete)
isothermic nets/lattices of conical type in the projective model.
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Figure 4. Left: A schematic illustration of the generation of the projective model of Möbius
geometry. A point m ∈ C is stereographically projected to the sphere φ(m) ∈ S2. Here S2 is
depicted as a circle. S2 is embedded in the affine hyperplane x4 = 1 and then projected to the
affine hyperplane x4 − x3 = 1 to obtain the homogeneous coordinate representation m̂. A circle
s ∈ C is stereographically projected to a circle on S2. φ(s) is the pole of the plane which carries
this circle. A central projection with center 0 maps φ(s) to ŝ in the affine hyperplane x4−x3 = 1.
ŝ is the representative of the circle in the projective model. Right: A planar face ŝ, ŝi, ŝi−j , ŝ−j
in the tangent space of the light cone at m̂−j represents four circles which meet in a point m−j .

Theorem 9. (a) Let f : Z2 → C be a discrete isothermic net/lattice of conical type
and let s : Z2 → {circles ⊂ C} be an underlying circle pattern. Then the lift to
the projective model ŝ : Z2 → R3,1 is a Koenigs net/lattice where each face is
contained in a tangent space of the light cone.

(b) Let ŝ : Z2 → {x̂ ∈ R3,1 | 〈x̂, x̂〉1 ≥ 0} be a discrete Koenigs net/lattice where
each face is contained in a tangent space of the light cone. Then the centers
f : Z2 → C of the corresponding circles s : Z2 → {circles ⊂ C} form a discrete
isothermic net/lattice of conical type.

Proof. To verify (a) we have to show planarity of the faces of ŝ(Z2) and the Koenigs
properties.

By construction of the underlying circle pattern s : Z2 → {circles ⊂ C} all four circles
s, si, sij , sj corresponding to a face of f are intersecting in one point m. Thus, Lemma
8 yields coplanarity of the lifted representatives ŝ, ŝi, ŝij , ŝj of the four circles under
consideration and the supporting plane is contained in the tangent space Tm̂L3,1 of the
light cone at m̂.

Regarding the Koenigs properties we need to consider both cases, net/lattice, sepa-
rately. It is clear that either type of the Koenigs property in the definition of isothermic
nets/lattices survives the transformation from C to the parabolic model. Because, for
Koenigs lattices we realize that the net sp : Z2 → R3 in the paraboloid model has pla-
nar faces and that the orthogonal projection back to the x1x2-plane is the original net
f : Z2 → C. Consequently, we obtain a conic through sp+−i , s

p+, sp+i , sp−−j , s
p−, sp−j by

projecting the existing conic through f+−i, f
+, f+i , f

−
−j , f

−, f−j up to the plane (sp, spi , s
p
ij ,

spj ). Afterwards, the linear map (4) maps the conic to R3,1.
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Figure 5. A central projection of a closed non-planar polygon a1, . . . , ak in Rn (here k = 4)
to an affine hyperplane. Proposition 10 implies that the products of lengths ratios of all line
segments ai, bi,i+1, ai+1 are the same for both polygons, the original one with vertices ai and the
projected one with vertices a′i.

For Koenigs nets, Lemma 7 implies that the ratio of diagonal segments of the repre-
sentatives sp, dp, spij is the same as the ratio of the corresponding diagonal segments of
the diagonal f, fij , where d is the point of intersection of the diagonals of the considered
face. Since the linear map (4) keeps affine ratios also the lift to the projective model is
a net where the ratios of diagonal segments constitute an exact discrete multiplicative
one-form, and thus it is a Koenigs net.

We use a similar argument to verify (b). If ŝ : Z2 → R3,1 is a Koenigs net/lattice
then the inverse of (4) maps the net/lattice to the parabolic model where conics are
mapped to conics and affine ratios of diagonal segments are preserved. Afterwards, the
orthogonal projection to the x1x2-plane also maps conics to conics and preserves affine
ratios. Consequently, the Koenigs property survives for both types.

It remains to verify the angle condition (2) for all vertex stars of f . Each face of
ŝ(Z2) is contained in some Tm̂L3,1, i.e., in the tangent space of the light cone at some
point m̂. Thus, each point in such a face represents a circle passing through m which
is the point represented by m̂. Since two adjacent vertices ŝ, ŝi of the net/lattice ŝ(Z2)
are incident with two adjacent faces the two corresponding circles s, si intersect in two
points m,m−j (see Figure 4 right). Consequently, Remark 6 implies that the centers f
of the circles represented by ŝ is a net/lattice that meets the angle condition (2). �

The following proposition generalizes [3, Thm. 9.11] which says that the cyclic product
of directed lengths ratios is invariant under projective transformations. This result is
still true if we replace projective transformations by central projections to hyperplanes.

Proposition 10. Let a1, . . . , ak ∈ Rn with k ≥ 3 and let bi,i+1 be a point on the straight
line ai∨ai+1 with bi,i+1 = (1−λi)ai+λiai+1. Then the product of oriented lengths ratios

k∏
i=1

bi,i+1 − ai
bi,i+1 − ai+1
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is invariant under those central projections to hyperplanes (see Figure 5) which do not
send any of the considered points to infinity nor map a line segment to a point.

Proof. W.l.o.g. we project to the hyperplane xn = 1 with center 0. We consider the
three points a, b, c on a line and its projections a′, b′, c′ which are given by

a′ =
1

an
a =

1

an
(a1, . . . , an) = (a1/an, . . . , an−1/an, 1),

and analogously for b′ and c′. There are λ, µ ∈ R with c = (1 − λ)a + λb and c′ =
(1− µ)a′ + µb′. Consequently,

1

(1− λ)an + λbn
(
(1− λ)a+ λb

)
= (1− µ)

1

an
a+ µ

1

bn
b,

and thus
µ

µ− 1
=

λbn

(λ− 1)an
.

For the product of lengths ratios we therefore obtain by canceling all ani
k∏

i=1

µi
µi − 1

=
λ1a

n
2

(λ1 − 1)an1
· λ2a

n
3

(λ2 − 1)an2
· . . . · λka

n
1

(λk − 1)ank
=

k∏
i=1

λi
λi − 1

.

Thus, we get

k∏
i=1

bi,i+1 − ai
bi,i+1 − ai+1

=

k∏
i=1

λi
λi − 1

=

k∏
i=1

µi
µi − 1

=

k∏
i=1

b′i,i+1 − a′i
b′i,i+1 − a′i+1

,

which concludes the proof. �

Corollary 11. Any lift µŝ : Z2 → R3,1 of an underlying circle pattern of a discrete
isothermic net/lattice which is still a net with planar faces for some function µ : Z2 →
R \ {0} is a discrete Koenigs net/lattice.

Proof. For Koenigs nets Proposition 10 implies that the product of a cycle of diagonal
segments does not change when multiplying each vector of homogeneous coordinates ŝ
by an individual scalar µ. Consequently, the discrete multiplicative one form defined as
ratios of diagonal segments is exact for all possible lifts of the form µŝ : Z2 → R3,1, or
for none. Since Theorem 9(a) implies that there is at least one lift, namely ŝ, which is a
Koenigs net, all possible lifts of the form µŝ which have planar faces are Koenigs nets.

As for the Koenigs lattices we have that the six points lying on the characterizing
conic for the face (f, fi, fij , fj) are mapped by a central projection to six points on the
projected conic into the plane of the face (µf, µifi, µijfij , µjfj). �

Corollary 12. (a) Let f : Z2 → C be a discrete isothermic net/lattice of conical
type and let s : Z2 → {circles ⊂ C} be an underlying circle pattern. Then
φ(s) : Z2 → R3 is a discrete isothermic net/lattice, i.e., a conical Koenigs net/
lattice.

(b) Let s̃ : Z2 → R3 be a conical Koenigs net/lattice where all faces touch the unit
sphere. Then the centers of the circle pattern φ−1(s̃) form a discrete isothermic
net/lattice of conical type.
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Figure 6. We obtain the discrete

isothermic net f̃ (center; single line
net) after applying a Möbius trans-
formation to the canonical underly-
ing circle pattern of the Z2 net f
(left) as in Thm. 13. Note that the

net M̃ (center; double line) consist-
ing of the intersection points of the
diagonals is no longer conical be-
cause opposite angles do not sum up
to π (see also Remark 14).

Proof. This is an immediate consequence of Corollary 11 and the fact that the net/lattice
φ(Z2) in the spherical model is that special lift µŝ(Z2) which lives in the hyperplane
x4 = 1. �

2.5. Discrete isothermic nets and Möbius transformations. We already saw (Fig-
ure 2 left) that we cannot apply a Möbius transformation to the vertices of a discrete
isothermic net/lattice of conical type without destroying isothermicity. However, we can
apply Möbius transformations to the underlying circle pattern and retain the property
of isothermicity.

Theorem 13. Let f : Z2 → C be a discrete isothermic net/lattice of conical type and
let s : Z2 → {circles ⊂ C} be an underlying circle pattern. Furthermore, let M be a
Möbius transformation. Then the centers of the circle pattern M ◦ s(Z2) form a discrete
isothermic net/lattice of conical type.

Proof. By applying Theorem 9(a) we obtain that the image of the circle pattern s(Z2) in
the projective model is a Koenigs net/lattice where each face is contained in a tangent
space of the light cone. The fundamental theorem of Möbius geometry implies that the
Möbius transformation M acts in the projective model P(R3,1) as projective transfor-
mation which preserves the light cone. The property of being a Koenigs net/lattice is
invariant under projective transformations. Thus, the transformed net/lattice is again a
conical Koenigs net/lattice where all faces are contained in a tangent space of the light
cone. Consequently, Theorem 9(b) implies that the centers of M ◦ s(Z2) form a discrete
isothermic net/lattice of conical type. �

Remark 14. As mentioned before the intersection points M of the diagonals of a discrete
isothermic net f (i.e., in the sense of [4]) constitute a Koenigs lattice (i.e., in the sense
of [8]). Applying a Möbius transformation as stated in Theorem 13 to f yields another

isothermic net f̃ with a corresponding net M̃ . However, M̃ is no longer guaranteed to
be an isothermic lattice (not even conical) even if M was. This can easily be verified by
a counterexample (see Figure 6).

2.6. Moutard nets. Darboux [7] showed the characterization of (smooth) isothermic
surfaces in terms of Moutard nets in the light cone. A Moutard net is a parametrization
f of a surface which fulfills the PDE fxy = af for some function a. A discrete version of
this relation in the setting of circular nets can be found in [4, Th. 4.12]. In our conical
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setting we obtain a similar characterization. Note that in this section our objects are
Koenigs nets (i.e., in the sense of [4]).

Theorem 15. Let f : Z2 → C be a discrete isothermic net of conical, and let s : Z2 →
{circles ⊂ C} be an underlying circle pattern. Further, let ν be the real valued function
defined for Koenigs nets (see Section 1.3). Then the special lift y := ν−1ŝ : Z2 → R3,1

of the circles to a net with faces tangent to the light cone fulfills the discrete Moutard
equation with minus signs

yij − y = aij(yj − yi),
where aij = (ν−1ij − ν−1)/(ν

−1
j − ν

−1
i ).

Conversely, any net y : Z2 → R3,1 with faces tangent to the light cone and fulfilling
the Moutard equation represents a circle pattern in C whose centers represent a discrete
isothermic net of conical type.

Proof. Let us first recall the following theorem by A.I. Bobenko and Yu.B. Suris [4, Thm.
3.15]. It says that a net g : Z2 → Rn is a Koenigs net (and especially has planar faces)
if and only if there is a function ν : Z2 → R \ {0} which is defined for dualizing g (as
described in Section 1.3) such that the following discrete Moutard equation is fulfilled

(5) ν−1ij (gij , 1)− ν−1(g, 1) = aij
(
ν−1j (gj , 1)− ν−1i (gi, 1)

)
.

In our setting Theorem 9(a) implies that ŝ(Z2) is a Koenigs net with faces tangent
to the light cone. Consequently, by using ŝ : Z2 → R3,1 for g in Equation (5) and by
setting y := ν−1ŝ Equation (5) turns into

(yij , ν
−1
ij )− (y, ν−1) = aij

(
(yj , ν

−1
j )− (yi, ν

−1
i )
)
.

The first component (actually the first four components) of the last equation is exactly
the Moutard equation yij −y = aij(yj −yi). The faces of the Moutard net y : Z2 → R3,1

are still tangent to the light cone.
The other direction follows immediately from Theorem 9(b) and the characterization

of Koenigs nets via the discrete Moutard equation (5). �

3. Examples

As mentioned before analytic isothermic nets in C are holomorphic. In this section
we discuss discretizations of elementary holomorphic maps. All examples except the
last one are isothermic nets and isothermic lattices simultaneously which leads us to call
those nets/lattices simply discrete holomorphic. before we apply the Christoffel dual
construction to isothermic nets to obtain minimal surfaces in Section 4.

3.1. Discrete identity map. The discrete identity map f : Z2 → C with (k, l) 7→
k + il (where i =

√
−1) is obviously a discrete holomorphic map (of conical type).

f(Z2) is illustrated by Figure 3 with three different underlying circle patterns. We can
reparametrize f in the form (k, l) 7→ α(k) + iβ(l), where α, β : Z→ R are either strictly
monotonically increasing or decreasing and still keep holomorphicity. Additionally, this
type of net is circular, i.e., in the case of α = β = const. it is also discrete holomorphic
in the sense of [2].
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S1◦S2(F )

a1

a2

a3

a4 =S1(a1)
S2(a2)

S2(F )

S1(F )

F

ω3

ω3ω3ω3ω3ω3ω3ω3ω3ω3ω3ω3ω3ω3ω3ω3ω3ω3

ω1

ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1

m

mi

m2i

m−j

mi−j

m2i−j

M1(s)

s

Figure 7. Left: Two similarities S1, S2, each mapping an edge of a quadrilateral a1, . . . , a4 to
the opposite edge are commuting (see Lemma 16). Applying this similarities yields a quadri-
lateral net/lattice Sk1 ◦ Sl2(a1) (locally) without gaps. Center: Circular quadrilateral net/lattice
constructed with similarities. The circularity condition implies ω1 + ω3 = π. Thus, here the
angle condition (2) is fulfilled. Right: A given circle s is mapped by a Möbius transformation
M1 to a circle M1(s) in such a way that s ∩M1(s) = {m,m−j}. Iterated application of M1 on
m and m−j yields mi,m2i, . . . and mi−j ,m2i−j , . . .

3.2. Discrete exp(z). The map f : Z2 → C with (k, l) 7→ exp(k + il) is a discrete
rotational symmetric net. All quadrilaterals are similar trapezoids. Thus, f(Z2) is a
circular discrete holomorphic net (of conical type). We can reparametrize f in the form
(k, l) 7→ exp(α(k) + iβl) where α : Z → R is either strictly monotonically increasing
or decreasing, and where β 6= 0 is constant. Then f is still discrete holomorphic (of
conical type). It turns out (after some lengthy computations) that the cross-ratios of all
quadrilaterals of the net f equal −1 if and only if cosβ = 2−cosh(kα(k)−(1+k)α(1+k)),
which then implies holomorphicity in the sense of [2]. An illustration can be found in
Figure 11 (bottom left).

3.3. Discrete exp(az). Before we construct a discrete exp(az) net we show the following
lemma on specially defined similarities.

Lemma 16. Let a1, . . . , a4 ∈ C be four pairwise distinct points and let further S1, S2 be
orientation preserving similarities defined by

S1(a1) = a4, S1(a2) = a3, and S2(a1) = a2, S2(a4) = a3.

Then S1 and S2 commute, i.e., S1 ◦ S2 = S2 ◦ S1 (see Figure 7 left).

Proof. First, we show S2 ◦ S1(a4) = S1 ◦ S2(a4). The similarities can be written in the
form Sk(z) = rk exp(iϕk)z + uk with rk > 0, ϕk ∈ [0, 2π), and uk ∈ C for k = 1, 2. We
have

S1 ◦ S2(a4)− S2 ◦ S1(a4) = (S1 ◦ S2(a4)− a3) + (a3 − S2 ◦ S1(a4))
= (S1 ◦ S2(a4)− S1(a2)) + (S2(a4)− S2 ◦ S1(a4))
= r1 exp(iϕ1)(S2(a4)− a2) + r2 exp(iϕ2)(a4 − S1(a4))
= r1 exp(iϕ1)(S2(a4)− S2(a1)) + r2 exp(iϕ2)(S1(a1)− S1(a4))
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= r1r2 exp(i(ϕ1 + ϕ2))(a4 − a1) + r1r2 exp(i(ϕ1 + ϕ2))(a1 − a4) = 0.

Thus, S2 ◦S1(a4) = S1 ◦S2(a4). It is immediately clear from the definition of S1 and S2
that S2 ◦ S1(a1) = S1 ◦ S2(a1). Consequently, both S1 ◦ S2 and S2 ◦ S1 are orientation
preserving similarities that map the pair of two different points (a1, a4) to the same pair
of image points (a3, S1(a3)). Therefore, both similarities are equal. �

Proposition 17. Let a1, . . . , a4 ∈ C be a quadrilateral and S1, S2 similarities as defined
in Lemma 16. Then the net f : Z2 → C with f(k, l) = Sk

1 ◦ Sl
2(a1) is a Koenigs net and

a Koenigs lattice simultaneously.

Proof. The proof in the case of a Koenig lattice with methods from classical projective
geometry is included in the appendix.

As for the Koenigs nets we know that all quadrilaterals are similar which implies
that the ratios of diagonal segments are equal for the same (combinatorial) direction of
diagonals. Thus, multiplying these ratios corresponding to four faces around a vertex
yields 1. All other possible cycles of diagonals can be composed by these elementary
cycles which implies that the ratios of diagonal segments constitute an exact discrete
multiplicative one-form. �

Proposition 18. Let a1, . . . , a4 ∈ C be a circular quadrilateral and S1, S2 similarities
as defined in Lemma 16. Then the net f : Z2 → C with f(k, l) = Sk

1 ◦Sl
2(a1) is a circular

discrete holomorphic map (of conical type).

Proof. A fact from elementary geometry is that a quadrilateral is circular if and only if
opposite angles sum up to π. Due to the similarity construction of our net f(Z2) opposite
angles at a vertex are the same as opposite angles in a face (see Figure 7 center). Thus
the angle condition (2) is fulfilled. The property of f(Z2) being a Koenigs net/lattice
follows from Proposition 17. �

Proposition 18 yields a method to construct a few discrete holomorphic maps starting
from a circular quadrilateral. We consider the following four types of circular quadrilat-
erals: rectangles, isosceles trapezoids, deltoids, and general (non-special) quadrilaterals.

Rectangles generate the discrete identity map from Section 3.1. Isosceles trapezoids
generate the discrete version of exp(z) from Section 3.2. As for general circular quadri-
laterals, they generate self-similar nets/lattices analogous to the parameter curves of
exp(az). Thus, these nets/lattices can be interpreted as discrete exp(az) maps with
Re(a) · Im(a) 6= 0. Among those quadrilaterals the deltoids are symmetric and thus
discretize the case where a = λ(1 + i) for some λ ∈ R \ {0}.

The trapezoid case is illustrated by Figure 11 (bottom left). The deltoid case is
illustrated by Figure 12 (bottom left). The general quadrilateral case is illustrated by
Figure 12 (bottom right).

3.4. Discrete holomorphic maps from iterated Möbius transformations.

Lemma 19. Let M1 be a Möbius transformation and let s be a circle such that s∩M1(s) =
{m,m−j} (see Figure 7 right). Let us further denote

mi = M1(m), mi−j = M1(m−j), m2i = M1(mi), m2i−j = M1(mi−j).
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Figure 8. Left: Discrete tanh(az) with a ∈ (1+ i)R. Right: Discrete tanh(az) with a ∈ R. One
family of parameter curves of that type resembles electric field lines surrounding two opposite
charges of the same magnitude.

We define a Möbius transformation M2 by prescribing the following images of three
points M2(m) = m−j, M2(mi) = mi−j, M2(m2i) = m2i−j. Then

(a) M1 and M2 commute, i.e., M1 ◦M2 = M2 ◦M1.
(b) M1 and M2 have the same fixed points.
(c) The set of circles s : Z2 → {circles ⊂ C} with s(k, l) = Mk

1 ◦M l
2(s) constitute a

circle pattern, meaning s(k, l), s(k + 1, l), s(k + 1, l+ 1), s(k, l+ 1) intersect in a
common point.

Proof. To prove (a) we recall the fact that any Möbius transformation is similar to a
rotation and stretching, i.e., there is a Möbius transformation M such that M−1 ◦M1 ◦
M(z) = wz for some w ∈ C. Consequently, w.l.o.g. we can assume that M1 is a similarity.
Lemma 16 implies that the orientation preserving similarity S2 defined by S2(m) = m−j
and S2(mi) = mi−j , also maps m2i to m2i−j . Consequently, M2 = S2 and in particular
Lemma 16 implies that M1 and M2 commute.

The fact that any two Möbius transformations that are different from the identity
have the same fixed points if and only if they commute proves (b). For a proof of that
fact consider again first the special case M1(z) = wz with w ∈ C.

Statement (c) follows immediately from the definition of the Möbius transformations
M1,M2 and from (a). �

Note that the Möbius transformation M2 not only depends on M1 but also on the
choice of the circle s.

Proposition 20. Let M1,M2 be Möbius transformations as defined in Lemma 19. Then
the centers of the circle pattern s : Z2 → {circles ⊂ C} with s(k, l) = Mk

1 ◦ M l
2(s)

constitute a (not necessarily circular) discrete holomorphic map f (of conical type).

Proof. The proof follows immediately from Lemma 19, Proposition 18, and the fact that
any Möbius transformation is similar to a rotation and stretching of the form z 7→ wz
with w ∈ C. �
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Figure 9. Illustration of the discrete Riemann mapping described in Section 3.6. This figure is
a solution of a non-linear numerical optimization approach and has no rigorous proof.

A discrete holomorphic nets f(Z2) from Proposition 20 as iterated Möbius transfor-
mations is illustrated by Figure 8 (left). Note that in general these nets f(Z2) are not
circular.

3.5. Discrete tanh(az). There is the following representation of the smooth hyperbolic

tangent function in terms of the exponential function: tanh(az) = exp(2az)−1
exp(2az)+1 . Thus, to

obtain a discrete tanh(az) we apply the Möbius transformation z 7→ z−1
z+1 to a discrete

net discretizing exp(2az) from Section 3.3. For an illustration see Figure 8 (right).

3.6. Discrete Riemann mapping (experiment). The result of this paragraph is
only motivated by counting degrees of freedom and numerical experiments. The classical
Riemann mapping theorem says that there is a biholomorphic map between any open
and simply connected domain in C (but not the plane itself) and the open unit disc.

We try to interpret the Riemann mapping theorem in our discrete setting. To that
end we prescribe a closed polygon in C which is combinatorial equivalent to the border
of the lattice {0, . . . ,m} × {0, . . . , n}. Now we ask the following question. Is it possible
to find a discrete holomorphic map (of conical type) that coincides with the given border
polygon. We don’t have a rigorous answer to that question but we make the following
observation. For the moment we only consider Koenigs nets (i.e., in the sense of [4]). We
have m×n inner points and consequently m×n×2 degrees of freedom for choosing them.
On the other hand we have two conditions on each inner vertex star to be fulfilled to be
a discrete holomorphic map namely the angle condition (2) and the Koenigs condition.
That is, we also have m × n × 2 conditions. From this considerations we suspect the
existence of a unique discrete holomorphic map solving the given initial value problem.
An illustration of this discrete Riemann mapping can be found in Figure 9.
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Figure 10. Enneper’s minimal surface and the influence of the underlying circle pattern. For
details see Section 4.1.

4. Discrete minimal surfaces

Generating discrete minimal surfaces in R3 from isothermic parametrizations of a
sphere via discrete analogues of the Christoffel transformation is by now a well estab-
lished theory [1–3, 11, 13, 15]. We take advantage of that theory to generate conical
minimal surfaces in the following way. We start with a discrete holomorphic map (of
conical type) f in C, where we restrict ourselves to Koenigs nets (i.e., in the sense of [4]).
Then we construct one instance s of the family of underlying circle patterns and stere-
ographically project the associated circles to the sphere. Then we construct the poles
of the supporting planes of the circles with respect to the sphere. In other words we
consider the spherical model of Sec. 2.3.2. Cor. 12(a) guarantees that the so generated
net is a conical Koenigs net, i.e., a discrete isothermic net. Then we apply the Christoffel
dual transformation (1) to obtain discrete minimal surfaces (of conical type).

4.1. Discrete Enneper’s surface. Three versions of a discrete Enneper’s minimal
surface are depicted in Figure 10. The discrete holomorphic map corresponding to
Enneper’s minimal surface is the discrete identity, i.e., in our case we take a scalar
multiple of the Z2 grid. In all three images there is the minimal surface and beneath
the corresponding holomorphic map with underlying circle pattern and the Gauss image.
The natural way to chose an underlying circle pattern is to take the centers of the squares
as intersection points m of the four circles corresponding to that square as in Figure 10
(left). In Figure 10 (center) the points m are now centers of horizontal edges. The
symmetry of the net implies that the three highlighted circles are in the same pencil of
circles. Thus, the corresponding lifted points of the spherical model (which is our Gauss
image) of these three circles are collinear. Consequently, in the minimal surface there
are pairs of adjacent quadrilaterals which lie in the same plane. In Figure 10 (right) the
points m are coincident with vertices of the holomorphic data. Thus, there is always
one circle corresponding to each face in the underlying circle pattern that degenerates
to a point. Consequently, all nine circles corresponding to all four faces around m pass
through m, which implies coplanarity of these four faces in the Gauss image as well as
in the minimal surface.
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Figure 11. Discrete catenoid (left) and a Goursat transformation of a discrete catenoid (right)
together with holomorphic data and Gauss image.

4.2. Discrete catenoid and its Goursat transformation. Figure 11 (left) illus-
trates a discrete catenoid. The corresponding holomorphic data is the discrete exp(z)
function. We obtain the specific holomorphic net for Figure 11 by taking a rotational
symmetric quadrilateral and construct a net by applying Proposition 18. Elementary
geometric considerations imply that the points of intersection of diagonals can be taken
as points m : Z2 → C. Convergence of this version of the discrete catenoid to its smooth
counterpart has been considered in [14].

A Goursat transformation of an isothermic parametrization f of a minimal surface is
defined by (M ◦ f∗)∗, where M is a Möbius transformation and where f∗ denotes the
Christoffel dual of f (see Equation (1)). That is, a Goursat transformation is the dual
of a net obtained by a Möbius transformation applied to the dual of f . For more details
on Goursat transformations see e.g., [11, Sec. 5.3]. For Figure 11 (right) we just used
exp(z) + c, i.e., a translation of the holomorphic net of Figure 11 (left), and we run
through the original catenoid twice.

4.3. Discrete helicoid and helicoidal minimal surfaces. The holomorphic data of
the smooth helicoid is of the form exp((1 + i)z). The isothermic parametrization of the
helicoid is clearly not the same as the more common one that we get by applying a
helical motion to a straight line that intersects the central axis orthogonally. Figure 12
(left) illustrates a discrete version of that surface. The map discretizing exp((1 + i)z),
that we considered in Section 3.3, is generated by applying Proposition 18 to a circular
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Figure 12. A discrete helicoid (left) and a discrete helical minimal surface (right) together with
holomorphic data and Gauss image.

deltoid. We only depict a small part of the discrete holomorphic map because the entire
net would overlap and destroy the significance of the image.

Helicoidal minimal surfaces are studied e.g., in [23]. Those are contained in the
associated family in which both the catenoid and the helicoid appear. The corresponding
holomorphic data is the function z 7→ exp(az) with a ∈ C \

(
R ∪ (1 + i)R

)
. Figure 12

(right) illustrates a discrete helical minimal surface. For the illustration we trimmed
the surfaces at their self intersections. The discrete analogue of exp(az) is generated
by applying Proposition 18 to a non-symmetric circular quadrilateral as explained in
Section 3.3. Figure 12 (right) only illustrates a part of the discrete holomorphic map
and of the Gauss image.

Appendix

In the appendix we give a proof of Proposition 17 with methods from classical pro-
jective geometry. We split up the proof into the following lemmas. For further details
on projective geometry see e.g. the textbook [18].
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Figure 13. Illustrations of Lemma 21 (left), Lemmas 22 and 23 (center), and proof of Propo-
sition 17 (right).

Lemma 21. Let κ : P2 → P2 be a collineation in the real projective plane P2, and let g
denote a straight line. Furthermore, let us denote the point of intersection of the line g
and κ(g) by s (see Figure 13 left). Then the conic c that is tangent to all lines a ∨ κ(a)
for all a ∈ g (J. Steiner’s definition of line-conics) touches both lines g and κ(g) at
κ−1(s) and κ(s), respectively.

Proof. g and κ(g) are in the set of lines tangent to c. Let us assume c touches g in
a point t different from κ−1(s). According to our definition of c the straight line h
connecting t and κ(t) 6= s is a tangent of c. However, it is impossible to have two
different tangents g and h both going through t. The proof for κ(s) being a contact
point works analogously. �

Lemma 22. Let f, fi, fij , fj ∈ P2 be four points and let further S1, S2 be orientation
preserving similarities defined by (for notation cf. Section 1.3 and Figure 13 center)

S1(f) = fj , S1(fi) = fij , and S2(f) = fi, S2(fj) = fij .

Furthermore, let

f− = (f ∨ fi) ∩ (fj ∨ fij), f+ = (f ∨ fj) ∩ (fi ∨ fij),
f−−j = S−11 (f−), f+−i = S−12 (f+),

f−j = S1(f
−), f+i = S2(f

+).

Then there is a conic c tangent

to f ∨ fi at f−−j , to fj ∨ fij at f−j ,(6)

to f ∨ fj at f+−i, to fi ∨ fij at f+i .(7)

Proof. There is a conic c constructed with Lemma 21 for the collineation κ = S1 and
for g = f ∨ fi. Consequently, by construction (6) is fulfilled and the four connecting
lines from (6) and (7) are tangent to c. Since S1 is a similarity one tangent of c is the
line at infinity. Consequently, c is the unique parabola tangent to the four lines from
(6) and (7). Analogously, S2 produces a parabola fulfilling (7) and having the same four
tangents as c. Therefore the second conic is identically equal to c. �
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Lemma 23. We take the same assumptions and notations as in Lemma 22. Then the
four lines

fi ∨ fj , f− ∨ f+, f−j ∨ f
+
i , f−−j ∨ f

+
−i,

all pass through a common point z. For an Illustration see Figure 13 (center).

Proof. We apply Brianchon’s theorem (see e.g., [18, Th. 10.7]) two times.
First, we consider the two line elements (i.e., tangent plus contact point) t12 = (fj ∨

fij , f
−
j ), t45 = (fi∨fij , f+i ) and the two tangents t3 = f ∨fj and t6 = f ∨fi. Brianchon’s

theorem stays true if we replace two different tangents by one line element. That is, two
tangents t1, t2 can be replaced by one line element (t12, T ) where t1∩t2 then corresponds
to the contact point T . Brianchon’s theorem now implies that the three lines

(t1 ∩ t2) ∨ (t4 ∩ t5) = f−j ∨ f
+
i ,

(t2 ∩ t3) ∨ (t5 ∩ t6) = fj ∨ fi,
(t3 ∩ t4) ∨ (t6 ∩ t1) = f+ ∨ f−,

pass through a common point z. Analogously, for the two line elements t12 = (f∨fi, f−−j),
t45 = (f ∨ fj , f+−i) and the two tangents t3 = fi ∨ fij and t6 = fj ∨ fij we obtain, by
applying Brianchon’s theorem, that the three lines

(t1 ∩ t2) ∨ (t4 ∩ t5) = f−−j ∨ f
+
−i,

(t2 ∩ t3) ∨ (t5 ∩ t6) = fi ∨ fj ,
(t3 ∩ t4) ∨ (t6 ∩ t1) = f+ ∨ f−,

pass through a common point z̃. However, z and z̃ is the same point since both lines
fi ∨ fj and f+ ∨ f− are in both sets of lines. �

Now we have collected all the properties we need to prove Proposition 17.

of Proposition 17. By applying Pascals theorem (see e.g., [18, Th. 10.6]) we show the
existence of a conic passing through p1 = f+−i, p2 = f+, p3 = f+i , p4 = f−j , p5 = f−,

p6 = f−−j . Lemma 23 implies that the three points

(p1 ∨ p2) ∩ (p4 ∨ p5) = fj , (p2 ∨ p3) ∩ (p5 ∨ p6) = fi, (p3 ∨ p4) ∩ (p6 ∨ p1) = z,

are collinear (see Figure 13 right). Consequently, Pascal’s theorem implies that the six
points p1, . . . , p6 lie on a conic. �
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References

[1] Alexander I. Bobenko, Tim Hoffmann, and Boris A. Springborn. Minimal surfaces from circle pat-
terns: geometry from combinatorics. Ann. of Math. (2), 164(1):231–264, 2006.

[2] Alexander I. Bobenko and Ulrich Pinkall. Discrete isothermic surfaces. J. Reine Angew. Math.,
475:187–208, 1996.

[3] Alexander I. Bobenko and Yuri B. Suris. Discrete differential geometry: Integrable Structure. Num-
ber 98 in Graduate Studies in Math. American Math. Soc., 2008.

[4] Alexander I. Bobenko and Yuri B. Suris. Discrete Koenigs nets and discrete isothermic surfaces.
Int. Math. Res. Not. IMRN, (11):1976–2012, 2009.

[5] Thomas E. Cecil. Lie sphere geometry. Universitext. Springer, New York, second edition, 2008.
[6] Elwin Bruno Christoffel. Ueber einige allgemeine Eigenschaften der Minimumsflächen. J. Reine
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